Download citation
Download citation
link to html
The structure of the title compound, (C7H10NO)2[Mn2V10O28(H2O)10]·4H2O or (C5H4NHCH2CH2OH)2[{Mn(H2O)5}2V10O28]·4H2O, at 293 (2) K has triclinic (P\overline{1}) symmetry. The asymmetric unit consists of one half of a deca­vanadate anion of Ci symmetry, one [Mn(H2O)5]2+ group, one 2-(2-hydroxy­ethyl)pyridinium cation and two solvent water mol­ecules. The deca­vanadate ion bridges between two [Mn(H2O)5]2+ groups, thus forming a dodeca­nuclear complex unit. Complex units are connected via a hydrogen-bonding network, forming supra­molecular layers lying in the (001) plane. Cations and solvent water mol­ecules are located between these layers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109001917/eg3005sup1.cif
Contains datablocks I, New_Global_Publ_Block

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109001917/eg3005Isup2.hkl
Contains datablock I

CCDC reference: 724194

Comment top

Over the past few years, the role of vanadium compounds in living organisms has been intensively studied (Rehder, 2008). The biological activitiy of decavanadate, for example, in the modulation of ionic channels, calcium homeostasis and insulin mimetics, has been described by Aureliano & Madeira (1998).

Decavanadate ions serve as building blocks for supramolecular assemblies (da Silva et al., 2003) but their role as ligands coordinated to metal centres has only very recently been reported. As donor atoms [they?] can serve either terminal or bridging oxygen atoms (Fig. 1). In the title compound, (I) (Fig. 2), the bridging doubly monodentate V10O286– anion of Ci symmetry (although its symmetry is very close to the D2h point group) is coordinated via centrosymmetrically arranged `out-of-the-main-plane' [plane in the V10O286– anion formed by V1, V2, V3, V1i, V2i, V3i atoms; symmetry code: (i) 1 – x, 2 – y, 1 – z] terminal O atoms O1 (F) to the [Mn(H2O)5]2+ units, thus completing the octahedral coordination geometry of the MnII atoms. This is similar to the coordination of V10O286– in [Zn(H2O)6][Zn2(H2O)10V10O28].6 H2O (Graia et al., 2008). There is also the possibility of coordination via `in-the-main-plane' lying terminal O atoms (G) (Klištincová et al., 2008) and `out-of-the-main-plane' lying µ-OV2 bridging O atoms (C) (Li et al., 2007).

The coordination possibilities of the bridging O atoms of the B, D or E type are evidently restricted for sterical reasons.

The distance d(V5—O1) = 1.6350 (11) Å, which corresponds to the bond valence sum s = 1.59 (Brown, 1992), is slightly elongated in comparison with other V—Ot (Ot, terminal O atom) bond lengths which lie in the extremely narrow range 1.5951 (12)–1.5971 (12) Å. This elongation is somewhat larger in comparison with those [the bond lengths?] in (NH4)2[Cu2(NH3CH2CH2COO)4(V10O28)].10H2O (s = 1.68) (Klištincová et al., 2008) and [Zn(H2O)6][Zn2(H2O)10V10O28].6H2O (s = 1.63). The averaged bond lengths of the V—Ob (Ob, bridging O atom) bonds are 1.85 (11), 1.98 (4) and 2.23 (10) Å for bridging O atoms with coordination numbers two, three and six, respectively.

MnII has an octahedral coordination which is slightly shortened in the axial direction. The equatorial plane of the MnO6 octahedron, given by the atoms Mn1 and O1M, O3M– O5M, is nearly parallel with the main plane of the V10O286– anion: the corresponding least-square planes form an angle 1.83 (3)°. The Mn—O distances in the equatorial plane are in the range 2.1902 (12)–2.2103 (12) Å (s = 0.32–0.34). The distance d(Mn1—O1) = 2.1630 (11) Å (s = 0.36) belongs to the bonding to the decavanadate anion and the shortest distance is d(Mn1—O2M) = 2.1420 (13) Å which corresponds to s = 0.39.

The dodecanuclear [{Mn(H2O)5}2V10O28]2– units are connected via a hydrogen-bonding network (Table 1) forming anionic supramolecular layers lying in the (001) plane (Fig. 3). In these layers, Mn-coordinated H2O molecules acts as hydrogen-bond donors/acceptors and vanadate O atoms act as hydrogen-bond acceptors, forming interesting folded rings with graph set R46(16) (Etter et al., 1990; Bernstein et al., 1995) (Fig. 4) enforced by O2M—H21M···O7i and O2M—H22M···O6ii hydrogen bonds [symmetry codes: (i) 1 – x, 1 – y, 1 – z; (ii) 2 – x, 1 – y, 1 – z]. The negative charge of the layers is neutralized by the 2-hydroxyethylpyridinium cations lying between these layers. Cations and solvent water molecules are also involved in the extensive hydrogen-bonding network.

To evaluate the parallel-displaced ππ interaction between the pyridine rings, neighbouring least-squares planes defined by C1–C5 and N1 atoms with symmetry codes x, y, z and 2 – x, 1 – y, 2 – z were calculated. The interplanar distance R is equal to 3.47 Å and the centroid–centroid distance of the aromatic rings Rct is 4.04 Å.

Related literature top

For related literature, see: Aureliano & Madeira (1998); Bernstein et al. (1995); Brown (1992); Etter et al. (1990); Graia et al. (2008); Klištincová et al. (2008); Li et al. (2007); Nardelli (1999); Rehder (2008); da Silva et al. (2003).

Experimental top

To a solution of Mn(CH3COO)2 (0.346 g, 2 mmol) in water (20 ml), 2-hydroxyethylpyridine (0.45 ml, 4 mmol) was added. The opaque solution was stirred for 15 min and an aqueous solution of NH4VO3 (0.468 g, 4 mmol in 40 ml of water) was then added under [with?] immediate formation of a precipitate. The solution with the precipitate was stirred for a further 15 min and filtered. The pH of the filtrate was adjusted to 5.0 with diluted HCl; a yellow solution was obtained, to which ethanol (10 ml) was added. Orange crystals were isolated after standing for 7 d at room temperature. The compound is stable at room temperature.

The IR spectrum in KBr pellets was recorded on a FTIR Nicolet Magna 750 spectrometer. Vanadium was determined by titration with an aqueous solution of FeSO4. C, H, N were estimated on a CHN analyser (Carlo Erba). The IR spectrum exhibits characteristic bands assigned to the organic cation (1640 m, 1620 m, 1560 m, 1540 m, 1505 m, 1050 m) and decavanadate group (970 vs, 827 s, 725 vs, 590 m). Analysis: calculated for C14H48N2O44Mn2V10 (found): C, 10.8 (10.6); H, 2.6 (3.1); N, 1.8 (1.7); V 32.7 (32.2).

Refinement top

H atoms of the cations were placed in geometrically idealized positions (C—H = 0.93 Å, N—H = 0.86 Å and O—H = 0.82 Å) and constrained to ride on their parent atoms [Uiso(H) = 1.2Ueq(C, N) and 1.5Ueq(O)]. H atoms of the water molecules were located in a difference map and refined with O—H interatomic distances restrained to 0.82 Å and H—H to 1.324 Å to obtain reasonable geometry (Nardelli, 1999), with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction Ltd, 2008); cell refinement: CrysAlis PRO (Oxford Diffraction Ltd, 2008); data reduction: CrysAlis PRO (Oxford Diffraction Ltd, 2008); program(s) used to solve structure: DIRDIF2008 (Beurskens et al., 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008) and PLATON (Spek, 2003); software used to prepare material for publication: publCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. The scheme of the decavanadate anion with idealized D2h point group geometry. A–G denote crystallographically non-equivalent O atoms, circles denote V atoms (according to da Silva et al., 2003).
[Figure 2] Fig. 2. The structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. The symmetry operation relating labelled atoms to unlabelled atoms is (1- x, 2 - y, 1 - z).
[Figure 3] Fig. 3. A view of the anionic layers packing along the a axis.
[Figure 4] Fig. 4. A detail of the R46(16) rings in the anionic chain. [Symmetry codes: (i) x, y - 1, z; (ii) 1 - x, 1 - y, 1 - z; (iii) 1 - x, 2 - y, 1 - z.]
Bis[2-(2-hydroxyethyl)pyridinium] µ-decavanadato-bis[pentaaquamanganate(II)] tetrahydrate top
Crystal data top
(C7H10NO)2[Mn2V10O28(H2O)10]·4H2OZ = 1
Mr = 1567.82F(000) = 778
Triclinic, P1Dx = 2.267 Mg m3
a = 9.58016 (9) ÅMo Kα radiation, λ = 0.7107 Å
b = 11.33329 (13) ÅCell parameters from 16843 reflections
c = 12.07540 (17) Åθ = 3.2–28.3°
α = 78.3429 (11)°µ = 2.56 mm1
β = 74.6559 (11)°T = 293 K
γ = 66.0748 (10)°Prism, orange
V = 1149.02 (2) Å30.28 × 0.25 × 0.15 mm
Data collection top
Goniometer Xcalibur, detector: Ruby (Gemini R)
diffractometer
5256 independent reflections
Radiation source: Enhance (Mo) X-ray Source4821 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Detector resolution: 10.4340 pixels mm-1θmax = 28.3°, θmin = 3.2°
ω and π scansh = 1212
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction Ltd, 2008). Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995).
k = 1414
Tmin = 0.597, Tmax = 0.739l = 1516
23048 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: difference Fourier map
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0295P)2 + 0.5514P]
where P = (Fo2 + 2Fc2)/3
5256 reflections(Δ/σ)max = 0.002
368 parametersΔρmax = 0.35 e Å3
21 restraintsΔρmin = 0.35 e Å3
Crystal data top
(C7H10NO)2[Mn2V10O28(H2O)10]·4H2Oγ = 66.0748 (10)°
Mr = 1567.82V = 1149.02 (2) Å3
Triclinic, P1Z = 1
a = 9.58016 (9) ÅMo Kα radiation
b = 11.33329 (13) ŵ = 2.56 mm1
c = 12.07540 (17) ÅT = 293 K
α = 78.3429 (11)°0.28 × 0.25 × 0.15 mm
β = 74.6559 (11)°
Data collection top
Goniometer Xcalibur, detector: Ruby (Gemini R)
diffractometer
5256 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Oxford Diffraction Ltd, 2008). Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995).
4821 reflections with I > 2σ(I)
Tmin = 0.597, Tmax = 0.739Rint = 0.014
23048 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01921 restraints
wR(F2) = 0.056H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.35 e Å3
5256 reflectionsΔρmin = 0.35 e Å3
368 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.79297 (3)0.39482 (2)0.53420 (2)0.02206 (6)
O1M0.90350 (14)0.41783 (12)0.66309 (11)0.0263 (2)
O2M0.87580 (16)0.19011 (13)0.58621 (17)0.0491 (4)
O3M0.68751 (14)0.36128 (11)0.40717 (11)0.0256 (2)
O4M1.01393 (13)0.36637 (12)0.40996 (12)0.0284 (3)
O5M0.57003 (14)0.41958 (12)0.65518 (12)0.0284 (3)
H11M0.9877 (19)0.3594 (19)0.6631 (19)0.043*
H12M0.851 (2)0.412 (2)0.7279 (15)0.043*
H21M0.826 (2)0.147 (2)0.594 (2)0.043*
H22M0.9641 (18)0.144 (2)0.586 (2)0.043*
H31M0.644 (2)0.314 (2)0.4311 (18)0.043*
H32M0.754 (2)0.333 (2)0.3493 (16)0.043*
H41M1.090 (2)0.3037 (16)0.418 (2)0.043*
H42M1.038 (2)0.4287 (16)0.3851 (19)0.043*
H51M0.543 (3)0.3613 (16)0.666 (2)0.043*
H52M0.498 (2)0.4863 (16)0.640 (2)0.043*
V10.47782 (3)0.93164 (3)0.24082 (2)0.02121 (7)
V20.66577 (3)1.00391 (2)0.50678 (2)0.01531 (6)
V30.78612 (3)0.94100 (3)0.25379 (2)0.02065 (7)
V40.52189 (3)0.81964 (2)0.68737 (2)0.01805 (6)
V50.65040 (3)0.75597 (2)0.43420 (2)0.01689 (6)
O10.71143 (13)0.60131 (10)0.48058 (10)0.0234 (2)
O20.58036 (15)0.66822 (11)0.73126 (11)0.0293 (3)
O30.95253 (14)0.91909 (12)0.17062 (11)0.0321 (3)
O40.40717 (15)0.90217 (13)0.14834 (11)0.0342 (3)
O50.67347 (13)0.91537 (11)0.16730 (9)0.0235 (2)
O60.82584 (12)0.97905 (10)0.39929 (9)0.0205 (2)
O70.29016 (12)0.96465 (10)0.37850 (9)0.0204 (2)
O80.54748 (12)0.76628 (10)0.32609 (9)0.0208 (2)
O90.82005 (12)0.77401 (10)0.33628 (9)0.0207 (2)
O100.40917 (12)1.11376 (10)0.22206 (9)0.0214 (2)
O110.68224 (12)1.12077 (10)0.23374 (9)0.0211 (2)
O120.69776 (11)0.82438 (9)0.55668 (9)0.0167 (2)
O130.44653 (11)0.81802 (9)0.54714 (9)0.0166 (2)
O140.55658 (11)0.97094 (9)0.39193 (9)0.0161 (2)
N10.73209 (18)0.73192 (16)0.95533 (14)0.0379 (4)
H10.68920.78380.90070.057*
C50.6774 (3)0.6392 (2)1.0093 (2)0.0541 (6)
H20.59550.63180.98730.065*
C40.7420 (3)0.5559 (2)1.0963 (2)0.0577 (6)
H30.70450.49141.13470.069*
C30.8626 (3)0.5682 (2)1.12640 (19)0.0557 (7)
H40.90780.51191.18580.067*
C20.9176 (3)0.6637 (2)1.06912 (18)0.0439 (5)
H51.00060.67131.08930.053*
C10.8495 (2)0.74829 (18)0.98159 (15)0.0317 (4)
C60.8953 (2)0.85679 (18)0.91466 (17)0.0366 (4)
H7A0.96410.87050.95270.044*
H7B0.80270.93550.91490.044*
C70.9769 (2)0.83289 (19)0.79046 (16)0.0349 (4)
H8A0.91930.80090.75680.042*
H8B0.97830.91410.74610.042*
O201.13282 (15)0.74093 (13)0.78403 (12)0.0372 (3)
H201.18900.77690.79020.056*
O1W0.6998 (4)0.2075 (2)0.99708 (16)0.0828 (7)
H11W0.696 (5)0.175 (3)1.0649 (12)0.124*
H12W0.699 (5)0.155 (3)0.960 (3)0.124*
O2W0.7058 (2)0.4247 (2)0.86556 (17)0.0742 (6)
H21W0.632 (3)0.457 (3)0.832 (3)0.111*
H22W0.716 (4)0.3468 (14)0.885 (3)0.111*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01998 (12)0.01629 (11)0.03081 (13)0.00660 (9)0.00869 (10)0.00015 (9)
O1M0.0215 (6)0.0237 (6)0.0315 (6)0.0053 (5)0.0081 (5)0.0012 (5)
O2M0.0283 (7)0.0193 (6)0.1052 (14)0.0106 (5)0.0331 (8)0.0112 (7)
O3M0.0256 (6)0.0238 (6)0.0316 (6)0.0132 (5)0.0047 (5)0.0048 (5)
O4M0.0212 (6)0.0224 (6)0.0400 (7)0.0070 (5)0.0063 (5)0.0021 (5)
O5M0.0247 (6)0.0217 (6)0.0400 (7)0.0108 (5)0.0065 (5)0.0014 (5)
V10.02410 (13)0.01993 (13)0.02154 (13)0.00696 (10)0.00891 (10)0.00344 (10)
V20.01348 (11)0.01252 (12)0.02075 (13)0.00452 (9)0.00535 (9)0.00177 (9)
V30.01931 (13)0.01897 (13)0.02142 (13)0.00647 (10)0.00120 (10)0.00267 (10)
V40.02039 (12)0.01307 (12)0.01949 (13)0.00495 (9)0.00601 (10)0.00067 (9)
V50.01743 (12)0.01089 (12)0.02153 (13)0.00361 (9)0.00493 (9)0.00228 (9)
O10.0258 (6)0.0123 (5)0.0303 (6)0.0044 (4)0.0079 (5)0.0014 (4)
O20.0363 (6)0.0162 (5)0.0322 (6)0.0070 (5)0.0115 (5)0.0040 (5)
O30.0259 (6)0.0336 (7)0.0323 (6)0.0112 (5)0.0038 (5)0.0066 (5)
O40.0410 (7)0.0329 (7)0.0345 (7)0.0105 (6)0.0194 (6)0.0077 (5)
O50.0270 (6)0.0212 (5)0.0203 (5)0.0065 (4)0.0042 (4)0.0040 (4)
O60.0156 (5)0.0193 (5)0.0257 (5)0.0061 (4)0.0043 (4)0.0014 (4)
O70.0201 (5)0.0189 (5)0.0252 (5)0.0078 (4)0.0091 (4)0.0020 (4)
O80.0236 (5)0.0155 (5)0.0252 (5)0.0068 (4)0.0078 (4)0.0040 (4)
O90.0175 (5)0.0160 (5)0.0252 (5)0.0028 (4)0.0035 (4)0.0036 (4)
O100.0244 (5)0.0189 (5)0.0210 (5)0.0062 (4)0.0100 (4)0.0004 (4)
O110.0218 (5)0.0189 (5)0.0213 (5)0.0086 (4)0.0029 (4)0.0007 (4)
O120.0152 (5)0.0128 (5)0.0220 (5)0.0037 (4)0.0067 (4)0.0008 (4)
O130.0168 (5)0.0119 (5)0.0218 (5)0.0058 (4)0.0052 (4)0.0002 (4)
O140.0157 (5)0.0129 (5)0.0198 (5)0.0047 (4)0.0052 (4)0.0012 (4)
N10.0318 (8)0.0386 (9)0.0352 (8)0.0090 (7)0.0101 (7)0.0087 (7)
C50.0408 (11)0.0516 (13)0.0622 (15)0.0191 (10)0.0112 (11)0.0157 (11)
C40.0573 (14)0.0431 (13)0.0492 (13)0.0111 (11)0.0004 (11)0.0139 (10)
C30.0715 (16)0.0389 (12)0.0305 (10)0.0054 (11)0.0142 (10)0.0016 (9)
C20.0472 (11)0.0383 (11)0.0360 (10)0.0043 (9)0.0193 (9)0.0111 (9)
C10.0304 (9)0.0301 (9)0.0257 (8)0.0004 (7)0.0038 (7)0.0095 (7)
C60.0360 (10)0.0312 (9)0.0409 (10)0.0072 (8)0.0081 (8)0.0115 (8)
C70.0390 (10)0.0362 (10)0.0336 (9)0.0183 (8)0.0111 (8)0.0018 (8)
O200.0357 (7)0.0365 (7)0.0432 (7)0.0180 (6)0.0016 (6)0.0115 (6)
O1W0.155 (2)0.0668 (13)0.0394 (9)0.0552 (14)0.0224 (12)0.0004 (9)
O2W0.0735 (13)0.0630 (12)0.0467 (10)0.0013 (10)0.0042 (9)0.0108 (9)
Geometric parameters (Å, º) top
Mn1—O2M2.1420 (13)V4—O10i1.8227 (11)
Mn1—O12.1630 (11)V4—O11i1.8414 (11)
Mn1—O4M2.1902 (12)V4—O121.9911 (11)
Mn1—O5M2.1915 (12)V4—O132.0147 (10)
Mn1—O1M2.2073 (12)V4—O14i2.2650 (10)
Mn1—O3M2.2103 (12)V5—O11.6350 (11)
O1M—H11M0.810 (15)V5—O81.7933 (11)
O1M—H12M0.818 (15)V5—O91.7990 (11)
O2M—H21M0.793 (15)V5—O132.0083 (10)
O2M—H22M0.795 (15)V5—O122.0244 (10)
O3M—H31M0.779 (15)V5—O142.2290 (10)
O3M—H32M0.827 (15)N1—C11.335 (2)
O4M—H41M0.797 (15)N1—C51.339 (3)
O4M—H42M0.809 (15)N1—H10.8600
O5M—H51M0.779 (15)C5—C41.359 (3)
O5M—H52M0.819 (15)C5—H20.9300
V1—O41.5971 (12)C4—C31.364 (4)
V1—O51.8002 (11)C4—H30.9300
V1—O101.8796 (11)C3—C21.376 (4)
V1—O81.8940 (11)C3—H40.9300
V1—O72.0640 (11)C2—C11.382 (3)
V1—O142.3296 (10)C2—H50.9300
V2—O7i1.6898 (10)C1—C61.485 (3)
V2—O61.6910 (11)C6—C71.518 (3)
V2—O121.9219 (10)C6—H7A0.9700
V2—O13i1.9321 (10)C6—H7B0.9700
V2—O14i2.0939 (10)C7—O201.425 (2)
V2—O142.1099 (10)C7—H8A0.9700
V3—O31.5951 (12)C7—H8B0.9700
V3—O51.8202 (11)O20—H200.8200
V3—O111.8664 (11)O1W—H11W0.826 (10)
V3—O91.8947 (11)O1W—H12W0.821 (10)
V3—O62.0521 (11)O2W—H21W0.821 (10)
V3—O142.3272 (10)O2W—H22W0.839 (10)
V4—O21.5967 (12)
O2M—Mn1—O1179.46 (6)O12—V4—O1376.15 (4)
O2M—Mn1—O4M88.91 (6)O2—V4—O14i174.56 (5)
O1—Mn1—O4M90.55 (5)O10i—V4—O14i80.99 (4)
O2M—Mn1—O5M90.32 (6)O11i—V4—O14i80.27 (4)
O1—Mn1—O5M90.22 (5)O12—V4—O14i75.92 (4)
O4M—Mn1—O5M178.09 (5)O13—V4—O14i75.50 (4)
O2M—Mn1—O1M88.71 (5)O1—V5—O8102.94 (5)
O1—Mn1—O1M91.24 (4)O1—V5—O9103.32 (5)
O4M—Mn1—O1M87.88 (5)O8—V5—O996.67 (5)
O5M—Mn1—O1M93.86 (5)O1—V5—O1399.42 (5)
O2M—Mn1—O3M88.48 (5)O8—V5—O1389.69 (5)
O1—Mn1—O3M91.57 (4)O9—V5—O13154.31 (4)
O4M—Mn1—O3M91.80 (5)O1—V5—O1299.46 (5)
O5M—Mn1—O3M86.43 (5)O8—V5—O12154.92 (4)
O1M—Mn1—O3M177.17 (5)O9—V5—O1288.96 (5)
Mn1—O1M—H11M109.9 (16)O13—V5—O1275.55 (4)
Mn1—O1M—H12M109.9 (16)O1—V5—O14173.50 (5)
H11M—O1M—H12M106.4 (19)O8—V5—O1481.23 (4)
Mn1—O2M—H21M123.8 (16)O9—V5—O1480.95 (4)
Mn1—O2M—H22M126.0 (16)O13—V5—O1475.45 (4)
H21M—O2M—H22M109 (2)O12—V5—O1475.54 (4)
Mn1—O3M—H31M114.3 (17)V5—O1—Mn1177.41 (7)
Mn1—O3M—H32M111.3 (16)V1—O5—V3114.44 (6)
H31M—O3M—H32M107.9 (19)V2—O6—V3110.66 (5)
Mn1—O4M—H41M120.9 (16)V2i—O7—V1110.70 (5)
Mn1—O4M—H42M118.2 (16)V5—O8—V1114.73 (5)
H41M—O4M—H42M109.4 (19)V5—O9—V3114.93 (5)
Mn1—O5M—H51M115.5 (17)V4i—O10—V1114.47 (5)
Mn1—O5M—H52M114.2 (16)V4i—O11—V3114.71 (6)
H51M—O5M—H52M108.7 (19)V2—O12—V4107.20 (5)
O4—V1—O5104.34 (6)V2—O12—V5107.14 (5)
O4—V1—O10103.18 (6)V4—O12—V5100.72 (4)
O5—V1—O1091.93 (5)V2i—O13—V5107.07 (5)
O4—V1—O8101.05 (6)V2i—O13—V4107.61 (5)
O5—V1—O892.36 (5)V5—O13—V4100.46 (4)
O10—V1—O8153.49 (5)V2i—O14—V2101.73 (4)
O4—V1—O7100.26 (6)V2i—O14—V594.25 (4)
O5—V1—O7155.39 (5)V2—O14—V594.06 (4)
O10—V1—O783.07 (5)V2i—O14—V4i92.45 (4)
O8—V1—O782.20 (5)V2—O14—V4i93.39 (4)
O4—V1—O14173.27 (6)V5—O14—V4i168.77 (5)
O5—V1—O1482.13 (4)V2i—O14—V3170.22 (5)
O10—V1—O1478.13 (4)V2—O14—V387.97 (3)
O8—V1—O1476.58 (4)V5—O14—V386.22 (3)
O7—V1—O1473.26 (4)V4i—O14—V385.66 (3)
O7i—V2—O6106.95 (5)V2i—O14—V188.65 (3)
O7i—V2—O1297.28 (5)V2—O14—V1169.59 (5)
O6—V2—O1297.08 (5)V5—O14—V185.86 (3)
O7i—V2—O13i96.97 (5)V4i—O14—V185.30 (3)
O6—V2—O13i96.72 (5)V3—O14—V181.63 (3)
O12—V2—O13i156.33 (4)C1—N1—C5123.61 (18)
O7i—V2—O14i87.39 (5)C1—N1—H1118.2
O6—V2—O14i165.64 (5)C5—N1—H1118.2
O12—V2—O14i81.59 (4)N1—C5—C4119.8 (2)
O13i—V2—O14i80.28 (4)N1—C5—H2120.1
O7i—V2—O14165.65 (5)C4—C5—H2120.1
O6—V2—O1487.40 (5)C5—C4—C3119.0 (2)
O12—V2—O1480.54 (4)C5—C4—H3120.5
O13i—V2—O1480.97 (4)C3—C4—H3120.5
O14i—V2—O1478.27 (4)C4—C3—C2120.2 (2)
O3—V3—O5104.38 (6)C4—C3—H4119.9
O3—V3—O11103.02 (6)C2—C3—H4119.9
O5—V3—O1191.87 (5)C3—C2—C1120.0 (2)
O3—V3—O9101.46 (6)C3—C2—H5120.0
O5—V3—O991.41 (5)C1—C2—H5120.0
O11—V3—O9153.63 (5)N1—C1—C2117.44 (19)
O3—V3—O699.85 (6)N1—C1—C6117.14 (16)
O5—V3—O6155.75 (5)C2—C1—C6125.41 (19)
O11—V3—O683.55 (5)C1—C6—C7113.35 (15)
O9—V3—O682.77 (5)C1—C6—H7A108.9
O3—V3—O14173.61 (6)C7—C6—H7A108.9
O5—V3—O1481.79 (4)C1—C6—H7B108.9
O11—V3—O1478.12 (4)C7—C6—H7B108.9
O9—V3—O1476.47 (4)H7A—C6—H7B107.7
O6—V3—O1473.96 (4)O20—C7—C6111.21 (15)
O2—V4—O10i103.46 (6)O20—C7—H8A109.4
O2—V4—O11i102.30 (6)C6—C7—H8A109.4
O10i—V4—O11i94.49 (5)O20—C7—H8B109.4
O2—V4—O12100.69 (6)C6—C7—H8B109.4
O10i—V4—O1290.94 (5)H8A—C7—H8B108.0
O11i—V4—O12154.42 (5)C7—O20—H20109.5
O2—V4—O1399.65 (5)H11W—O1W—H12W107.3 (17)
O10i—V4—O13155.28 (5)H21W—O2W—H22W105.4 (16)
O11i—V4—O1389.03 (5)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1M—H11M···O9ii0.81 (2)1.85 (2)2.6599 (16)180 (3)
O1M—H12M···O2W0.82 (2)1.85 (2)2.661 (2)170 (2)
O2M—H21M···O7iii0.79 (2)1.93 (2)2.7179 (17)177 (2)
O2M—H22M···O6ii0.80 (2)1.96 (2)2.7497 (17)174 (2)
O3M—H31M···O13iii0.78 (2)1.95 (2)2.7150 (15)166 (2)
O3M—H32M···O20ii0.83 (2)1.83 (2)2.6450 (18)167 (2)
O4M—H41M···O12ii0.80 (2)2.02 (2)2.8033 (15)166 (2)
O4M—H42M···O1Mii0.81 (2)1.97 (2)2.7773 (18)176 (2)
O5M—H51M···O8iii0.78 (2)1.94 (2)2.7113 (16)170 (2)
O5M—H52M···O3Miii0.82 (2)2.03 (2)2.8425 (18)173 (2)
O1W—H11W···O11iv0.83 (1)1.99 (1)2.812 (2)172 (3)
O1W—H12W···O4iii0.82 (1)2.17 (2)2.924 (2)152 (4)
O2W—H21W···O20.82 (1)2.38 (3)2.868 (2)119 (3)
O2W—H21W···O5M0.82 (1)2.52 (3)3.165 (3)136 (3)
O2W—H22W···O1W0.84 (1)1.89 (2)2.659 (3)152 (4)
N1—H1···O10i0.861.902.7531 (19)175
O20—H20···O11v0.821.952.7490 (17)166
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+1; (iv) x, y1, z+1; (v) x+2, y+2, z+1.

Experimental details

Crystal data
Chemical formula(C7H10NO)2[Mn2V10O28(H2O)10]·4H2O
Mr1567.82
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.58016 (9), 11.33329 (13), 12.07540 (17)
α, β, γ (°)78.3429 (11), 74.6559 (11), 66.0748 (10)
V3)1149.02 (2)
Z1
Radiation typeMo Kα
µ (mm1)2.56
Crystal size (mm)0.28 × 0.25 × 0.15
Data collection
DiffractometerGoniometer Xcalibur, detector: Ruby (Gemini R)
diffractometer
Absorption correctionAnalytical
(CrysAlis PRO; Oxford Diffraction Ltd, 2008). Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995).
Tmin, Tmax0.597, 0.739
No. of measured, independent and
observed [I > 2σ(I)] reflections
23048, 5256, 4821
Rint0.014
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.056, 1.07
No. of reflections5256
No. of parameters368
No. of restraints21
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.35

Computer programs: CrysAlis PRO (Oxford Diffraction Ltd, 2008), DIRDIF2008 (Beurskens et al., 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2008) and PLATON (Spek, 2003), publCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1M—H11M···O9i0.810 (15)1.850 (15)2.6599 (16)180 (3)
O1M—H12M···O2W0.818 (15)1.851 (15)2.661 (2)170 (2)
O2M—H21M···O7ii0.793 (15)1.926 (15)2.7179 (17)177 (2)
O2M—H22M···O6i0.795 (15)1.958 (15)2.7497 (17)174 (2)
O3M—H31M···O13ii0.779 (15)1.952 (17)2.7150 (15)166 (2)
O3M—H32M···O20i0.827 (15)1.833 (16)2.6450 (18)167 (2)
O4M—H41M···O12i0.797 (15)2.023 (16)2.8033 (15)166 (2)
O4M—H42M···O1Mi0.809 (15)1.970 (15)2.7773 (18)176 (2)
O5M—H51M···O8ii0.779 (15)1.940 (16)2.7113 (16)170 (2)
O5M—H52M···O3Mii0.819 (15)2.028 (16)2.8425 (18)173 (2)
O1W—H11W···O11iii0.826 (10)1.991 (10)2.812 (2)172 (3)
O1W—H12W···O4ii0.821 (10)2.17 (2)2.924 (2)152 (4)
O2W—H21W···O20.821 (10)2.38 (3)2.868 (2)119 (3)
O2W—H21W···O5M0.821 (10)2.52 (3)3.165 (3)136 (3)
O2W—H22W···O1W0.839 (10)1.89 (2)2.659 (3)152 (4)
N1—H1···O10iv0.861.902.7531 (19)175.1
O20—H20···O11v0.821.952.7490 (17)166.1
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1, y+1, z+1; (iii) x, y1, z+1; (iv) x+1, y+2, z+1; (v) x+2, y+2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds