Download citation
Download citation
link to html
The title compound, C8H4Br3NO4, shows an extensive hydrogen-bond network. In the crystal structure, mol­ecules are linked into chains by COO—H...O bonds, and pairs of chains are connected by additional COO—H...O bonds. This chain bundle shows stacking inter­actions and weak N—H...O hydrogen bonds with adjacent chain bundles. The three Br atoms present in the mol­ecule form an equilateral triangle. This can be easily identified in the heavy-atom substructure when this compound is used as a heavy-atom derivative for experimental phasing of macromolecules. The title compound crystallizes as a nonmerohedral twin.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109013195/eg3012sup1.cif
Contains datablocks global, B3C

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109013195/eg3012Isup2.hkl
Contains datablock I

CCDC reference: 735132

Comment top

Heavy atoms are utilized for the derivatization of biological macromolecules to enable experimental phase determination. Nowadays, techniques are commonly used that exploit the anomalous scattering of certain atoms. SAD (single-wavelength anomalous dispersion) is suitable for in-house phasing if the atoms concerned have an appreciable anomalous signal at the Cu Kα wavelength. At a synchrotron, a series of experiments may be carried out close to the absorption edge of the particular heavy atom, maximizing the sum of the anomalous signals and the difference of the dispersive signals (multi-wavelength anomalous dispersion, MAD).

Incorporation of heavy atoms is required if the biomolecule does not possess sufficient intrinsic anomalous scatterers. Expression of a selenomethionine derivative enables structure solution by MAD or SAD methods. Incorporation of other anomalous scatterers such as halides (Dauter et al., 2000) or the tantalum bromide cluster (Schneider & Lindqvist, 1994) is achieved using less demanding approaches, e.g. soaking or cocrystallization of the native protein with the heavy-atom salt. However, most heavy-atom derivatives show low occupancies of the heavy-atom sites due to non-specific binding.

We have recently reported the synthesis and characterization of 5-amino-2,4,6-triiodoisophthalic acid, hereinafter (I3C) (Beck & Sheldrick, 2008). This is a representative of a new class of compounds that can be used for heavy-atom derivatization. It combines functional groups for hydrogen bonding to the protein with an easily recognizable arrangement of heavy atoms. It has been applied for SAD phasing (Beck et al., 2008). There is also a report of a novel structure that was solved using (I3C) (Sippel et al., 2008). Unfortunately, (I3C) cannot be used for multi-wavelength experiments since the energy of the iodine absorption edge is not accessible at a typical macromolecular crystallography synchrotron beamline.

Since MAD experiments yield better phase information, we were also interested in the analogous bromine compound (the bromine absorption edge falls within the normal energy range of a synchrotron beamline). This report characterizes the new phasing tool 5-amino-2,4,6-tribromoisophthalic acid, (B3C). Two carboxyl groups and one amino group for hydrogen bonding, combined with three Br atoms arranged in an equilateral triangle, render (B3C) a suitable phasing tool for MAD experiments. Compound (B3C) has been used for MAD phasing with synchrotron data (Beck et al., 2009) and also for SAD phasing using data collected only at Cu Kα (Beck et al., unpublished results).

Compound (B3C) has no internal symmetry and crystallizes in the space group P21/c with four molecules in the asymmetric unit. The bond lengths and angles fall within normal ranges. A displacement ellipsoid plot is shown in Fig. 1. In the crystal structure, molecules are linked to chains via COO—H···O bonds (Fig. 2). The first carboxyl group of each molecule forms cyclic dimers with a neighbouring carboxyl group (e.g. O8—H8···O51 and O52—H52···O9; see Table 2 for details of hydrogen-bond geometry), as observed frequently for carboxylic acids in the solid state (Leiserowitz, 1976). The second carboxyl group is also involved in hydrogen bonding to form a one-dimensional chain (e.g. O12—H12···O48i; see Table 2 for symmetry code). Instead of a dimeric interaction, one hydrogen bond is also formed to an adjacent chain (e.g. O29—H29···O11; Table 2). Therefore, a one-dimensional hydrogen-bond network is found in the crystal structure of (B3C). In trimesic acid, with its three carboxyl groups, a two-dimensional network is found, not limited to chains but extending within a plane (Duchamp & Marsh, 1969).

A bundle of chains of (B3C) shows weak hydrogen bonding via one amino group (N33) to adjacent chain bundles (Table 2). In addition, stacking of benzene rings (ring C41–C46 with symmetry-equivalent ring C21–C26; Symmetry code?) is also observed as a contact between the chain bundles. No direct face-to-face contact is present, but rather an offset geometry, favoured by decreased ππ repulsion and increased σπ attraction (Hunter & Sanders, 1990). Close C···C contacts are observed between atoms C42 and C25iv [3.690 (5) Å], C42 and C26iv [3.889 (5) Å], C43 and C25iv [3.803 (5) Å] and C43 and C26iv [3.843 (5) Å] [symmetry code: (iv) -x + 1, 1/2 + y, 3/2 - z]. In addition, a close C···Br distance is also observed [C46···Br6iv = 3.620 (4) Å]. The angle between the two benzene ring planes is 7.9 (2)°.

The molecular arrangement in the crystal lattice differs from the packing found in crystals of the iodine derivative, (I3C) (Beck & Sheldrick, 2008). In (B3C), no solvent water molecule is present. Increased halogen–carbon bond lengths and van der Waals radii (2.1 Å for I versus 1.9 Å for Br; Reference?) explain why the cyclic dimeric hydrogen bonds of two neighbouring carboxyl groups found in (B3C) are not favoured for (I3C): the I atoms of two molecules would come in close proximity and repel each other. Hydrogen bonds to the solvent water molecule are observed for (I3C). These are also present in the unsubstituted 5-aminoisophthalic acid (Dobson & Gerkin, 1998), where, since the substituents are missing, the packing is different from that observed in (I3C) and (B3C). The unsubstituted acid crystallizes as a zwitterion, with one carboxylate and an –NH3+ group. The carboxyl groups are in plane with the aromatic ring. The negative charge of the carboxylate group can therefore be delocalized across the π system, leading to an increase in acid strength compared with (B3C) and (I3C). Here, clear indications for protonated carboxyl groups can be found (Table 1). In all carboxyl groups, one C—O bond is significantly shorter than the other, indicating one double bond and one single bond. Interestingly, the bond lengths for C30—O31/C30—O32 and C67—O68/C67—O69 do not show such large differences, but still indicate protonation of O31 and O68, respectively (Table 1).

The distance between Br atoms in (B3C) varies from 5.652 (1) to 5.695 (1) Å. For each (B3C) molecule, the Br atoms form an equilateral triangle that can be easily identified in the heavy-atom substructure when this compound is used as a heavy-atom derivative for experimental phasing of macromolecules. The geometry of (B3C) as determined by this crystal structure has been used to generate restraints for the refinement of (B3C) in macromolecules (Beck et al., 2009). These restraints are available by email request from author TB.

The crystal is non-merohedrally twinned. The first and second domains are related by a twofold axis about the real axis 1 0 0. Integration using both orientation matrices simultaneously was carried out using SAINT (Bruker, 2007). The fractional contribution of the second domain was refined to 0.3468 (6).

Experimental top

The title compound, (B3C), was prepared according to the method shown in the scheme. 5-Aminoisophthalic acid (3.32 g, 18 mmol) was added to water (100 ml). Bromine (9.6 g, 3.0 ml, 60 mmol) was added dropwise while stirring the reaction mixture. After stirring for 24 h the resulting precipitate was filtered off, washed with small amounts of water and dried in vacuo. Compound (B3C) was obtained as a pink–white solid (yield 4.98 g, 66%) and was recrystallized from a methanol–acetonitrile solution (Solvent ratio?) by slowly evaporating the solvents to obtain crystals suitable for single-crystal X-ray diffraction.

Refinement top

H atoms were located in a difference Fourier map. N—H and O—H bond lengths for amino and carboxyl H atoms were restrained to be equal, respectively. Benzene rings and carboxylate groups were restrained to planarity. Uiso(H) = 1.5Ueq(parent).

Computing details top

Data collection: APEX2 (Bruker 2007); cell refinement: SAINT (Bruker 2007); data reduction: SAINT (Bruker 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and pyMOL (DeLano, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (B3C), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The hydrogen bonding of (B3C). Molecules form chains that are connected pairwise to each other. Symmetry-equivalent C atoms are depicted in a lighter shade. For symmetry operators, please refer to Table 2.
5-Amino-2,4,6-tribromoisophthalic acid top
Crystal data top
C8H4Br3NO4F(000) = 3136
Mr = 417.85Dx = 2.487 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 9995 reflections
a = 16.728 (2) Åθ = 2.7–73.4°
b = 11.449 (2) ŵ = 13.44 mm1
c = 23.649 (3) ÅT = 100 K
β = 99.69 (3)°Plate, colourless
V = 4464.6 (11) Å30.10 × 0.10 × 0.05 mm
Z = 16
Data collection top
Bruker SMART 6000
diffractometer
8717 independent reflections
Radiation source: rotating anode8413 reflections with I > 2σ(I)
INCOATEC multilayer optics monochromatorRint = 0.048
Detector resolution: 5.602 pixels mm-1θmax = 74.0°, θmin = 2.7°
ω scansh = 2020
Absorption correction: multi-scan
(TWINABS; Sheldrick 1996)
k = 1313
Tmin = 0.347, Tmax = 0.553l = 2827
97602 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0207P)2 + 12.7819P]
where P = (Fo2 + 2Fc2)/3
8717 reflections(Δ/σ)max = 0.002
626 parametersΔρmax = 0.64 e Å3
106 restraintsΔρmin = 0.55 e Å3
Crystal data top
C8H4Br3NO4V = 4464.6 (11) Å3
Mr = 417.85Z = 16
Monoclinic, P21/cCu Kα radiation
a = 16.728 (2) ŵ = 13.44 mm1
b = 11.449 (2) ÅT = 100 K
c = 23.649 (3) Å0.10 × 0.10 × 0.05 mm
β = 99.69 (3)°
Data collection top
Bruker SMART 6000
diffractometer
8717 independent reflections
Absorption correction: multi-scan
(TWINABS; Sheldrick 1996)
8413 reflections with I > 2σ(I)
Tmin = 0.347, Tmax = 0.553Rint = 0.048
97602 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026106 restraints
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0207P)2 + 12.7819P]
where P = (Fo2 + 2Fc2)/3
8717 reflectionsΔρmax = 0.64 e Å3
626 parametersΔρmin = 0.55 e Å3
Special details top

Experimental. Intensities were measured on a Bruker SMART 6000 area detector.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2 σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Only composite and single reflections from domain 1 were used for refinement (SHELXL option HKLF 5).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.76858 (3)1.05153 (4)0.838008 (17)0.01823 (9)
Br20.90200 (3)0.77141 (4)1.029830 (19)0.02257 (10)
Br30.56589 (3)0.86912 (4)0.98543 (2)0.02519 (10)
Br40.64571 (3)0.60368 (4)0.904198 (19)0.02267 (10)
Br50.56822 (3)0.22804 (4)0.749209 (18)0.01939 (9)
Br60.89510 (3)0.37978 (4)0.809858 (19)0.02070 (9)
Br70.30715 (3)0.88711 (4)0.893986 (19)0.02120 (10)
Br80.31319 (3)1.28060 (4)0.749327 (18)0.02129 (10)
Br90.01216 (3)1.10091 (4)0.79249 (2)0.02637 (10)
Br100.15775 (3)0.44910 (4)0.841601 (17)0.01817 (9)
Br110.11675 (3)0.75056 (4)1.026098 (19)0.02112 (10)
Br120.43125 (3)0.63902 (4)0.98528 (2)0.02353 (10)
C10.6798 (3)0.9498 (3)0.91806 (17)0.0167 (8)
C20.7560 (3)0.9621 (3)0.90358 (17)0.0160 (8)
C30.8230 (3)0.9105 (3)0.93721 (17)0.0166 (8)
C40.8123 (2)0.8504 (3)0.98608 (17)0.0155 (8)
C50.7365 (3)0.8375 (3)1.00379 (17)0.0179 (8)
C60.6713 (2)0.8890 (3)0.96729 (17)0.0178 (8)
C70.6050 (2)1.0021 (4)0.88183 (18)0.0183 (8)
O80.57574 (19)0.9368 (3)0.83757 (13)0.0238 (7)
H80.536 (2)0.963 (5)0.824 (2)0.036*
O90.57613 (18)1.0938 (3)0.89427 (13)0.0223 (6)
C100.9040 (2)0.9133 (3)0.91817 (17)0.0162 (8)
O110.92055 (19)0.8445 (3)0.88246 (14)0.0238 (7)
O120.95320 (19)0.9935 (3)0.94279 (14)0.0232 (7)
H120.994 (2)0.979 (5)0.935 (2)0.035*
N130.7277 (2)0.7801 (4)1.05272 (17)0.0241 (8)
H130.6770 (16)0.757 (4)1.051 (2)0.036*
H13A0.769 (2)0.745 (4)1.073 (2)0.036*
C210.7600 (3)0.4797 (3)0.85018 (16)0.0162 (8)
C220.6789 (3)0.4883 (3)0.85471 (16)0.0160 (8)
C230.6225 (2)0.4136 (3)0.82545 (16)0.0153 (8)
C240.6476 (2)0.3303 (3)0.78926 (16)0.0153 (8)
C250.7280 (3)0.3201 (3)0.78067 (16)0.0159 (8)
C260.7833 (2)0.3956 (3)0.81371 (17)0.0157 (8)
C270.8232 (2)0.5593 (4)0.88267 (17)0.0166 (8)
O280.86495 (18)0.5320 (3)0.92774 (12)0.0219 (6)
O290.8266 (2)0.6583 (3)0.85552 (14)0.0260 (7)
H290.861 (3)0.693 (5)0.873 (2)0.039*
C300.5351 (2)0.4202 (3)0.83260 (16)0.0149 (8)
O310.51670 (18)0.3518 (3)0.87166 (13)0.0203 (6)
H310.4737 (19)0.355 (5)0.878 (2)0.031*
O320.48697 (19)0.4879 (3)0.80339 (13)0.0247 (7)
N330.7523 (2)0.2377 (3)0.74472 (16)0.0195 (7)
H330.8012 (18)0.253 (5)0.738 (2)0.029*
H33A0.716 (2)0.200 (4)0.7204 (18)0.029*
C410.1668 (3)1.0069 (4)0.83694 (17)0.0184 (8)
C420.2508 (3)1.0023 (4)0.84464 (17)0.0177 (8)
C430.2945 (2)1.0834 (3)0.81878 (16)0.0149 (8)
C440.2523 (3)1.1710 (3)0.78541 (16)0.0178 (8)
C450.1678 (3)1.1811 (3)0.77678 (16)0.0173 (8)
C460.1274 (2)1.0955 (4)0.80361 (16)0.0166 (8)
C470.1197 (2)0.9208 (4)0.86638 (18)0.0186 (8)
O480.09844 (19)0.9431 (3)0.91146 (13)0.0256 (7)
O490.1056 (2)0.8220 (3)0.83753 (14)0.0252 (7)
H490.085 (4)0.780 (4)0.855 (2)0.038*
C500.3855 (3)1.0774 (3)0.82770 (17)0.0167 (8)
O510.42168 (18)1.0111 (3)0.80107 (13)0.0225 (6)
O520.41920 (18)1.1482 (3)0.86847 (13)0.0202 (6)
H520.4648 (16)1.141 (5)0.876 (2)0.030*
N530.1271 (2)1.2725 (3)0.74634 (15)0.0191 (7)
H530.0747 (16)1.258 (4)0.736 (2)0.029*
H53A0.153 (2)1.314 (4)0.7235 (18)0.029*
C610.2851 (3)0.5531 (3)0.92061 (17)0.0154 (8)
C620.2014 (3)0.5432 (3)0.90586 (16)0.0159 (8)
C630.1511 (2)0.5998 (3)0.93785 (16)0.0147 (8)
C640.1848 (2)0.6649 (3)0.98473 (17)0.0162 (8)
C650.2690 (3)0.6774 (3)1.00245 (17)0.0168 (8)
C660.3172 (2)0.6195 (3)0.96801 (17)0.0164 (8)
C670.3418 (2)0.4961 (3)0.88611 (18)0.0164 (8)
O680.35356 (19)0.5548 (3)0.84175 (13)0.0227 (6)
H680.388 (3)0.531 (5)0.829 (2)0.034*
O690.37485 (18)0.4021 (3)0.90131 (14)0.0230 (7)
C700.0602 (2)0.5937 (4)0.91988 (17)0.0167 (8)
O710.02428 (18)0.6549 (3)0.88189 (13)0.0208 (6)
O720.02670 (18)0.5167 (3)0.94889 (14)0.0234 (7)
H720.0190 (16)0.519 (5)0.939 (2)0.035*
N730.3012 (2)0.7405 (3)1.04913 (16)0.0225 (8)
H730.3514 (17)0.753 (4)1.047 (2)0.034*
H73A0.270 (3)0.782 (4)1.067 (2)0.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0202 (2)0.0166 (2)0.0178 (2)0.00023 (17)0.00283 (16)0.00192 (15)
Br20.0189 (2)0.0224 (2)0.0254 (2)0.00392 (18)0.00083 (17)0.00649 (17)
Br30.0160 (2)0.0314 (3)0.0297 (2)0.00180 (18)0.00833 (18)0.00217 (18)
Br40.0240 (2)0.0191 (2)0.0264 (2)0.00184 (18)0.00865 (18)0.00984 (17)
Br50.0187 (2)0.0186 (2)0.0210 (2)0.00361 (17)0.00377 (16)0.00653 (16)
Br60.0150 (2)0.0251 (2)0.0226 (2)0.00129 (17)0.00500 (16)0.00091 (16)
Br70.0194 (2)0.0198 (2)0.0236 (2)0.00126 (17)0.00142 (17)0.00887 (16)
Br80.0246 (2)0.0186 (2)0.0201 (2)0.00439 (18)0.00205 (17)0.00556 (16)
Br90.0149 (2)0.0312 (3)0.0325 (3)0.00459 (18)0.00227 (18)0.00300 (19)
Br100.0189 (2)0.0190 (2)0.0164 (2)0.00048 (17)0.00248 (16)0.00463 (15)
Br110.0218 (2)0.0214 (2)0.0213 (2)0.00409 (17)0.00689 (17)0.00547 (16)
Br120.0139 (2)0.0287 (2)0.0274 (2)0.00256 (18)0.00156 (17)0.00196 (17)
C10.0166 (19)0.0145 (19)0.018 (2)0.0018 (16)0.0013 (16)0.0043 (15)
C20.020 (2)0.0136 (19)0.0159 (19)0.0004 (16)0.0056 (15)0.0017 (14)
C30.018 (2)0.0130 (19)0.019 (2)0.0001 (16)0.0030 (15)0.0013 (15)
C40.0156 (19)0.0124 (19)0.0173 (19)0.0003 (15)0.0002 (16)0.0006 (14)
C50.020 (2)0.015 (2)0.020 (2)0.0030 (16)0.0059 (16)0.0031 (15)
C60.0124 (18)0.020 (2)0.022 (2)0.0028 (16)0.0058 (16)0.0012 (16)
C70.0134 (19)0.020 (2)0.022 (2)0.0045 (17)0.0021 (16)0.0019 (16)
O80.0192 (15)0.0243 (17)0.0253 (16)0.0034 (13)0.0042 (13)0.0069 (12)
O90.0175 (15)0.0173 (15)0.0300 (17)0.0003 (12)0.0020 (12)0.0043 (12)
C100.017 (2)0.0146 (19)0.017 (2)0.0008 (16)0.0030 (15)0.0020 (15)
O110.0214 (15)0.0186 (15)0.0329 (17)0.0014 (13)0.0089 (13)0.0085 (13)
O120.0165 (15)0.0291 (17)0.0263 (16)0.0052 (13)0.0102 (13)0.0105 (13)
N130.0220 (19)0.027 (2)0.025 (2)0.0006 (17)0.0072 (15)0.0065 (15)
C210.0188 (19)0.015 (2)0.0134 (19)0.0027 (16)0.0002 (15)0.0007 (14)
C220.0196 (19)0.0140 (19)0.0155 (19)0.0002 (16)0.0056 (15)0.0012 (14)
C230.0152 (19)0.016 (2)0.0152 (19)0.0038 (16)0.0036 (15)0.0029 (14)
C240.0176 (19)0.0156 (19)0.0121 (18)0.0027 (16)0.0006 (15)0.0016 (14)
C250.020 (2)0.0147 (19)0.0140 (19)0.0024 (16)0.0050 (15)0.0016 (14)
C260.0101 (18)0.017 (2)0.020 (2)0.0024 (15)0.0020 (15)0.0025 (15)
C270.0155 (19)0.020 (2)0.016 (2)0.0017 (16)0.0073 (16)0.0004 (15)
O280.0191 (15)0.0279 (17)0.0188 (15)0.0031 (13)0.0032 (12)0.0025 (12)
O290.0306 (18)0.0202 (16)0.0246 (16)0.0105 (14)0.0029 (14)0.0031 (12)
C300.0173 (19)0.0135 (19)0.0143 (19)0.0011 (15)0.0041 (15)0.0049 (14)
O310.0181 (15)0.0176 (15)0.0276 (16)0.0001 (13)0.0104 (13)0.0038 (11)
O320.0229 (16)0.0271 (17)0.0244 (16)0.0085 (13)0.0049 (13)0.0071 (12)
N330.0209 (18)0.0167 (18)0.0222 (19)0.0022 (15)0.0070 (15)0.0039 (13)
C410.019 (2)0.018 (2)0.019 (2)0.0024 (17)0.0054 (16)0.0013 (15)
C420.019 (2)0.018 (2)0.016 (2)0.0014 (17)0.0028 (16)0.0002 (15)
C430.0136 (19)0.0151 (19)0.0163 (19)0.0004 (15)0.0028 (15)0.0043 (14)
C440.024 (2)0.016 (2)0.0139 (19)0.0010 (17)0.0036 (16)0.0032 (14)
C450.023 (2)0.0133 (19)0.0146 (19)0.0040 (17)0.0001 (16)0.0019 (14)
C460.0111 (18)0.020 (2)0.018 (2)0.0005 (16)0.0003 (15)0.0032 (15)
C470.0118 (18)0.020 (2)0.023 (2)0.0004 (16)0.0008 (16)0.0028 (16)
O480.0212 (16)0.0351 (18)0.0223 (17)0.0010 (14)0.0092 (13)0.0015 (13)
O490.0303 (17)0.0230 (17)0.0231 (16)0.0065 (14)0.0068 (13)0.0039 (12)
C500.020 (2)0.016 (2)0.0130 (19)0.0014 (17)0.0012 (15)0.0039 (14)
O510.0171 (14)0.0282 (17)0.0218 (15)0.0026 (13)0.0021 (12)0.0072 (12)
O520.0149 (14)0.0211 (15)0.0235 (15)0.0012 (13)0.0004 (12)0.0050 (12)
N530.0234 (18)0.0152 (17)0.0184 (18)0.0033 (15)0.0022 (14)0.0022 (13)
C610.0174 (19)0.0108 (19)0.018 (2)0.0014 (16)0.0029 (16)0.0024 (14)
C620.019 (2)0.016 (2)0.0131 (19)0.0003 (16)0.0030 (15)0.0005 (14)
C630.0140 (19)0.0143 (19)0.0165 (19)0.0002 (15)0.0049 (15)0.0032 (14)
C640.018 (2)0.0134 (19)0.018 (2)0.0015 (16)0.0076 (16)0.0006 (15)
C650.019 (2)0.0137 (19)0.018 (2)0.0008 (16)0.0037 (16)0.0008 (14)
C660.0108 (18)0.017 (2)0.022 (2)0.0021 (16)0.0029 (15)0.0035 (15)
C670.0132 (18)0.015 (2)0.021 (2)0.0015 (16)0.0015 (15)0.0010 (15)
O680.0205 (15)0.0262 (17)0.0237 (16)0.0055 (13)0.0107 (13)0.0095 (12)
O690.0212 (15)0.0193 (15)0.0313 (17)0.0023 (13)0.0129 (13)0.0054 (12)
C700.0149 (19)0.018 (2)0.018 (2)0.0000 (16)0.0058 (15)0.0056 (15)
O710.0188 (14)0.0184 (15)0.0242 (15)0.0003 (12)0.0008 (12)0.0053 (12)
O720.0131 (14)0.0303 (17)0.0272 (17)0.0033 (13)0.0049 (12)0.0092 (13)
N730.0217 (18)0.024 (2)0.0208 (19)0.0021 (16)0.0008 (15)0.0084 (14)
Geometric parameters (Å, º) top
Br1—C21.899 (4)O29—H290.76 (3)
Br2—C41.902 (4)C30—O321.240 (5)
Br3—C61.898 (4)C30—O311.288 (5)
Br4—C221.908 (4)O31—H310.76 (3)
Br5—C241.899 (4)N33—H330.88 (2)
Br6—C261.897 (4)N33—H33A0.88 (2)
Br7—C421.903 (4)C41—C461.382 (6)
Br8—C441.906 (4)C41—C421.387 (6)
Br9—C461.903 (4)C41—C471.504 (6)
Br10—C621.905 (4)C42—C431.387 (6)
Br11—C641.895 (4)C43—C441.393 (6)
Br12—C661.895 (4)C43—C501.502 (6)
C1—C21.383 (6)C44—C451.399 (6)
C1—C61.384 (6)C45—N531.383 (5)
C1—C71.516 (6)C45—C461.401 (6)
C2—C31.392 (6)C47—O481.207 (5)
C3—C41.382 (6)C47—O491.321 (5)
C3—C101.499 (6)O49—H490.75 (3)
C4—C51.408 (6)C50—O511.212 (5)
C5—N131.360 (6)C50—O521.312 (5)
C5—C61.401 (6)O52—H520.76 (3)
C7—O91.212 (5)N53—H530.88 (2)
C7—O81.312 (5)N53—H53A0.88 (2)
O8—H80.75 (3)C61—C661.386 (6)
C10—O111.219 (5)C61—C621.390 (6)
C10—O121.303 (5)C61—C671.500 (6)
O12—H120.76 (3)C62—C631.383 (6)
N13—H130.88 (2)C63—C641.375 (6)
N13—H13A0.87 (2)C63—C701.511 (5)
C21—C221.382 (6)C64—C651.407 (6)
C21—C261.391 (6)C65—N731.353 (5)
C21—C271.505 (6)C65—C661.405 (6)
C22—C231.371 (6)C67—O691.236 (5)
C23—C241.393 (6)C67—O681.289 (5)
C23—C301.502 (5)O68—H680.75 (3)
C24—C251.399 (6)C70—O711.215 (5)
C25—N331.377 (5)C70—O721.300 (5)
C25—C261.403 (6)O72—H720.76 (3)
C27—O281.213 (5)N73—H730.86 (2)
C27—O291.309 (5)N73—H73A0.86 (2)
C2—C1—C6119.2 (4)C46—C41—C42118.5 (4)
C2—C1—C7121.9 (4)C46—C41—C47120.6 (4)
C6—C1—C7118.9 (4)C42—C41—C47120.8 (4)
C1—C2—C3120.2 (4)C43—C42—C41121.0 (4)
C1—C2—Br1119.4 (3)C43—C42—Br7119.4 (3)
C3—C2—Br1120.4 (3)C41—C42—Br7119.5 (3)
C4—C3—C2118.9 (4)C42—C43—C44118.5 (4)
C4—C3—C10120.9 (4)C42—C43—C50120.3 (4)
C2—C3—C10120.1 (4)C44—C43—C50121.2 (4)
C3—C4—C5123.4 (4)C43—C44—C45123.1 (4)
C3—C4—Br2119.3 (3)C43—C44—Br8118.0 (3)
C5—C4—Br2117.1 (3)C45—C44—Br8118.9 (3)
N13—C5—C6122.9 (4)N53—C45—C44122.4 (4)
N13—C5—C4122.3 (4)N53—C45—C46122.2 (4)
C6—C5—C4114.7 (4)C44—C45—C46115.4 (4)
C1—C6—C5123.4 (4)C41—C46—C45123.5 (4)
C1—C6—Br3118.7 (3)C41—C46—Br9118.5 (3)
C5—C6—Br3117.8 (3)C45—C46—Br9118.0 (3)
O9—C7—O8125.3 (4)O48—C47—O49125.7 (4)
O9—C7—C1122.0 (4)O48—C47—C41121.7 (4)
O8—C7—C1112.8 (4)O49—C47—C41112.6 (4)
C7—O8—H8107 (5)C47—O49—H49108 (5)
O11—C10—O12124.4 (4)O51—C50—O52125.3 (4)
O11—C10—C3121.1 (4)O51—C50—C43122.6 (4)
O12—C10—C3114.5 (3)O52—C50—C43112.0 (4)
C10—O12—H12105 (5)C50—O52—H52113 (4)
C5—N13—H13111 (3)C45—N53—H53112 (3)
C5—N13—H13A121 (4)C45—N53—H53A118 (3)
H13—N13—H13A123 (4)H53—N53—H53A120 (3)
C22—C21—C26118.6 (4)C66—C61—C62119.0 (4)
C22—C21—C27122.1 (4)C66—C61—C67119.0 (4)
C26—C21—C27119.3 (4)C62—C61—C67122.0 (4)
C23—C22—C21121.1 (4)C63—C62—C61120.2 (4)
C23—C22—Br4119.7 (3)C63—C62—Br10121.0 (3)
C21—C22—Br4119.2 (3)C61—C62—Br10118.8 (3)
C22—C23—C24119.0 (4)C64—C63—C62119.4 (4)
C22—C23—C30120.8 (4)C64—C63—C70120.5 (4)
C24—C23—C30120.2 (4)C62—C63—C70120.0 (4)
C23—C24—C25122.9 (4)C63—C64—C65123.3 (4)
C23—C24—Br5118.1 (3)C63—C64—Br11119.8 (3)
C25—C24—Br5119.0 (3)C65—C64—Br11116.9 (3)
N33—C25—C24122.6 (4)N73—C65—C66122.4 (4)
N33—C25—C26122.0 (4)N73—C65—C64122.5 (4)
C24—C25—C26115.3 (4)C66—C65—C64115.0 (4)
C21—C26—C25123.0 (4)C61—C66—C65123.0 (4)
C21—C26—Br6118.5 (3)C61—C66—Br12118.5 (3)
C25—C26—Br6118.5 (3)C65—C66—Br12118.4 (3)
O28—C27—O29126.0 (4)O69—C67—O68124.7 (4)
O28—C27—C21123.0 (4)O69—C67—C61120.9 (4)
O29—C27—C21111.0 (3)O68—C67—C61114.4 (3)
C27—O29—H29107 (5)C67—O68—H68112 (5)
O32—C30—O31124.6 (4)O71—C70—O72125.3 (4)
O32—C30—C23121.5 (4)O71—C70—C63122.0 (4)
O31—C30—C23113.9 (3)O72—C70—C63112.7 (3)
C30—O31—H31117 (4)C70—O72—H72109 (5)
C25—N33—H33111 (3)C65—N73—H73107 (4)
C25—N33—H33A120 (3)C65—N73—H73A120 (4)
H33—N33—H33A122 (3)H73—N73—H73A128 (4)
C6—C1—C2—C32.1 (6)C46—C41—C42—C431.1 (6)
C7—C1—C2—C3178.5 (4)C47—C41—C42—C43178.3 (4)
C6—C1—C2—Br1177.1 (3)C46—C41—C42—Br7176.2 (3)
C7—C1—C2—Br12.3 (5)C47—C41—C42—Br71.0 (5)
C1—C2—C3—C42.1 (5)C41—C42—C43—C440.9 (5)
Br1—C2—C3—C4177.1 (3)Br7—C42—C43—C44176.4 (3)
C1—C2—C3—C10173.6 (4)C41—C42—C43—C50179.8 (4)
Br1—C2—C3—C107.2 (5)Br7—C42—C43—C502.5 (5)
C2—C3—C4—C50.5 (6)C42—C43—C44—C450.1 (5)
C10—C3—C4—C5175.2 (4)C50—C43—C44—C45178.9 (4)
C2—C3—C4—Br2176.2 (3)C42—C43—C44—Br8179.2 (3)
C10—C3—C4—Br20.5 (5)C50—C43—C44—Br81.9 (5)
C3—C4—C5—N13178.6 (4)C43—C44—C45—N53176.1 (4)
Br2—C4—C5—N135.6 (5)Br8—C44—C45—N534.7 (5)
C3—C4—C5—C61.0 (5)C43—C44—C45—C460.7 (5)
Br2—C4—C5—C6174.7 (3)Br8—C44—C45—C46178.5 (3)
C2—C1—C6—C50.4 (6)C42—C41—C46—C450.3 (6)
C7—C1—C6—C5179.9 (4)C47—C41—C46—C45177.5 (4)
C2—C1—C6—Br3178.2 (3)C42—C41—C46—Br9179.4 (3)
C7—C1—C6—Br32.3 (5)C47—C41—C46—Br93.4 (5)
N13—C5—C6—C1178.6 (4)N53—C45—C46—C41176.3 (4)
C4—C5—C6—C11.1 (5)C44—C45—C46—C410.5 (5)
N13—C5—C6—Br33.6 (5)N53—C45—C46—Br94.6 (5)
C4—C5—C6—Br3176.7 (3)C44—C45—C46—Br9178.6 (3)
C2—C1—C7—O999.1 (5)C46—C41—C47—O4882.0 (5)
C6—C1—C7—O980.3 (5)C42—C41—C47—O4895.1 (5)
C2—C1—C7—O882.0 (5)C46—C41—C47—O4998.1 (4)
C6—C1—C7—O898.6 (4)C42—C41—C47—O4984.7 (5)
C4—C3—C10—O1195.5 (5)C42—C43—C50—O5180.9 (5)
C2—C3—C10—O1180.2 (5)C44—C43—C50—O51100.2 (5)
C4—C3—C10—O1284.5 (5)C42—C43—C50—O5296.8 (4)
C2—C3—C10—O1299.8 (4)C44—C43—C50—O5282.2 (4)
C26—C21—C22—C232.0 (6)C66—C61—C62—C630.6 (5)
C27—C21—C22—C23178.9 (4)C67—C61—C62—C63178.1 (4)
C26—C21—C22—Br4179.7 (3)C66—C61—C62—Br10178.7 (3)
C27—C21—C22—Br40.6 (5)C67—C61—C62—Br102.5 (5)
C21—C22—C23—C242.0 (5)C61—C62—C63—C640.8 (5)
Br4—C22—C23—C24179.7 (3)Br10—C62—C63—C64178.6 (3)
C21—C22—C23—C30177.3 (4)C61—C62—C63—C70176.9 (4)
Br4—C22—C23—C301.0 (5)Br10—C62—C63—C703.8 (5)
C22—C23—C24—C250.9 (5)C62—C63—C64—C650.1 (6)
C30—C23—C24—C25179.8 (4)C70—C63—C64—C65177.7 (4)
C22—C23—C24—Br5180.0 (3)C62—C63—C64—Br11176.2 (3)
C30—C23—C24—Br50.7 (5)C70—C63—C64—Br111.5 (5)
C23—C24—C25—N33179.9 (4)C63—C64—C65—N73179.2 (4)
Br5—C24—C25—N330.8 (5)Br11—C64—C65—N734.5 (5)
C23—C24—C25—C263.5 (5)C63—C64—C65—C661.0 (5)
Br5—C24—C25—C26177.4 (3)Br11—C64—C65—C66175.4 (3)
C22—C21—C26—C250.9 (6)C62—C61—C66—C650.4 (5)
C27—C21—C26—C25178.2 (4)C67—C61—C66—C65179.2 (4)
C22—C21—C26—Br6177.6 (3)C62—C61—C66—Br12176.8 (3)
C27—C21—C26—Br63.4 (5)C67—C61—C66—Br122.0 (5)
N33—C25—C26—C21179.8 (4)N73—C65—C66—C61179.0 (4)
C24—C25—C26—C213.5 (5)C64—C65—C66—C611.1 (5)
N33—C25—C26—Br61.7 (5)N73—C65—C66—Br123.9 (5)
C24—C25—C26—Br6174.9 (3)C64—C65—C66—Br12176.0 (3)
C22—C21—C27—O2897.1 (5)C66—C61—C67—O6982.4 (5)
C26—C21—C27—O2883.8 (5)C62—C61—C67—O6998.9 (5)
C22—C21—C27—O2983.4 (5)C66—C61—C67—O6895.8 (4)
C26—C21—C27—O2995.7 (4)C62—C61—C67—O6883.0 (5)
C22—C23—C30—O3286.2 (5)C64—C63—C70—O7197.8 (5)
C24—C23—C30—O3294.5 (5)C62—C63—C70—O7179.8 (5)
C22—C23—C30—O3192.7 (4)C64—C63—C70—O7282.8 (5)
C24—C23—C30—O3186.6 (4)C62—C63—C70—O7299.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O510.75 (3)1.97 (3)2.713 (4)167 (6)
O12—H12···O48i0.76 (3)1.96 (3)2.719 (4)177 (6)
O52—H52···O90.76 (3)1.92 (3)2.667 (4)170 (6)
O49—H49···O710.75 (3)1.93 (3)2.664 (4)165 (7)
O31—H31···O690.76 (3)1.91 (3)2.649 (4)165 (6)
O68—H68···O320.75 (3)1.91 (3)2.659 (4)171 (6)
O72—H72···O28ii0.76 (3)1.92 (3)2.673 (4)171 (6)
O29—H29···O110.76 (3)1.99 (4)2.662 (4)147 (6)
N33—H33A···O68iii0.88 (2)2.39 (3)3.237 (5)164 (5)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC8H4Br3NO4
Mr417.85
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)16.728 (2), 11.449 (2), 23.649 (3)
β (°) 99.69 (3)
V3)4464.6 (11)
Z16
Radiation typeCu Kα
µ (mm1)13.44
Crystal size (mm)0.10 × 0.10 × 0.05
Data collection
DiffractometerBruker SMART 6000
diffractometer
Absorption correctionMulti-scan
(TWINABS; Sheldrick 1996)
Tmin, Tmax0.347, 0.553
No. of measured, independent and
observed [I > 2σ(I)] reflections
97602, 8717, 8413
Rint0.048
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.064, 1.13
No. of reflections8717
No. of parameters626
No. of restraints106
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
w = 1/[σ2(Fo2) + (0.0207P)2 + 12.7819P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.64, 0.55

Computer programs: APEX2 (Bruker 2007), SAINT (Bruker 2007), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and pyMOL (DeLano, 2008), SHELXL97 (Sheldrick, 2008) and SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
C7—O91.212 (5)C47—O481.207 (5)
C7—O81.312 (5)C47—O491.321 (5)
C10—O111.219 (5)C50—O511.212 (5)
C10—O121.303 (5)C50—O521.312 (5)
C27—O281.213 (5)C67—O691.236 (5)
C27—O291.309 (5)C67—O681.289 (5)
C30—O321.240 (5)C70—O711.215 (5)
C30—O311.288 (5)C70—O721.300 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8···O510.75 (3)1.97 (3)2.713 (4)167 (6)
O12—H12···O48i0.76 (3)1.96 (3)2.719 (4)177 (6)
O52—H52···O90.76 (3)1.92 (3)2.667 (4)170 (6)
O49—H49···O710.75 (3)1.93 (3)2.664 (4)165 (7)
O31—H31···O690.76 (3)1.91 (3)2.649 (4)165 (6)
O68—H68···O320.75 (3)1.91 (3)2.659 (4)171 (6)
O72—H72···O28ii0.76 (3)1.92 (3)2.673 (4)171 (6)
O29—H29···O110.76 (3)1.99 (4)2.662 (4)147 (6)
N33—H33A···O68iii0.88 (2)2.39 (3)3.237 (5)164 (5)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x+1, y1/2, z+3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds