Download citation
Download citation
link to html
In the title compound, [U(C9H4INO4S)O2(H2O)3]·2H2O, the asymmetric unit contains a UO22+ ion coordinated by the N and O atoms of a 7-iodo-8-oxidoquinoline-5-sulfonate dianion (ferron anion) and three coordinated water molecules, and two uncoordinated water molecules. The UO22+ ion exhibits a seven-coordinate pentagonal bipyramidal geometry. The usual sulfonate oxygen coordination is absent but the sulfonate O atoms, along with the coordinated and lattice water mol­ecules, play a vital role in assembling the three-dimensional structure via an extensive network of inter­molecular O—H...O hydrogen bonds and π–π stacking inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109054092/em3028sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109054092/em3028Isup2.hkl
Contains datablock I

CCDC reference: 774027

Comment top

The most common uranium compounds are those containing the linear, symmetrical UO22+ ion (uranyl ion). The number of known complexes of UO22+ is enormous and virtually every kind of oxygen donor ligand, as well as many nitrogen donors, and even sulfur donors, have been found in such complexes (Cotton et al., 1999). Derivatives of 8-hydroxyquinoline (oxine) are known for their anti-amoebic, antibacterial and antifungal activities, which are correlated with their metal-chelating ability (Banerjee & Saha, 1986). The biological activities of oxine derivatives have been correlated with their capacity for metal chelation. Oxine and its derivatives have long been extensively used in analytical chemistry (Hollingshead, 1954–1956), and oxine derivatives are fluorogenic ligands for many metal ions (Launay et al., 2001). Various coordination modes of 8-hydroxyquinoline-5-sulfonic acid (HQS) and 7-iodo-8-hydroxyquinoline-5-sulfonic acid (ferron) have been reported. The crystal structures of copper complexes of HQS (Petit, Coquerel & Perez, 1993; Petit, Ammor et al., 1993) have also been investigated. We have reported the crystal structures of: 7-iodo-8-hydroxyquinoline-5-sulfonic acid (Balasubramanian & Muthiah, 1996); sodium, copper, strontium, zinc and nickel complexes of ferron (Raj et al., 2003; Francis et al., 2003a; Balasubramani et al., 2004; Francis et al., 2003c; Raj et al., 2001, respectively); and potassium complexes of HQS (Francis et al., 2003b). The crystal structures of uranyl complexes of 4,4'-bipyridine (Thuéry, 2007), uranyl-n-pentane-1,5-dicarboxylate (Borkowski et al., 2005) and uranyl pyridazine-3-carboxylate dihydrate (Leciejewicz et al., 2009) have also been reported. The crystal structure of the title complex, [U(C9H4INO4S)O2(H2O)3].2H20, (I), is presented here.

In the crystal structure of (I), the asymmetric unit contains a UO22+ ion, a 7-iodo-8-quinolinolato-5-sulfonate (ferron) anion, three coordinated water molecules and two uncoordinated water molecules, as shown in Fig. 1. The uranium ion adopts seven-coordinate pentagonal bipyrimidal geometry. Two short uranyl oxygen bonds are observed in axial positions, with U—O distances (Table 1) close to the average reported value of 1.758 (3) Å (Burns et al., 1997). The O5—U1—O6 angle is close to 180°. The N and O atoms of the oxine ring (bidentate chelation) moiety and the three water molecules (O1W, O2W and O3W) are coordinated to the metal in the equatorial positions (Table 1). In the chelate, the U1—O4 bond distance is significantly shorter than the U1—N1 bond distance. This trend has also been observed in various metal complexes of ferron and related ligands (Francis et al., 2003a,b, 2004; Raj et al., 2001; Thuéry, 2007; Leciejewicz et al., 2009). Hydrogen-bonding patterns involving the sulfonate oxygen in biological systems and metal complexes are of current interest (Onoda et al., 2001). The sulfonate O atoms are not involved in the coordination but make an extensive network of O—H···O hydrogen bonds with all of the coordinated and uncoordinated water molecules (Table 2). The sulfonate O atoms (O1 and O2) interact with the coordinated and uncoordinated water molecules to form a chain of R33(10) rings (Etter, 1990; Bernstein et al., 1995) running parallel to [001]. These chains are interlinked by the coordinated water molecule of (O1W) acting as a donor, one uncoordinated water molecule (O4W) acting as both donor and acceptor and the sulfonate oxygen (O2) as an acceptor, via further O—H···O hydrogen bonds (Table 2), to form a supramolecular sheet which lies parallel to (110) (Fig. 2). The organic ligands are stacked over one another. Each pair of the adjacent ligands stack, in an inversion-related manner, and are linked to one another via O—H···O hydrogen bonds involving one of the coordinated water molecules (O1W and O3W) and sulfonate O atoms to form a ladder. These supramolecular ladder are crosslinked via O—H···O hydrogen bonds to form the three-dimensional network (Fig. 3). ππ stacking interactions between oxine rings, with a perpendicular separatiion of 3.5989 (16)Å, a centroid–centriod distance of 3.632 (2)Å and a slip angle (the angle between the centroid vector and the normal to the plane) of 7.76°, further stabilize the crystal structure.

Related literature top

For related literature, see: Balasubramani et al. (2004); Balasubramanian & Muthiah (1996); Banerjee & Saha (1986); Borkowski & Cahill (2005); Burns et al. (1997); Cotton et al. (1999); Francis et al. (2003a, 2003b, 2003c, 2004); Gonzalez-Baro & Baran (2001); Hollingshead (1954–1956); Launay et al. (2001); Leciejewicz & Starosta (2009); Malutan et al. (2008); Onoda et al. (2001); Petit, Ammor, Coquerel, Mayer & Perez (1993); Petit, Coquerel & Perez (1993); Raj et al. (2001, 2003); Thuéry (2007).

Experimental top

A hot aqueous solution of ferron (176 mg Riedel de-Hean) and UO2(NO3)2. 6H2O (125 mg, LOBA Chemie) were mixed in a 1:2 molar ratio and warmed in a water bath for 3 h, forming a red solution. After a few days of slow evaporation, red-coloured crystals of (I) were obtained. In the IR spectrum, a stretching band at 916 cm-1 (Malutan et al., 2008) characteristic of the UO22+ group is observed. Stretching bands at 1707.50, 1191.13 and 1045 cm-1 (Gonzalez-Baro et al., 2001) correspond to ν(CN), ν(CO) and ν(SO), respectively.

Refinement top

The H atoms of the aromatic groups were positioned geometrically. The water H atoms were located using difference Fourier synthesis and their positional parameters were initially refined with O—H distance restraints of 0.97 (2)Å and H···H restraints of 1.54 (2)Å. Subsequently, all H atoms were treated as riding atoms, with C—H and O—H distances of 0.93 and 0.88–0.95Å, respectively, and with isotropic displacement parameters of 1.2Ueq of the parent atom. H atoms could not be located reliably on O5W nor the second H atom on O4W and were not included in the model.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Hydrogen-bonded network in the complex (I). Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted [symmetry codes: (ii) -x+1, -y+1, -z; (v) -x+1, -y+1, -z+1; (v) x-1, y+1, z-1].
[Figure 3] Fig. 3. Supramolecular three-dimensional network and stacking in (I). Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted [symmetry codes: (i) -x+2, -y+1, -z+1; (iii) -x+2, -y, -z+1; (iv) x, y, z-1].
Triaqua(µ-7-iodo-8-oxidoquinoline-5-sulfonato- κ2N,O5)dioxidouranium(VI) dihydrate top
Crystal data top
[U(C9H4INO4S)O2(H2O)3]·2H2OZ = 2
Mr = 707.20F(000) = 642
Triclinic, P1Dx = 2.671 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3742 (2) ÅCell parameters from 6209 reflections
b = 10.1785 (2) Åθ = 1.8–33.5°
c = 11.6146 (2) ŵ = 11.17 mm1
α = 74.958 (1)°T = 293 K
β = 84.717 (1)°Prism, red
γ = 66.701 (1)°0.15 × 0.13 × 0.12 mm
V = 878.04 (3) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6209 independent reflections
Radiation source: fine-focus sealed tube5581 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 33.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1212
Tmin = 0.286, Tmax = 0.348k = 1515
21488 measured reflectionsl = 1715
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0276P)2 + 0.7169P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
6209 reflectionsΔρmax = 1.70 e Å3
218 parametersΔρmin = 1.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2Θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00269 (19)
Crystal data top
[U(C9H4INO4S)O2(H2O)3]·2H2Oγ = 66.701 (1)°
Mr = 707.20V = 878.04 (3) Å3
Triclinic, P1Z = 2
a = 8.3742 (2) ÅMo Kα radiation
b = 10.1785 (2) ŵ = 11.17 mm1
c = 11.6146 (2) ÅT = 293 K
α = 74.958 (1)°0.15 × 0.13 × 0.12 mm
β = 84.717 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6209 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
5581 reflections with I > 2σ(I)
Tmin = 0.286, Tmax = 0.348Rint = 0.031
21488 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.04Δρmax = 1.70 e Å3
6209 reflectionsΔρmin = 1.16 e Å3
218 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
U10.83651 (1)0.40488 (1)0.18502 (1)0.0211 (1)
I11.36043 (3)0.10809 (3)0.38234 (2)0.0337 (1)
S11.14938 (10)0.07535 (8)0.81480 (7)0.0218 (2)
O11.1654 (4)0.1983 (3)0.8492 (2)0.0324 (8)
O1W0.6314 (3)0.6480 (3)0.1954 (2)0.0289 (7)
O20.9900 (3)0.0575 (3)0.8612 (2)0.0295 (7)
O2W0.6822 (3)0.5032 (3)0.0048 (2)0.0327 (8)
O31.3010 (3)0.0600 (3)0.8463 (2)0.0327 (8)
O3W0.9851 (4)0.2297 (3)0.0650 (2)0.0319 (8)
O41.0557 (3)0.2085 (3)0.2951 (2)0.0319 (7)
O50.6803 (4)0.3274 (3)0.2348 (3)0.0371 (9)
O60.9827 (3)0.4927 (3)0.1361 (2)0.0300 (7)
N10.8534 (4)0.4080 (3)0.4071 (3)0.0282 (8)
C20.7515 (5)0.5084 (4)0.4624 (4)0.0388 (11)
C30.7617 (6)0.4958 (4)0.5842 (3)0.0387 (11)
C40.8843 (5)0.3723 (4)0.6522 (3)0.0302 (10)
C51.1270 (4)0.1244 (3)0.6586 (3)0.0206 (8)
C61.2272 (4)0.0215 (3)0.5972 (3)0.0220 (8)
C71.2059 (4)0.0481 (3)0.4738 (3)0.0227 (8)
C81.0817 (4)0.1770 (3)0.4108 (3)0.0234 (8)
C90.9969 (4)0.2594 (3)0.5987 (3)0.0215 (8)
C100.9757 (4)0.2832 (3)0.4747 (3)0.0215 (8)
O4W0.3336 (4)0.7506 (3)0.0782 (3)0.0398 (8)
O5W0.6486 (5)0.7462 (5)0.1660 (5)0.1049 (18)
H1A0.514900.691600.166300.0350*
H1B0.676600.722300.184400.0350*
H20.667600.593100.417300.0460*
H2A0.703400.568600.067700.0390*
H2B0.672300.431900.029600.0390*
H30.686600.570400.618600.0460*
H3A1.007700.127500.091200.0380*
H3B1.052100.241600.004500.0380*
H40.893700.362600.733400.0360*
H61.310200.067100.638200.0260*
H4B0.228200.810700.106100.0480*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U10.0228 (1)0.0173 (1)0.0203 (1)0.0047 (1)0.0020 (1)0.0035 (1)
I10.0327 (1)0.0259 (1)0.0332 (1)0.0016 (1)0.0031 (1)0.0134 (1)
S10.0269 (4)0.0187 (3)0.0173 (3)0.0064 (3)0.0008 (3)0.0040 (3)
O10.0464 (16)0.0294 (12)0.0274 (13)0.0181 (12)0.0022 (11)0.0106 (10)
O1W0.0260 (12)0.0202 (11)0.0341 (13)0.0026 (9)0.0061 (10)0.0041 (10)
O20.0327 (13)0.0296 (12)0.0257 (12)0.0130 (11)0.0067 (10)0.0066 (10)
O2W0.0350 (14)0.0337 (13)0.0253 (13)0.0110 (11)0.0064 (11)0.0019 (10)
O30.0326 (14)0.0288 (13)0.0239 (12)0.0001 (10)0.0056 (10)0.0023 (10)
O3W0.0447 (15)0.0230 (12)0.0242 (12)0.0091 (11)0.0053 (11)0.0077 (10)
O40.0366 (14)0.0253 (12)0.0189 (11)0.0049 (10)0.0058 (10)0.0056 (9)
O50.0407 (15)0.0336 (14)0.0419 (16)0.0211 (12)0.0065 (12)0.0085 (12)
O60.0253 (12)0.0281 (12)0.0371 (14)0.0101 (10)0.0012 (10)0.0092 (11)
N10.0313 (15)0.0198 (12)0.0233 (14)0.0010 (11)0.0020 (12)0.0052 (11)
C20.039 (2)0.0266 (17)0.033 (2)0.0087 (15)0.0058 (16)0.0099 (15)
C30.046 (2)0.0256 (17)0.0302 (19)0.0055 (15)0.0013 (17)0.0133 (15)
C40.0352 (19)0.0276 (16)0.0235 (17)0.0054 (14)0.0017 (14)0.0103 (14)
C50.0238 (15)0.0200 (13)0.0143 (13)0.0061 (11)0.0001 (11)0.0016 (11)
C60.0223 (15)0.0168 (13)0.0208 (15)0.0025 (11)0.0001 (12)0.0025 (11)
C70.0238 (15)0.0180 (13)0.0218 (15)0.0021 (11)0.0013 (12)0.0076 (11)
C80.0236 (15)0.0199 (14)0.0205 (15)0.0027 (12)0.0002 (12)0.0038 (11)
C90.0226 (15)0.0181 (13)0.0221 (15)0.0062 (11)0.0004 (12)0.0049 (11)
C100.0198 (14)0.0175 (13)0.0210 (14)0.0023 (11)0.0002 (11)0.0025 (11)
O4W0.0252 (13)0.0411 (15)0.0411 (16)0.0027 (11)0.0025 (12)0.0054 (12)
O5W0.0347 (19)0.065 (3)0.145 (4)0.0000 (18)0.011 (2)0.056 (3)
Geometric parameters (Å, º) top
U1—O1W2.417 (3)O3W—H3A0.9500
U1—O2W2.427 (2)O4W—H4B0.9400
U1—O3W2.426 (3)N1—C101.371 (5)
U1—O42.281 (3)N1—C21.317 (5)
U1—O51.763 (3)C2—C31.394 (6)
U1—O61.759 (3)C3—C41.368 (6)
U1—N12.605 (3)C4—C91.415 (5)
I1—C72.080 (3)C5—C61.376 (4)
S1—O11.465 (3)C5—C91.421 (4)
S1—O21.454 (3)C6—C71.402 (5)
S1—O31.444 (3)C7—C81.379 (4)
S1—C51.759 (3)C8—C101.429 (4)
O4—C81.316 (4)C9—C101.413 (5)
O1W—H1A0.9500C2—H20.9300
O1W—H1B0.9500C3—H30.9300
O2W—H2B0.8800C4—H40.9300
O2W—H2A0.9100C6—H60.9300
O3W—H3B0.9500
U1···O1i3.948 (3)O5W···O6ii3.064 (6)
U1···O5Wii3.970 (5)O5W···O2W2.616 (6)
U1···O6ii3.935 (2)O5W···U1ii3.970 (5)
I1···O1Wiii3.669 (3)O6···U1ii3.935 (2)
I1···O43.194 (3)O6···O2Wii3.078 (4)
I1···C9iv3.837 (4)O6···O2W3.079 (4)
I1···H2iii3.0700O6···O42.862 (4)
S1···H3Bv2.8900O6···O6ii3.118 (3)
S1···H42.8300O6···N13.244 (4)
S1···H1Bi2.9600O6···O3W2.992 (4)
S1···H3Aiv2.8100O6···O1W2.853 (4)
S1···H4Bvi3.0500O6···O1i2.935 (4)
O1···O3Wv2.829 (4)O6···O5Wii3.064 (6)
O1···C43.083 (5)O1···H3Bv1.9300
O1···O1Wi2.671 (4)O1···H42.4800
O1···O6i2.935 (4)O1···H1Bi1.7700
O1···U1i3.948 (3)O1W···H22.5100
O1W···O2W2.977 (4)O2···H3Aiv1.8100
O1W···O4W2.644 (4)O2···H42.8900
O1W···C23.131 (5)O2···H4Bvi1.8700
O1W···I1vii3.669 (3)O2W···H2Bix2.7900
O1W···O1i2.671 (4)O3···H3Aiv2.9100
O1W···N13.099 (4)O3···H62.4300
O1W···O53.038 (4)O3W···H2B2.7200
O1W···O62.853 (4)O4···H3A2.8100
O2···C43.325 (4)O4W···H1A1.7200
O2···O4Wvi2.798 (4)O4W···H2Bix2.1000
O2···O2viii3.127 (3)O5···H6iv2.6500
O2···O3Wiv2.752 (4)O5W···H2A1.7800
O2W···O4Wix2.975 (4)O6···H1B2.8300
O2W···O3W2.909 (4)O6···H2Aii2.5500
O2W···O1W2.977 (4)O6···H4i2.8600
O2W···O6ii3.078 (4)O6···H3Bii2.6500
O2W···O63.079 (4)N1···O1W3.099 (4)
O2W···O2Wix3.069 (4)N1···O42.632 (4)
O2W···O52.894 (4)N1···O53.018 (5)
O2W···O5W2.616 (6)N1···O63.244 (4)
O3···O4Wx2.841 (4)N1···C82.365 (4)
O3···O5iv3.047 (4)C4···O13.083 (5)
O3···O5Wx2.813 (6)C4···O23.325 (4)
O3W···O2W2.909 (4)C6···O5iv3.395 (4)
O3W···O4Wix3.186 (5)C9···I1iv3.837 (4)
O3W···O2iv2.752 (4)H1A···O4W1.7200
O3W···O1xi2.829 (4)H1A···H4B2.3000
O3W···O62.992 (4)H1B···S1i2.9600
O3W···O42.726 (3)H1B···O1i1.7700
O3W···O53.078 (4)H2···O1W2.5100
O4···O62.862 (4)H2···I1vii3.0700
O4···O5Wii2.908 (6)H2A···O6ii2.5500
O4···C102.354 (4)H2A···O5W1.7800
O4···I13.194 (3)H2B···O4Wix2.1000
O4···O3W2.726 (3)H2B···O2Wix2.7900
O4···O52.965 (4)H3A···S1iv2.8100
O4···N12.632 (4)H3A···O3iv2.9100
O4W···O2Wix2.975 (4)H3A···O2iv1.8100
O4W···O3xii2.841 (4)H3B···O6ii2.6500
O4W···O1W2.644 (4)H3B···O1xi1.9300
O4W···O3Wix3.186 (5)H3B···S1xi2.8900
O4W···O2vi2.798 (4)H4···O12.4800
O5···O1W3.038 (4)H4···S12.8300
O5···O2W2.894 (4)H4···O6i2.8600
O5···N13.018 (5)H4···O22.8900
O5···O42.965 (4)H4B···H1A2.3000
O5···O3iv3.047 (4)H4B···O2vi1.8700
O5···C6iv3.395 (4)H4B···S1vi3.0500
O5···O3W3.078 (4)H6···O32.4300
O5W···O3xii2.813 (6)H6···O5iv2.6500
O5W···O4ii2.908 (6)
O1W—U1—O2W75.84 (9)U1—O3W—H3A123.00
O1W—U1—O3W148.59 (8)H3A—O3W—H3B107.00
O1W—U1—O4139.84 (9)U1—O3W—H3B129.00
O1W—U1—O591.87 (12)C2—N1—C10117.4 (3)
O1W—U1—O684.63 (11)U1—N1—C10114.5 (2)
O1W—U1—N176.08 (9)U1—N1—C2127.9 (3)
O2W—U1—O3W73.66 (9)N1—C2—C3124.1 (4)
O2W—U1—O4144.25 (9)C2—C3—C4119.0 (4)
O2W—U1—O585.84 (13)C3—C4—C9119.9 (3)
O2W—U1—O693.32 (10)S1—C5—C6117.8 (2)
O2W—U1—N1150.13 (10)C6—C5—C9120.7 (3)
O3W—U1—O470.69 (9)S1—C5—C9121.1 (2)
O3W—U1—O593.23 (13)C5—C6—C7121.0 (3)
O3W—U1—O689.79 (12)I1—C7—C6120.4 (2)
O3W—U1—N1135.24 (9)C6—C7—C8121.0 (3)
O4—U1—O593.45 (13)I1—C7—C8118.6 (2)
O4—U1—O689.22 (11)O4—C8—C7123.9 (3)
O4—U1—N164.80 (9)C7—C8—C10118.1 (3)
O5—U1—O6176.50 (13)O4—C8—C10118.0 (3)
O5—U1—N185.08 (13)C4—C9—C10116.6 (3)
O6—U1—N194.03 (11)C5—C9—C10117.5 (3)
O1—S1—O2110.55 (18)C4—C9—C5125.9 (3)
O1—S1—O3112.96 (18)C8—C10—C9121.7 (3)
O1—S1—C5107.11 (14)N1—C10—C8115.2 (3)
O2—S1—O3112.50 (16)N1—C10—C9123.1 (3)
O2—S1—C5105.87 (16)N1—C2—H2118.00
O3—S1—C5107.39 (14)C3—C2—H2118.00
U1—O4—C8126.9 (2)C2—C3—H3121.00
U1—O1W—H1A125.00C4—C3—H3121.00
U1—O1W—H1B117.00C3—C4—H4120.00
H1A—O1W—H1B109.00C9—C4—H4120.00
U1—O2W—H2A125.00C5—C6—H6119.00
U1—O2W—H2B110.00C7—C6—H6120.00
H2A—O2W—H2B110.00
O1W—U1—O4—C821.2 (4)C10—N1—C2—C30.6 (6)
O2W—U1—O4—C8163.5 (2)U1—N1—C10—C9175.6 (3)
O3W—U1—O4—C8168.0 (3)U1—N1—C10—C84.3 (4)
O5—U1—O4—C875.8 (3)C2—N1—C10—C8179.4 (4)
O6—U1—O4—C8101.9 (3)N1—C2—C3—C40.0 (7)
N1—U1—O4—C87.1 (3)C2—C3—C4—C90.6 (7)
O1W—U1—N1—C29.3 (3)C3—C4—C9—C100.7 (6)
O1W—U1—N1—C10176.2 (3)C3—C4—C9—C5178.5 (4)
O2W—U1—N1—C211.1 (5)C6—C5—C9—C4178.9 (4)
O2W—U1—N1—C10163.4 (2)S1—C5—C6—C7174.6 (3)
O3W—U1—N1—C2173.5 (3)C9—C5—C6—C71.2 (5)
O3W—U1—N1—C101.0 (3)S1—C5—C9—C45.7 (5)
O4—U1—N1—C2180.0 (4)S1—C5—C9—C10173.4 (3)
O4—U1—N1—C105.5 (2)C6—C5—C9—C100.2 (5)
O5—U1—N1—C283.9 (4)C5—C6—C7—I1179.4 (3)
O5—U1—N1—C1090.6 (3)C5—C6—C7—C81.2 (5)
O6—U1—N1—C292.8 (4)C6—C7—C8—C100.3 (5)
O6—U1—N1—C1092.8 (3)I1—C7—C8—C10179.7 (2)
O1—S1—C5—C6133.2 (3)I1—C7—C8—O40.8 (5)
O1—S1—C5—C953.5 (3)C6—C7—C8—O4179.8 (3)
O2—S1—C5—C6108.9 (3)O4—C8—C10—N11.2 (5)
O2—S1—C5—C964.5 (3)O4—C8—C10—C9178.9 (3)
O3—S1—C5—C611.5 (3)C7—C8—C10—N1179.2 (3)
O3—S1—C5—C9175.1 (3)C7—C8—C10—C90.7 (5)
U1—O4—C8—C7172.7 (3)C4—C9—C10—C8179.9 (3)
U1—O4—C8—C107.7 (5)C5—C9—C10—N1179.2 (3)
C2—N1—C10—C90.5 (6)C5—C9—C10—C80.7 (5)
U1—N1—C2—C3174.9 (3)C4—C9—C10—N10.1 (5)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y+1, z; (iii) x+1, y1, z; (iv) x+2, y, z+1; (v) x, y, z+1; (vi) x+1, y+1, z+1; (vii) x1, y+1, z; (viii) x+2, y, z+2; (ix) x+1, y+1, z; (x) x+1, y1, z+1; (xi) x, y, z1; (xii) x1, y+1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O4W0.951.722.644 (4)163
O1W—H1B···O1i0.951.772.671 (4)157
O2W—H2A···O5W0.911.782.616 (6)153
O2W—H2A···O6ii0.912.553.078 (4)118
O2W—H2B···O4Wix0.882.102.975 (4)175
O3W—H3A···O2iv0.951.812.752 (4)170
O3W—H3B···O1xi0.951.932.829 (4)156
O4W—H4B···O2vi0.941.872.798 (4)172
C2—H2···O1W0.932.513.131 (5)124
C4—H4···O10.932.483.083 (5)122
C6—H6···O30.932.432.849 (4)107
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y+1, z; (iv) x+2, y, z+1; (vi) x+1, y+1, z+1; (ix) x+1, y+1, z; (xi) x, y, z1.

Experimental details

Crystal data
Chemical formula[U(C9H4INO4S)O2(H2O)3]·2H2O
Mr707.20
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.3742 (2), 10.1785 (2), 11.6146 (2)
α, β, γ (°)74.958 (1), 84.717 (1), 66.701 (1)
V3)878.04 (3)
Z2
Radiation typeMo Kα
µ (mm1)11.17
Crystal size (mm)0.15 × 0.13 × 0.12
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.286, 0.348
No. of measured, independent and
observed [I > 2σ(I)] reflections
21488, 6209, 5581
Rint0.031
(sin θ/λ)max1)0.777
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.059, 1.04
No. of reflections6209
No. of parameters218
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.70, 1.16

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
U1—O1W2.417 (3)U1—O51.763 (3)
U1—O2W2.427 (2)U1—O61.759 (3)
U1—O3W2.426 (3)U1—N12.605 (3)
U1—O42.281 (3)
O1W—U1—O2W75.84 (9)O3W—U1—O593.23 (13)
O1W—U1—O3W148.59 (8)O3W—U1—O689.79 (12)
O1W—U1—O4139.84 (9)O3W—U1—N1135.24 (9)
O1W—U1—O591.87 (12)O4—U1—O593.45 (13)
O1W—U1—O684.63 (11)O4—U1—O689.22 (11)
O1W—U1—N176.08 (9)O4—U1—N164.80 (9)
O2W—U1—O3W73.66 (9)O5—U1—O6176.50 (13)
O2W—U1—O4144.25 (9)O5—U1—N185.08 (13)
O2W—U1—O585.84 (13)O6—U1—N194.03 (11)
O2W—U1—O693.32 (10)O1—S1—O2110.55 (18)
O2W—U1—N1150.13 (10)O1—S1—O3112.96 (18)
O3W—U1—O470.69 (9)O2—S1—O3112.50 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O4W0.951.722.644 (4)163
O1W—H1B···O1i0.951.772.671 (4)157
O2W—H2A···O5W0.911.782.616 (6)153
O2W—H2B···O4Wii0.882.102.975 (4)175
O3W—H3A···O2iii0.951.812.752 (4)170
O3W—H3B···O1iv0.951.932.829 (4)156
O4W—H4B···O2v0.941.872.798 (4)172
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z; (iii) x+2, y, z+1; (iv) x, y, z1; (v) x+1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds