Download citation
Download citation
link to html
Thermal-induced transformation of glu­tamic acid to pyro­glu­tamic acid is well known. However, confusion remains over the exact temperature at which this happens. Moreover, no diffraction data are available to support the transition. In this article, we make a systematic investigation involving thermal analysis, hot-stage microscopy and single-crystal X-ray diffraction to study a one-pot thermal transition of glu­tamic acid to pyro­glu­tamic acid and subsequent self-cocrystallization between the product (hydrated pyro­glu­tamic acid) and the unreacted precursor (glu­tamic acid). The melt upon cooling gave a robust cocrystal, namely, glu­tamic acid–pyro­glu­tamic acid–water (1/1/1), C5H7NO3·C5H9NO4·H2O, whose structure has been elucidated from single-crystal X-ray diffraction data collected at room temperature. A three-dimensional network of strong hydrogen bonds has been found. A Hirshfeld surface analysis was carried out to make a qu­anti­tative estimation of the inter­molecular inter­actions. In order to gain insight into the strength and stability of the cocrystal, the transferability principle was utilized to make a topological analysis and to study the electron-density-derived properties. The transferred model has been found to be superior to the classical independent atom model (IAM). The experimental results have been com­pared with results from a multipolar refinement carried out using theoretical structure factors generated from density functional theory (DFT) calculations. Very strong classical hydrogen bonds drive the cocrystallization and lend stability to the resulting cocrystal. Important con­clusions have been drawn about this transition.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229621013607/ef3024sup1.cif
Contains datablocks IAM_SHELX, ELMAM2_MoPro, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229621013607/ef3024IAM_SHELXsup2.hkl
Contains datablock IAM_SHELX

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229621013607/ef3024ELMAM2_MoProsup3.hkl
Contains datablock ELMAM2_MoPro

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229621013607/ef3024IAM_SHELXsup4.cml
Supplementary material

mp4

Moving Picture Experts Group (MP4) video file https://doi.org/10.1107/S2053229621013607/ef3024sup5.mp4
Hot-stage microscopy showing the events between 195 and 215 degrees C

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229621013607/ef3024sup6.pdf
Additional figures and tables

CCDC references: 2097833; 2097831

Computing details top

Cell refinement: SAINT (Bruker, 2016) for IAM_SHELX. Data reduction: SAINT (Bruker, 2016) for IAM_SHELX. Program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015) for IAM_SHELX. Program(s) used to refine structure: olex2.refine (Bourhis et al., 2015) for IAM_SHELX; MoPro (Jelsch et al., 2005) for ELMAM2_MoPro. Molecular graphics: OLEX2 (Dolomanov et al., 2009) for IAM_SHELX. Software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) for IAM_SHELX.

2-Aminopentanedioic acid–5-oxopyrrolidine-2-carboxylic acid–water (1/1/1) (IAM_SHELX) top
Crystal data top
C5H7NO3·C5H9NO4·H2OF(000) = 312.231
Mr = 294.26Dx = 1.450 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 5.1153 (3) ÅCell parameters from 3695 reflections
b = 7.1849 (4) Åθ = 3.1–25.3°
c = 18.4639 (9) ŵ = 0.13 mm1
β = 96.817 (2)°T = 298 K
V = 673.80 (6) Å3Plate-like, colourless
Z = 20.5 × 0.29 × 0.07 mm
Data collection top
Bruker D8 Venture
diffractometer
1905 reflections with I 2u(I)
φ and ω scansRint = 0.055
Absorption correction: multi-scan
(SADABS; Bruker, 2016; Krause et al., 2015)
θmax = 25.3°, θmin = 2.2°
Tmin = 0.487, Tmax = 0.745h = 66
7139 measured reflectionsk = 88
2442 independent reflectionsl = 2222
Refinement top
Refinement on F223 constraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.051 w = 1/[σ2(Fo2) + (0.0331P)2 + 0.2123P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.116(Δ/σ)max = 0.0003
S = 1.12Δρmax = 0.27 e Å3
2442 reflectionsΔρmin = 0.27 e Å3
199 parametersAbsolute structure: Flack (1983)
1 restraintAbsolute structure parameter: 0.0 (19)
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.1942 (5)0.6634 (4)0.70646 (12)0.0468 (7)
O30.5490 (5)0.5139 (4)0.67679 (12)0.0454 (7)
O40.3070 (4)0.4779 (4)0.54825 (10)0.0379 (6)
O50.6743 (4)0.5020 (3)0.49491 (11)0.0343 (6)
O60.3416 (5)0.4878 (4)0.25593 (12)0.0482 (7)
O70.0386 (5)0.5644 (4)0.19112 (12)0.0506 (8)
O80.1419 (9)0.4677 (7)0.07159 (18)0.0867 (12)
N10.4011 (8)0.7027 (5)0.84719 (15)0.0520 (10)
N20.0595 (5)0.2985 (4)0.42950 (13)0.0265 (6)
H2a0.018 (3)0.264 (2)0.38588 (13)0.0397 (9)*
H2b0.058 (2)0.3540 (9)0.4541 (9)0.0397 (9)*
H2c0.1242 (7)0.1988 (13)0.4541 (10)0.0397 (9)*
O10.2102 (7)0.6781 (4)0.95192 (14)0.0793 (11)
C10.3373 (9)0.6116 (6)0.9046 (2)0.0511 (11)
C20.4415 (13)0.4213 (7)0.9039 (3)0.0831 (18)
H2d0.3007 (13)0.3313 (7)0.9051 (3)0.100 (2)*
H2e0.5711 (13)0.4007 (7)0.9459 (3)0.100 (2)*
C30.5660 (10)0.4021 (6)0.8346 (2)0.0565 (12)
H3a0.4714 (10)0.3116 (6)0.8025 (2)0.0678 (14)*
H3b0.7479 (10)0.3625 (6)0.8450 (2)0.0678 (14)*
C40.5501 (7)0.5953 (5)0.79956 (16)0.0378 (9)
H40.7272 (7)0.6477 (5)0.80005 (16)0.0454 (11)*
C50.4099 (7)0.5955 (5)0.72237 (17)0.0337 (8)
C60.4334 (6)0.4712 (5)0.49441 (16)0.0275 (7)
C70.2773 (6)0.4305 (4)0.42022 (15)0.0244 (7)
H7a0.3944 (6)0.3754 (4)0.38777 (15)0.0293 (9)*
C80.1729 (7)0.6164 (5)0.38876 (16)0.0319 (8)
H8a0.3230 (7)0.6946 (5)0.38229 (16)0.0383 (9)*
H8b0.0782 (7)0.6763 (5)0.42487 (16)0.0383 (9)*
C90.0067 (7)0.6130 (5)0.31693 (15)0.0353 (8)
H9a0.0735 (7)0.7378 (5)0.30658 (15)0.0423 (10)*
H9b0.1562 (7)0.5335 (5)0.32252 (15)0.0423 (10)*
C100.1211 (8)0.5462 (5)0.25318 (17)0.0363 (9)
H70.042 (7)0.536 (6)0.152 (2)0.0544 (13)*
H10.339 (7)0.827 (6)0.832 (2)0.0544 (13)*
H30.467 (7)0.497 (7)0.628 (2)0.0544 (13)*
H8c0.126 (12)0.552 (11)0.031 (4)0.15 (3)*
H8d0.010 (12)0.395 (8)0.058 (3)0.10 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0454 (16)0.0587 (18)0.0343 (13)0.0148 (14)0.0034 (12)0.0035 (13)
O30.0459 (14)0.0590 (18)0.0302 (12)0.0106 (15)0.0004 (11)0.0112 (13)
O40.0310 (12)0.0594 (17)0.0228 (10)0.0007 (13)0.0010 (9)0.0082 (12)
O50.0235 (12)0.0396 (15)0.0386 (12)0.0029 (12)0.0012 (9)0.0086 (12)
O60.0520 (16)0.0563 (18)0.0369 (13)0.0077 (16)0.0073 (11)0.0001 (14)
O70.0560 (17)0.065 (2)0.0288 (12)0.0069 (15)0.0021 (12)0.0038 (14)
O80.117 (3)0.102 (3)0.0429 (18)0.029 (3)0.0159 (18)0.001 (2)
N10.099 (3)0.0292 (19)0.0283 (16)0.0117 (19)0.0090 (17)0.0004 (15)
N20.0283 (14)0.0246 (14)0.0257 (13)0.0054 (12)0.0003 (11)0.0011 (12)
O10.133 (3)0.067 (2)0.0440 (16)0.024 (2)0.0347 (18)0.0022 (17)
C10.077 (3)0.041 (2)0.0340 (19)0.004 (2)0.002 (2)0.003 (2)
C20.147 (5)0.049 (3)0.058 (3)0.029 (3)0.031 (3)0.015 (2)
C30.079 (3)0.046 (3)0.042 (2)0.021 (2)0.005 (2)0.004 (2)
C40.049 (2)0.034 (2)0.0290 (16)0.0029 (18)0.0023 (16)0.0014 (17)
C50.040 (2)0.0312 (19)0.0291 (16)0.0007 (17)0.0005 (15)0.0001 (16)
C60.0288 (17)0.0223 (17)0.0310 (16)0.0018 (14)0.0018 (13)0.0009 (15)
C70.0250 (17)0.0257 (18)0.0229 (15)0.0044 (13)0.0043 (13)0.0027 (14)
C80.040 (2)0.0250 (18)0.0308 (17)0.0018 (16)0.0050 (14)0.0009 (16)
C90.040 (2)0.034 (2)0.0302 (16)0.0059 (17)0.0030 (15)0.0044 (16)
C100.047 (2)0.029 (2)0.0324 (18)0.0048 (17)0.0032 (16)0.0067 (16)
Geometric parameters (Å, º) top
O2—C51.210 (4)O1—C11.244 (5)
O3—C51.304 (4)C1—C21.468 (6)
O4—C61.249 (3)C2—C31.502 (6)
O5—C61.251 (3)C3—C41.530 (5)
O6—C101.198 (4)C4—C51.518 (5)
O7—C101.333 (4)C6—C71.530 (4)
N1—C11.320 (5)C7—C81.527 (4)
N1—C41.452 (5)C8—C91.521 (4)
N2—C71.488 (4)C9—C101.492 (4)
C4—N1—C1114.9 (3)O5—C6—O4126.1 (3)
O1—C1—N1125.0 (4)C7—C6—O4117.1 (3)
C2—C1—N1109.3 (4)C7—C6—O5116.7 (3)
C2—C1—O1125.8 (4)C6—C7—N2109.7 (2)
C3—C2—C1106.5 (4)C8—C7—N2111.6 (2)
C4—C3—C2105.7 (3)C8—C7—C6107.2 (2)
C3—C4—N1103.4 (3)C9—C8—C7117.7 (3)
C5—C4—N1110.2 (3)C10—C9—C8114.6 (3)
C5—C4—C3113.2 (3)O7—C10—O6123.3 (3)
O3—C5—O2125.2 (3)C9—C10—O6125.3 (3)
C4—C5—O2122.9 (3)C9—C10—O7111.4 (3)
C4—C5—O3111.9 (3)
O2—C5—C4—N15.8 (4)O7—C10—C9—C8173.7 (3)
O2—C5—C4—C3109.3 (4)N1—C1—C2—C33.6 (4)
O3—C5—C4—N1174.5 (3)N1—C4—C3—C24.7 (4)
O3—C5—C4—C370.3 (3)N2—C7—C8—C955.7 (3)
O4—C6—C7—N235.1 (3)O1—C1—C2—C3176.8 (6)
O4—C6—C7—C886.2 (3)C1—C2—C3—C45.1 (5)
O5—C6—C7—N2147.6 (3)C2—C3—C4—C5123.8 (4)
O5—C6—C7—C891.0 (3)C6—C7—C8—C9175.8 (2)
O6—C10—C9—C84.3 (4)C7—C8—C9—C1064.9 (3)
2-Aminopentanedioic acid–5-oxopyrrolidine-2-carboxylic acid–water (1/1/1) (ELMAM2_MoPro) top
Crystal data top
C5H7NO3·C5H9NO4·H2OF(000) = 312
Mr = 294.25Dx = 1.451 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 5.1153 (3) ÅCell parameters from 3695 reflections
b = 7.1849 (4) Åθ = 2.2–26.4°
c = 18.4639 (9) ŵ = 0.13 mm1
β = 96.817 (2)°T = 298 K
V = 673.80 (6) Å3Plate-like, colourless
Z = 20.5 × 0.29 × 0.07 mm
Data collection top
Bruker D8 Venture
diffractometer
2373 independent reflections
Radiation source: fine-focus sealed tube1855 reflections with I > 2 σ(I)
Helios Mirror Optics monochromatorRint = 0.055
ω and phi scanθmax = 25.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 66
Tmin = 0.487, Tmax = 0.745k = 88
7139 measured reflectionsl = 022
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.03314P)2 + 0.21229P]
where P = (Fo2 + 2Fc2
S = 0.85(Δ/σ)max < 0.001
2373 reflectionsΔρmax = 0.24 e Å3
120 parametersΔρmin = 0.25 e Å3
0 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.0 (19)
Special details top

Refinement. Refinement of F2 against reflections. The threshold expression of F2 > 2sigma(F2) is used for calculating R-factors(gt) and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

The diffraction data was collected on a Bruker D8 Venture with PHOTON II Detector single crystal X-rays diffractometer at room temperature (298K) using source of Mo K radiations (λ = 0.71073 Å). The data was processed using the SAINT (Bruker, 2016) program and absorption correction was done with SADABS program (Krause et al., 2015).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O20.1949 (5)0.66352 (4)0.70660 (12)0.0449 (8)
O30.5487 (4)0.5144 (5)0.67669 (11)0.0427 (7)
O40.3069 (4)0.4786 (6)0.54831 (10)0.0364 (6)
O50.6742 (4)0.5025 (5)0.49480 (11)0.0326 (6)
O60.3418 (5)0.4881 (5)0.25599 (11)0.0460 (8)
O70.0377 (5)0.5645 (5)0.19089 (10)0.0477 (8)
O80.1412 (7)0.4681 (7)0.07136 (14)0.0839 (13)
N10.4016 (7)0.7037 (6)0.84719 (14)0.0494 (13)
N20.0593 (5)0.2985 (5)0.42953 (13)0.0233 (7)
H2a0.027790.256310.378580.04989
H2b0.080570.363510.458600.04642
H2c0.136330.181100.457360.04816
O10.2104 (7)0.6786 (6)0.95178 (13)0.0762 (14)
C10.3381 (9)0.6124 (7)0.90487 (19)0.0475 (14)
C20.4439 (12)0.4228 (8)0.9039 (3)0.080 (2)
H2d0.287690.318740.904160.08108
H2e0.593630.397290.950400.08615
C30.5665 (9)0.4022 (7)0.8348 (2)0.0525 (15)
H3a0.460150.298230.799720.06485
H3b0.770120.357610.847970.07379
C40.5502 (7)0.5963 (6)0.79962 (15)0.0354 (11)
H40.748710.653700.801340.06309
C50.4105 (7)0.5959 (6)0.72228 (16)0.0303 (10)
C60.4335 (6)0.4713 (6)0.49452 (15)0.0234 (8)
C70.2771 (6)0.4300 (6)0.42021 (15)0.0214 (8)
H7a0.404710.367850.383730.04695
C80.1734 (7)0.6172 (6)0.38898 (15)0.0285 (10)
H8a0.340720.704750.380550.05197
H8b0.062180.682940.428690.04922
C90.0074 (6)0.6141 (6)0.31685 (16)0.0328 (10)
H9a0.083180.755140.306090.06088
H9b0.172970.522540.324250.05664
C100.1217 (7)0.5464 (6)0.25300 (16)0.0330 (11)
H70.055060.530020.146440.06872
H10.336350.832440.830960.07025
H30.461340.492950.624120.04348
H8c0.121480.555080.029190.09454
H8d0.017450.391220.058050.08796
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O20.0455 (16)0.0563 (18)0.0309 (13)0.0140 (14)0.0042 (11)0.0056 (13)
O30.0422 (14)0.0569 (18)0.0278 (11)0.0102 (14)0.0008 (10)0.0109 (13)
O40.0285 (12)0.0594 (17)0.0206 (10)0.0011 (13)0.0010 (9)0.0084 (12)
O50.0214 (12)0.0394 (14)0.0358 (11)0.0032 (12)0.0008 (9)0.0096 (12)
O60.0495 (15)0.0554 (18)0.0334 (12)0.0109 (15)0.0066 (11)0.0002 (14)
O70.0542 (16)0.062 (2)0.0248 (11)0.0085 (14)0.0041 (11)0.0060 (13)
O80.115 (3)0.099 (3)0.0394 (14)0.029 (2)0.0157 (14)0.0012 (18)
N10.095 (3)0.0280 (18)0.0262 (14)0.0110 (18)0.0092 (16)0.0009 (14)
N20.0244 (14)0.0219 (14)0.0231 (12)0.0059 (11)0.0006 (11)0.0018 (12)
H2a0.050870.055500.041110.011130.003650.00304
H2b0.037920.052350.049690.001470.008120.00037
H2c0.053040.040550.049390.000550.000120.00437
O10.131 (3)0.063 (2)0.0399 (14)0.026 (2)0.0335 (17)0.0030 (16)
C10.074 (3)0.036 (2)0.0323 (18)0.007 (2)0.0065 (19)0.0039 (19)
C20.146 (5)0.043 (3)0.056 (3)0.028 (3)0.033 (3)0.017 (2)
H2d0.120950.068350.055010.003040.014890.00477
H2e0.131760.079200.042700.021520.009580.00158
C30.079 (3)0.040 (2)0.036 (2)0.022 (2)0.003 (2)0.0054 (19)
H3a0.092910.053980.045210.005190.001920.00064
H3b0.088190.073770.054430.023210.012180.00286
C40.050 (2)0.030 (2)0.0232 (15)0.0033 (18)0.0058 (16)0.0006 (16)
H40.072240.062720.050930.002160.006760.00713
C50.033 (2)0.0333 (19)0.0233 (15)0.0042 (16)0.0015 (15)0.0023 (16)
C60.0216 (16)0.0231 (17)0.0251 (15)0.0000 (14)0.0014 (13)0.0046 (14)
C70.0225 (16)0.0237 (18)0.0178 (14)0.0032 (13)0.0010 (12)0.0022 (13)
H7a0.043820.053400.044760.002600.010020.00766
C80.039 (2)0.0205 (18)0.0258 (15)0.0007 (15)0.0020 (14)0.0028 (15)
H8a0.050050.054070.052010.012130.007000.00516
H8b0.050350.053600.044300.009860.008090.00146
C90.037 (2)0.033 (2)0.0265 (15)0.0068 (17)0.0009 (14)0.0034 (16)
H9a0.074450.055450.050630.009680.001360.00914
H9b0.049130.067610.051630.009990.000420.00391
C100.041 (2)0.032 (2)0.0256 (17)0.0015 (17)0.0002 (16)0.0059 (15)
H70.086780.079250.039190.008230.003520.00048
H10.109130.052860.049780.020960.013630.00102
H30.043040.047250.038820.007190.000620.00379
H8c0.139410.100770.042720.016190.007760.00748
H8d0.114370.094870.051490.021240.003210.00610
Geometric parameters (Å, º) top
O2—C51.208 (4)C1—C21.466 (6)
O3—C51.301 (4)C2—C31.493 (6)
O3—H31.0310C2—H2d1.0948
O4—C61.249 (3)C2—H2e1.0962
O5—C61.251 (3)C3—C41.536 (5)
O6—C101.196 (4)C3—H3b1.0894
O7—C101.332 (4)C3—H3a1.0913
O7—H71.0260C4—C51.519 (4)
O8—H8d0.9880C4—H41.0931
O8—H8c0.9943C6—C71.533 (4)
N1—C11.324 (5)C7—C81.533 (4)
N1—C41.451 (4)C7—H7a1.0879
N1—H11.0161C8—C91.529 (4)
N2—C71.486 (4)C8—H8b1.0880
N2—H2a1.0373C8—H8a1.0881
N2—H2c1.0409C9—C101.499 (4)
N2—H2b1.0529C9—H9b1.0940
O1—C11.240 (5)C9—H9a1.0944
C5—O3—H3117.9C5—C4—C3113.1 (3)
C10—O7—H7111.8C5—C4—H4111.1
H8d—O8—H8c98.8C3—C4—H4109.1
C1—N1—C4114.8 (3)O3—C5—O2125.2 (3)
C1—N1—H1125.8O3—C5—C4112.2 (2)
C4—N1—H1118.9O2—C5—C4122.6 (3)
C7—N2—H2a109.1O4—C6—O5126.3 (2)
C7—N2—H2c109.1O4—C6—C7117.1 (2)
C7—N2—H2b110.0O5—C6—C7116.6 (2)
H2a—N2—H2c107.9N2—C7—C6109.8 (2)
H2a—N2—H2b110.3N2—C7—C8111.7 (2)
H2c—N2—H2b110.4N2—C7—H7a108.9
O1—C1—N1124.8 (3)C6—C7—C8106.7 (2)
O1—C1—C2126.2 (3)C6—C7—H7a110.2
N1—C1—C2108.9 (3)C8—C7—H7a109.5
C1—C2—C3107.2 (3)C7—C8—C9117.5 (2)
C1—C2—H2d111.3C7—C8—H8b108.2
C1—C2—H2e111.7C7—C8—H8a108.6
C3—C2—H2d108.5C9—C8—H8b106.4
C3—C2—H2e109.1C9—C8—H8a106.8
H2d—C2—H2e108.9H8b—C8—H8a109.2
C4—C3—C2105.3 (3)C10—C9—C8114.3 (2)
C4—C3—H3b111.3C10—C9—H9b108.8
C4—C3—H3a111.8C10—C9—H9a109.7
C2—C3—H3b109.1C8—C9—H9b107.3
C2—C3—H3a110.2C8—C9—H9a108.0
H3b—C3—H3a109.1H9b—C9—H9a108.5
N1—C4—C5110.4 (2)O7—C10—O6123.4 (3)
N1—C4—C3103.5 (3)O7—C10—C9111.3 (2)
N1—C4—H4109.5O6—C10—C9125.3 (3)
O2—C5—O3—H36.84O1—C1—C2—H2e64.34
O2—C5—C4—N16.0 (6)C1—N1—C4—C5124.1 (6)
O2—C5—C4—C3109.4 (6)C1—N1—C4—C32.8 (5)
O2—C5—C4—H4127.60C1—N1—C4—H4113.39
O3—C5—C4—N1174.5 (7)C1—C2—C3—C45.5 (7)
O3—C5—C4—C370.2 (7)C1—C2—C3—H3b125.05
O3—C5—C4—H452.86C1—C2—C3—H3a115.27
O4—C6—C7—N235.1 (7)C2—C1—N1—C40.7 (7)
O4—C6—C7—C886.1 (7)C2—C1—N1—H1172.48
O4—C6—C7—H7a155.06C2—C3—C4—C5124.4 (8)
O5—C6—C7—N2148.0 (7)C2—C3—C4—H4111.51
O5—C6—C7—C890.8 (7)H2d—C2—C3—C4125.80
O5—C6—C7—H7a28.01H2d—C2—C3—H3b114.63
O6—C10—O7—H73.40H2d—C2—C3—H3a5.05
O6—C10—C9—C84.2 (7)H2e—C2—C3—C4115.66
O6—C10—C9—H9b115.73H2e—C2—C3—H3b3.91
O6—C10—C9—H9a125.74H2e—C2—C3—H3a123.59
O7—C10—C9—C8173.8 (7)C3—C4—N1—H1169.63
O7—C10—C9—H9b66.28H3a—C3—C4—C54.69
O7—C10—C9—H9a52.25H3a—C3—C4—H4128.83
N1—C1—C2—C34.0 (6)H3b—C3—C4—C5117.58
N1—C1—C2—H2d122.48H3b—C3—C4—H46.55
N1—C1—C2—H2e115.47C4—C5—O3—H3172.69
N1—C4—C3—C24.9 (6)H4—C4—N1—H174.20
N1—C4—C3—H3b123.00C5—C4—N1—H148.37
N1—C4—C3—H3a114.73C6—C7—C8—C9175.7 (5)
N2—C7—C8—C955.8 (5)C6—C7—C8—H8b55.30
N2—C7—C8—H8b64.68C6—C7—C8—H8a63.09
N2—C7—C8—H8a176.93C7—C8—C9—C1064.8 (5)
H2a—N2—C7—C6171.68C7—C8—C9—H9b56.00
H2a—N2—C7—C870.14C7—C8—C9—H9a172.76
H2a—N2—C7—H7a50.93H7a—C7—C8—C964.98
H2b—N2—C7—C667.16H7a—C7—C8—H8b174.58
H2b—N2—C7—C851.02H7a—C7—C8—H8a56.20
H2b—N2—C7—H7a172.09H8a—C8—C9—C1057.33
H2c—N2—C7—C654.02H8a—C8—C9—H9b178.11
H2c—N2—C7—C8172.19H8a—C8—C9—H9a65.13
H2c—N2—C7—H7a66.74H8b—C8—C9—C10173.83
O1—C1—N1—C4179.5 (6)H8b—C8—C9—H9b65.39
O1—C1—N1—H17.71H8b—C8—C9—H9a51.37
O1—C1—C2—C3176.2 (7)C9—C10—O7—H7174.64
O1—C1—C2—H2d57.72
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8a···O3i1.092.563.471 (4)141
C2—H2e···O1ii1.102.513.491 (6)148
N2—H2c···O5iii1.041.782.808 (3)169
N1—H1···O7iv1.022.273.220 (4)156
N2—H2a···O2v1.041.832.859 (3)175
O8—H8d···O1v0.991.822.749 (5)156
C7—H7a···O61.092.503.117 (3)115
O7—H7···O81.031.572.582 (4)169
O3—H3···O41.031.532.553 (3)173
O3—H3···C61.032.383.360 (3)157
O8—H8c···O1vi0.991.792.734 (4)158
O8—H8c···C1vi0.992.703.504 (4)139
N2—H2b···O5vii1.051.792.836 (3)170
Symmetry codes: (i) x1, y1/2, z1; (ii) x1, y+1/2, z2; (iii) x1, y+1/2, z1; (iv) x, y1/2, z1; (v) x, y+1/2, z1; (vi) x, y, z+1; (vii) x+1, y, z.
Hydrogen-bond geometry (Å, °) of I for the ELMAM2 model arranged on the basis of increasing hydrogen-bond distance top
D—H···AD—HH···AD···AD—H···A
O3—H3···O41.031.532.5535173
O7—H7···O81.031.572.5825169
N2—H2c···O5iii1.041.782.8087169
O8—H8c···O1vi0.991.792.7346158
N2—H2b···O5vii1.051.792.8369170
N2—H2a···O2v1.041.822.8566174
O8—H8d···O1v0.991.822.7485156
N1—H1···O7iv1.022.273.2218156
O3—H3···C61.032.393.3599157
C7—H7a···O61.092.503.1153115
C2—H2e···O1ii1.102.513.4914148
C8—H8a···O3i1.092.563.4705141
O8—H8c···C1vi0.992.703.5045139
Symmetry codes: (i) -x-1, y-1/2, -z-1; (ii) -x-1, y+1/2, -z-2; (iii) -x-1, y+1/2, -z-1; (iv) -x, y-1/2, -z-1; (v) -x, y+1/2, -z-1; (vi) x, y, z+1; (vii) x+1, y, z.
Topological properties of (3,-1) CPs in the intermolecular interactions of cocrystal (I), ELMAM2 values (upper) and theoretical values (below): distances (Å), electron density (e Å-3), Laplacian (e Å-5), GCP = bond kinetic-energy density (kJ mol-1 Bohr-3) and VCP = bond potential-energy density (kJ mol-1 Bohr-3) top
NoBondsd12d1CPd2BCPρBCP(r)Nabla2ρBCP(r)GCPVCP
1O3—H3···O41.5271.0590.4680.4801.533119.9-198.1
1.5271.0410.4860.5550.51126.4-239.0
2O7—H7···O81.5691.0760.4930.4351.571106.7-170.7
1.5661.0630.5040.4850.916110.2-195.5
3O8—H8c···O1vi1.7870.6431.1480.2871.55867.45-92.47
1.7890.6031.1860.2661.97470.21-86.65
4O8—H8d···O1v1.8150.6621.1580.2681.55163.1-83.97
1.8140.6201.1960.2422.1668.68-78.52
5N2—H2c···O5iii1.7800.6241.1560.2662.04271.48-87.33
1.7790.6311.1480.2921.44466.5-93.67
6N2—H2b···O5vii1.7940.6331.1610.2551.95667.49-81.71
1.7950.6401.1560.2701.80468.15-87.15
7N2—H2a···O2v1.8220.6471.1760.2431.83662.97-75.95
1.8220.6561.1670.2681.32358.84-81.64
8N1—H1···O7iv2.2670.9091.3630.0920.8621.49-19.56
2.2660.8731.3940.0721.06223.16-17.4
9C2—H2e···O1ii2.5121.0491.4650.0520.68914.76-10.76
2.5091.0321.4800.0470.65513.84-9.84
10C8—H8a···O3i2.5561.0671.4970.0480.67914.29-10.08
2.5551.0571.5010.0450.67814.13-9.78
Symmetry codes: (i) -x-1, y-1/2, -z-1; (ii) -x-1, y+1/2, -z-2; (iii) -x-1, y+1/2, -z-1; (iv) -x, y-1/2, -z-1; (v) -x, y+1/2, -z-1; (vi) x, y, z+1; (vii) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds