Download citation
Download citation
link to html
The title complex, [Ni2Cl4(C22H17N3)2], was synthesized solvo­thermally. The mol­ecule is a centrosymmetric dimer with the unique NiII centre in a distorted octa­hedral N3Cl3 coordination environment. The chloride bridges are highly asymmetric. In the 4′-p-tolyl-2,2′:6′,2′′-terpyridine ligand, the p-tolyl group is perfectly coplanar with the attached pyridine ring, and this differs from the situation found in previously reported compounds; however, there are no π–π inter­actions between the ligands. The terminal Cl atom forms four inter­molecular C—H...Cl hydrogen bonds with one methyl and three methine groups. The methyl group also forms inter­molecular C—H...π inter­actions with a pyridine ring. These nonclassical hydrogen bonds extend the mol­ecule into a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109018812/dn3115sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109018812/dn3115Isup2.hkl
Contains datablock I

CCDC reference: 742223

Comment top

2,2':6',2''-Terpyridine and its derivatives are well known multidentate ligands. Among this ligand family, 4'-p-tolyl-2,2':6',2''-terpyridine (ttp) plays an important role because it is quite easy to prepare and derivatize via bromination and oxidation, and the electron-donor nature of the terminal methyl group is useful in certain cases. Hence, a number of transition metal (M) complexes of ttp have been studied for a variety of interesting properties, such as photophysics (Yoshikawa et al., 2007; Abrahamsson et al., 2005), photochemistry (Beley et al., 1991; Wilkinson et al., 2004), electrochemistry (Al-Noaimi et al., 2004; Chamchoumis & Potvin, 1999; Barigelletti et al., 2000; Collin et al., 1997; Mikel & Potvin, 2001), magnetism (Duboc et al., 2006; Yu et al., 2007), DNA binding (Uma et al., 2005; Jain et al., 2008; Bertrand et al., 2007; Jiang et al., 2008) and supramolecular assembly (Zhou et al., 2007; Liu et al., 2007; Messina et al., 2001; Yutaka et al., 2005; Hartshorn & Zibaseresht, 2006; Bray et al., 2008; Yucesan et al., 2005). All the complexes exist in the form of mononuclear [M(ttp)2]n+, except for the dinuclear manganese complex [Mn21,1-N3)2(N3)2(ttp)2] (Yu et al., 2007). Many metalloenzymes, including nickel enzymes, employ a dinuclear active site (Halcrow & Christou, 1994; Holm et al., 1996; Solomon et al., 1996; Wilcox, 1996). Lack of one Ni atom in the dinuclear active site can cause a reduction in catalytic activity or even complete inactivation of the enzyme. Halide-bridged dinuclear nickel complexes with nitrogen- and oxygen-containing ligands are occasionally utilized in ethylene oligomerization catalysis (Zhang et al., 2007; Sun et al., 2007). We present here the first structure of a dinuclear nickel(II) complex constructed with ttp and chloride ligands, namely di-µ-chlorido-bis{chlorido[4'-p-tolyl-2,2':6',2''-terpyridine-κ3N,N',N'']nickel(II)}, (I).

Complex (I) was obtained via a solvothermal reaction, but no solvent molecule could be detected within the cell. The molecule is arranged around an inversion center with a planar Ni2(µ-Cl)2 diamond-like framework (Fig. 1). The intramolecular Ni···Ni interatomic distance of 3.6565 (6)Å is typical of binuclear nickel(II) complexes and virtually excludes any specific interaction between these atoms. The coordination sphere of the NiII centre can be interpreted as a distorted octahedron (Table 1), with terpyridine atoms N1, N2 and N3 and the bridging atom Cl1 in the equatorial plane and the other bridging atom Cl1 and the terminal atom Cl2 in axial positions. The tridentate chelation results in the three pyridine rings in ttp being nearly coplanar, with the angles between the two outer pyridine rings and the central pyridine ring being as small as 5.68 (14) or 4.24 (14)°, which is common for ttp complexes. Compared to other ttp complexes, it is very unusal that the substituent tolyl group is almost in the same plane as the central pyridine ring, the torsion angles C7—C8—C16—C17 and C9—C8—C16—C21 are 1.8 (5) and 2.3 (5)°, respectively. The corresponding angles in previously reported compounds involving ttp ligand are significantly larger and only a few are less than 10° [cf 4.58, 6.94 and 9.46° in Yucesan et al. (2005), and 9.39° in Mikel & Potvin, (2001)].

Of the two bridging Cl1 atoms around an NiII center, that trans to the central ttp pyridine ring is much closer than that which is trans to the terminal Cl2 atom [2.3448 (7) versus 2.6232 (9)Å]. This reflects the difference of trans influence between pyridine and chloride, which are π-acid and π-donor ligand in nature, respectively. A similar difference in Ni—Cl distances is also present in other Ni2(µ-Cl)2Cl2 complexes with the Ni atom hexacoordinated and a pyridine ring opposite one of the two bridging Cl atoms [the two examples to date are: 2.367 versus 2.531Å (Constable et al., 2002) and 2.356 versus 2.520Å (Zhang et al., 2007)], but the difference in Ni—Cl distances found in (I) is certainly the largest. The good conjugation of all the rings in ttp mentioned above might be the reason. However, although ttp is a good extended π-system, there is no ππ stacking in (I) between the ttp planes in the crystal lattice. Instead, some nonclassical intermolecular hydrogen bonds as secondary interactions play a crucial role in self-assembling the molecules into a three-dimensional network, as discussed below.

As shown in Table 2 and the packing view (Fig. 2), the terminal Cl2 atom acts as an acceptor of four intermolecular C—H···Cl interactions with three aromatic CH groups from the same neighboring molecule and one methyl group from another adjacent molecule. One of the H···Cl distances is quite short at 2.59Å, suggesting a significant hydrogen bonding interaction, while the remaining three H···Cl distances fall slightly below the sum of van der Waals radii (2.95Å) and the C—H···Cl angles are fairly linear, consistent with criteria for C—H···Cl interactions (Aakeröy et al., 1999; Freytag et al., 2000). Atoms H4, H7 and H17 from the same ttp ligand surround atom Cl2 in a manner reminiscent of chelation. The Ni—Cl coordination bond provides both charge assistance and directionality for strengthening the C—H···Cl interactions. The four Ni—Cl···H angles are in the range 94–105°, compatible with other C—H···Cl cases assisted by terminal M—Cl bonds (Balamurugan et al., 2004).

Related literature top

For related literature, see: Aakeröy et al. (1999); Abrahamsson et al. (2005); Al-Noaimi, Yap & Crutchley (2004); Balamurugan et al. (2004); Barigelletti et al. (2000); Beley et al. (1991); Bertrand et al. (2007); Bray et al. (2008); Chamchoumis & Potvin (1999); Collin et al. (1991, 1997); Constable et al. (2002); Duboc et al. (2006); Freytag & Jones (2000); Girija et al. (2004); Halcrow & Christou (1994); Hartshorn & Zibaseresht (2006); Holm et al. (1996); Jain et al. (2008); Jiang et al. (2008); Liu et al. (2007); Messina et al. (2001); Mikel & Potvin (2001); Solomon et al. (1996); Sun et al. (2007); Uma et al. (2005); Wang et al. (2007); Wilcox (1996); Wilkinson et al. (2004); Yoshikawa et al. (2007); Yu et al. (2007); Yucesan et al. (2005); Yutaka et al. (2005); Zhang et al. (2007); Zhou et al. (2007).

Experimental top

4'-p-tolyl-2,2':6',2''-terpyridine (ttp) was prepared by an improved Kröhnke condensation method (Wang et al., 2007; Collin et al., 1991). A mixture of NiCl2.6H2O (0.2 mmol, 0.0476 g), ttp (0.2 mmol, 0.0646 g) and EtOH (10 ml) was placed in a 23 ml of Teflon-lined stainless steel vessel and heated under autogenous pressure at 412 K for 3 d, followed by cooling to room temperature at a rate of 5 K h-1. Light-green block-shaped crystals of (I) were obtained.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent C atoms, with C—H distances of 0.93 or 0.96Å and Uiso(H) = 1.2 or 1.5Ueq(C) for aromatic or methyl H atoms, respectively.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: APEX2 (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the dinuclear unit of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 40% probability level and H atoms are represented as small spheres of arbitrary radii. [Symmetry code: (i) -x, -y+1, -z.]
[Figure 2] Fig. 2. The packing in (I), showing the C-H···Cl (red dashed lines in the electronic version of the paper) interactions. [Symmetry codes: (i) x, 3/2-y, -1/2+z; (ii) 1-x, 1-y, 1-z.]
Di-µ-chlorido-bis[chlorido(4'-p-tolyl-2,2':6',2''-terpyridine-κ3N,N',N'')nickel(II)] top
Crystal data top
[Ni2Cl4(C22H17N3)2]F(000) = 928
Mr = 905.99Dx = 1.558 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2108 reflections
a = 14.2218 (11) Åθ = 2.2–24.0°
b = 12.7866 (10) ŵ = 1.29 mm1
c = 10.8659 (8) ÅT = 298 K
β = 102.219 (1)°Block, light green
V = 1931.2 (3) Å30.45 × 0.35 × 0.20 mm
Z = 2
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3965 independent reflections
Radiation source: fine-focus sealed tube2507 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ϕ and ω scansθmax = 26.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1717
Tmin = 0.594, Tmax = 0.782k = 1515
10824 measured reflectionsl = 1312
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 0.86 w = 1/[σ2(Fo2) + (0.026P)2 + 0.0718P]
where P = (Fo2 + 2Fc2)/3
3965 reflections(Δ/σ)max = 0.002
254 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Ni2Cl4(C22H17N3)2]V = 1931.2 (3) Å3
Mr = 905.99Z = 2
Monoclinic, P21/cMo Kα radiation
a = 14.2218 (11) ŵ = 1.29 mm1
b = 12.7866 (10) ÅT = 298 K
c = 10.8659 (8) Å0.45 × 0.35 × 0.20 mm
β = 102.219 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3965 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2507 reflections with I > 2σ(I)
Tmin = 0.594, Tmax = 0.782Rint = 0.055
10824 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 0.86Δρmax = 0.35 e Å3
3965 reflectionsΔρmin = 0.35 e Å3
254 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.07181 (19)0.7479 (2)0.0440 (3)0.0355 (7)
H10.04170.71910.12080.043*
C20.0659 (2)0.8539 (2)0.0281 (3)0.0408 (8)
H20.03350.89600.09320.049*
C30.1088 (2)0.8964 (2)0.0856 (3)0.0439 (8)
H30.10390.96780.09970.053*
C40.1595 (2)0.8324 (2)0.1792 (3)0.0394 (8)
H40.19000.86030.25640.047*
C50.16419 (19)0.7274 (2)0.1566 (2)0.0300 (7)
C60.21755 (19)0.6507 (2)0.2497 (2)0.0298 (7)
C70.27509 (19)0.6752 (2)0.3646 (2)0.0341 (7)
H70.28290.74460.39050.041*
C80.32195 (19)0.5953 (2)0.4426 (3)0.0331 (7)
C90.3070 (2)0.4931 (2)0.3983 (3)0.0374 (7)
H90.33670.43790.44730.045*
C100.24827 (19)0.4729 (2)0.2817 (2)0.0327 (7)
C110.2274 (2)0.3684 (2)0.2219 (3)0.0331 (7)
C120.2611 (2)0.2753 (2)0.2775 (3)0.0454 (8)
H120.29860.27480.35880.054*
C130.2392 (2)0.1825 (2)0.2128 (3)0.0534 (9)
H130.26020.11890.25030.064*
C140.1858 (2)0.1864 (2)0.0917 (3)0.0444 (8)
H140.17150.12550.04460.053*
C150.1537 (2)0.2817 (2)0.0413 (3)0.0387 (8)
H150.11760.28350.04070.046*
C160.3850 (2)0.6185 (2)0.5672 (3)0.0358 (7)
C170.3981 (2)0.7186 (3)0.6128 (3)0.0471 (9)
H170.36710.77330.56420.057*
C180.4563 (2)0.7404 (3)0.7290 (3)0.0515 (9)
H180.46340.80940.75650.062*
C190.5036 (2)0.6626 (3)0.8047 (3)0.0444 (8)
C200.4915 (3)0.5631 (3)0.7588 (3)0.0762 (13)
H200.52280.50860.80750.091*
C210.4346 (3)0.5408 (3)0.6432 (3)0.0716 (12)
H210.42930.47190.61510.086*
C220.5653 (2)0.6861 (3)0.9325 (3)0.0619 (11)
H22A0.52990.67080.99640.093*
H22B0.58300.75860.93680.093*
H22C0.62230.64370.94570.093*
Cl10.01801 (5)0.48582 (6)0.14767 (6)0.03777 (19)
Cl20.27195 (5)0.53471 (6)0.04602 (7)0.0417 (2)
N10.11883 (15)0.68401 (17)0.0457 (2)0.0309 (6)
N20.20567 (15)0.55174 (17)0.2100 (2)0.0300 (6)
N30.17180 (16)0.37204 (17)0.1039 (2)0.0320 (6)
Ni10.12991 (3)0.52225 (3)0.03903 (3)0.03153 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0392 (18)0.0359 (19)0.0292 (17)0.0040 (15)0.0027 (14)0.0053 (13)
C20.0475 (19)0.0354 (19)0.0374 (19)0.0096 (16)0.0039 (15)0.0106 (14)
C30.056 (2)0.0237 (18)0.051 (2)0.0053 (16)0.0091 (17)0.0004 (15)
C40.053 (2)0.0295 (18)0.0333 (17)0.0021 (15)0.0027 (15)0.0016 (14)
C50.0340 (16)0.0289 (18)0.0251 (16)0.0005 (13)0.0019 (13)0.0001 (12)
C60.0338 (16)0.0274 (17)0.0256 (16)0.0006 (13)0.0003 (13)0.0003 (12)
C70.0405 (17)0.0280 (17)0.0307 (17)0.0000 (14)0.0006 (14)0.0027 (13)
C80.0330 (16)0.0372 (19)0.0267 (16)0.0007 (14)0.0008 (13)0.0003 (13)
C90.0421 (18)0.0345 (19)0.0303 (16)0.0027 (14)0.0046 (14)0.0059 (13)
C100.0376 (17)0.0286 (17)0.0285 (16)0.0002 (14)0.0007 (13)0.0026 (13)
C110.0384 (17)0.0305 (18)0.0282 (16)0.0033 (14)0.0022 (14)0.0034 (13)
C120.059 (2)0.035 (2)0.0355 (19)0.0059 (17)0.0051 (16)0.0056 (15)
C130.074 (2)0.0255 (19)0.058 (2)0.0062 (18)0.0069 (19)0.0088 (16)
C140.057 (2)0.0245 (18)0.050 (2)0.0037 (16)0.0089 (17)0.0029 (15)
C150.0423 (18)0.035 (2)0.0362 (18)0.0045 (15)0.0035 (15)0.0033 (15)
C160.0350 (17)0.042 (2)0.0265 (16)0.0023 (15)0.0025 (13)0.0011 (14)
C170.051 (2)0.043 (2)0.0379 (19)0.0033 (17)0.0114 (16)0.0023 (16)
C180.052 (2)0.048 (2)0.044 (2)0.0021 (17)0.0116 (17)0.0127 (17)
C190.0383 (18)0.058 (2)0.0324 (18)0.0050 (17)0.0040 (14)0.0068 (16)
C200.105 (3)0.056 (3)0.046 (2)0.020 (2)0.034 (2)0.0017 (19)
C210.102 (3)0.043 (2)0.049 (2)0.013 (2)0.031 (2)0.0095 (18)
C220.058 (2)0.075 (3)0.042 (2)0.013 (2)0.0134 (17)0.0151 (19)
Cl10.0417 (4)0.0421 (5)0.0254 (4)0.0043 (4)0.0021 (3)0.0028 (3)
Cl20.0446 (5)0.0389 (5)0.0404 (4)0.0037 (4)0.0061 (4)0.0055 (4)
N10.0339 (13)0.0275 (14)0.0281 (13)0.0007 (11)0.0008 (11)0.0014 (11)
N20.0344 (13)0.0253 (14)0.0270 (13)0.0006 (11)0.0011 (11)0.0003 (10)
N30.0371 (14)0.0264 (14)0.0293 (14)0.0003 (11)0.0005 (11)0.0001 (10)
Ni10.0386 (2)0.0250 (2)0.0260 (2)0.00044 (18)0.00440 (16)0.00014 (16)
Geometric parameters (Å, º) top
C1—N11.338 (3)C13—H130.9300
C1—C21.371 (4)C14—C151.374 (4)
C1—H10.9300C14—H140.9300
C2—C31.369 (4)C15—N31.338 (3)
C2—H20.9300C15—H150.9300
C3—C41.384 (4)C16—C171.371 (4)
C3—H30.9300C16—C211.385 (4)
C4—C51.368 (4)C17—C181.384 (4)
C4—H40.9300C17—H170.9300
C5—N11.359 (3)C18—C191.373 (4)
C5—C61.496 (4)C18—H180.9300
C6—N21.336 (3)C19—C201.363 (4)
C6—C71.376 (3)C19—C221.507 (4)
C7—C81.403 (4)C20—C211.373 (4)
C7—H70.9300C20—H200.9300
C8—C91.393 (4)C21—H210.9300
C8—C161.487 (4)C22—H22A0.9600
C9—C101.386 (4)C22—H22B0.9600
C9—H90.9300C22—H22C0.9600
C10—N21.338 (3)Cl1—Ni12.3449 (7)
C10—C111.489 (4)Cl1—Ni1i2.6231 (8)
C11—N31.357 (3)Cl2—Ni12.3980 (8)
C11—C121.375 (4)N1—Ni12.077 (2)
C12—C131.380 (4)N2—Ni11.976 (2)
C12—H120.9300N3—Ni12.089 (2)
C13—C141.374 (4)Ni1—Cl1i2.6231 (8)
N1—C1—C2123.1 (3)C21—C16—C8122.2 (3)
N1—C1—H1118.4C16—C17—C18121.8 (3)
C2—C1—H1118.4C16—C17—H17119.1
C3—C2—C1118.6 (3)C18—C17—H17119.1
C3—C2—H2120.7C19—C18—C17121.5 (3)
C1—C2—H2120.7C19—C18—H18119.2
C2—C3—C4119.4 (3)C17—C18—H18119.2
C2—C3—H3120.3C20—C19—C18116.7 (3)
C4—C3—H3120.3C20—C19—C22121.8 (3)
C5—C4—C3119.0 (3)C18—C19—C22121.5 (3)
C5—C4—H4120.5C19—C20—C21122.2 (3)
C3—C4—H4120.5C19—C20—H20118.9
N1—C5—C4121.9 (3)C21—C20—H20118.9
N1—C5—C6114.2 (2)C20—C21—C16121.5 (3)
C4—C5—C6124.0 (2)C20—C21—H21119.2
N2—C6—C7121.2 (3)C16—C21—H21119.2
N2—C6—C5113.1 (2)C19—C22—H22A109.5
C7—C6—C5125.7 (3)C19—C22—H22B109.5
C6—C7—C8119.9 (3)H22A—C22—H22B109.5
C6—C7—H7120.1C19—C22—H22C109.5
C8—C7—H7120.1H22A—C22—H22C109.5
C9—C8—C7117.1 (3)H22B—C22—H22C109.5
C9—C8—C16121.4 (3)Ni1—Cl1—Ni1i94.62 (3)
C7—C8—C16121.5 (3)C1—N1—C5117.8 (2)
C10—C9—C8120.6 (3)C1—N1—Ni1127.78 (19)
C10—C9—H9119.7C5—N1—Ni1114.37 (18)
C8—C9—H9119.7C6—N2—C10121.0 (2)
N2—C10—C9120.2 (3)C6—N2—Ni1119.39 (18)
N2—C10—C11113.5 (2)C10—N2—Ni1119.56 (19)
C9—C10—C11126.3 (3)C15—N3—C11117.5 (2)
N3—C11—C12121.6 (3)C15—N3—Ni1127.71 (19)
N3—C11—C10113.8 (2)C11—N3—Ni1114.71 (18)
C12—C11—C10124.5 (3)N2—Ni1—N178.89 (9)
C11—C12—C13120.0 (3)N2—Ni1—N378.37 (9)
C11—C12—H12120.0N1—Ni1—N3157.26 (9)
C13—C12—H12120.0N2—Ni1—Cl1170.45 (7)
C14—C13—C12118.4 (3)N1—Ni1—Cl1100.69 (6)
C14—C13—H13120.8N3—Ni1—Cl1101.67 (6)
C12—C13—H13120.8N2—Ni1—Cl290.77 (7)
C15—C14—C13118.9 (3)N1—Ni1—Cl291.36 (6)
C15—C14—H14120.5N3—Ni1—Cl289.31 (6)
C13—C14—H14120.5Cl1—Ni1—Cl298.78 (3)
N3—C15—C14123.4 (3)N2—Ni1—Cl1i85.07 (7)
N3—C15—H15118.3N1—Ni1—Cl1i87.10 (6)
C14—C15—H15118.3N3—Ni1—Cl1i90.60 (6)
C17—C16—C21116.2 (3)Cl1—Ni1—Cl1i85.38 (3)
C17—C16—C8121.7 (3)Cl2—Ni1—Cl1i175.77 (3)
N1—C1—C2—C31.1 (5)C7—C6—N2—C101.0 (4)
C1—C2—C3—C42.3 (5)C5—C6—N2—C10179.9 (2)
C2—C3—C4—C51.1 (5)C7—C6—N2—Ni1175.6 (2)
C3—C4—C5—N11.3 (4)C5—C6—N2—Ni13.5 (3)
C3—C4—C5—C6179.3 (3)C9—C10—N2—C61.0 (4)
N1—C5—C6—N24.2 (4)C11—C10—N2—C6179.7 (2)
C4—C5—C6—N2175.2 (3)C9—C10—N2—Ni1175.6 (2)
N1—C5—C6—C7174.8 (3)C11—C10—N2—Ni13.1 (3)
C4—C5—C6—C75.8 (5)C14—C15—N3—C112.2 (4)
N2—C6—C7—C80.5 (4)C14—C15—N3—Ni1179.0 (2)
C5—C6—C7—C8179.4 (3)C12—C11—N3—C152.5 (4)
C6—C7—C8—C90.1 (4)C10—C11—N3—C15176.7 (2)
C6—C7—C8—C16179.8 (3)C12—C11—N3—Ni1179.7 (2)
C7—C8—C9—C100.1 (4)C10—C11—N3—Ni10.5 (3)
C16—C8—C9—C10179.8 (3)C6—N2—Ni1—N11.5 (2)
C8—C9—C10—N20.4 (4)C10—N2—Ni1—N1178.2 (2)
C8—C9—C10—C11178.9 (3)C6—N2—Ni1—N3178.8 (2)
N2—C10—C11—N32.2 (4)C10—N2—Ni1—N32.2 (2)
C9—C10—C11—N3176.3 (3)C6—N2—Ni1—Cl289.7 (2)
N2—C10—C11—C12178.6 (3)C10—N2—Ni1—Cl286.9 (2)
C9—C10—C11—C122.8 (5)C6—N2—Ni1—Cl1i89.5 (2)
N3—C11—C12—C130.6 (5)C10—N2—Ni1—Cl1i93.8 (2)
C10—C11—C12—C13178.5 (3)C1—N1—Ni1—N2179.8 (2)
C11—C12—C13—C141.7 (5)C5—N1—Ni1—N21.00 (19)
C12—C13—C14—C152.0 (5)C1—N1—Ni1—N3178.9 (2)
C13—C14—C15—N30.0 (5)C5—N1—Ni1—N30.1 (3)
C9—C8—C16—C17178.4 (3)C1—N1—Ni1—Cl19.5 (2)
C7—C8—C16—C171.7 (5)C5—N1—Ni1—Cl1169.28 (18)
C9—C8—C16—C212.4 (5)C1—N1—Ni1—Cl289.7 (2)
C7—C8—C16—C21177.5 (3)C5—N1—Ni1—Cl291.52 (18)
C21—C16—C17—C181.2 (5)C1—N1—Ni1—Cl1i94.2 (2)
C8—C16—C17—C18179.6 (3)C5—N1—Ni1—Cl1i84.54 (18)
C16—C17—C18—C190.1 (5)C15—N3—Ni1—N2177.7 (3)
C17—C18—C19—C200.9 (5)C11—N3—Ni1—N20.8 (2)
C17—C18—C19—C22178.7 (3)C15—N3—Ni1—N1178.6 (2)
C18—C19—C20—C210.3 (6)C11—N3—Ni1—N11.7 (4)
C22—C19—C20—C21179.3 (4)C15—N3—Ni1—Cl112.1 (2)
C19—C20—C21—C161.0 (7)C11—N3—Ni1—Cl1171.07 (18)
C17—C16—C21—C201.7 (6)C15—N3—Ni1—Cl286.8 (2)
C8—C16—C21—C20179.0 (3)C11—N3—Ni1—Cl290.11 (19)
C2—C1—N1—C51.3 (4)C15—N3—Ni1—Cl1i97.5 (2)
C2—C1—N1—Ni1177.4 (2)C11—N3—Ni1—Cl1i85.66 (19)
C4—C5—N1—C12.6 (4)Ni1i—Cl1—Ni1—N186.16 (6)
C6—C5—N1—C1178.1 (2)Ni1i—Cl1—Ni1—N389.66 (7)
C4—C5—N1—Ni1176.4 (2)Ni1i—Cl1—Ni1—Cl2179.23 (3)
C6—C5—N1—Ni13.0 (3)Ni1i—Cl1—Ni1—Cl1i0.0
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Cl2ii0.932.593.512 (3)171
C7—H7···Cl2ii0.932.913.837 (2)170
C17—H17···Cl2ii0.932.933.851 (3)170
C22—H22C···Cl2iii0.962.823.693 (3)151
Symmetry codes: (ii) x, y+3/2, z+1/2; (iii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni2Cl4(C22H17N3)2]
Mr905.99
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)14.2218 (11), 12.7866 (10), 10.8659 (8)
β (°) 102.219 (1)
V3)1931.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.29
Crystal size (mm)0.45 × 0.35 × 0.20
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.594, 0.782
No. of measured, independent and
observed [I > 2σ(I)] reflections
10824, 3965, 2507
Rint0.055
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.079, 0.86
No. of reflections3965
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.35

Computer programs: APEX2 (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cl1—Ni12.3449 (7)N2—Ni11.976 (2)
Cl2—Ni12.3980 (8)N3—Ni12.089 (2)
N1—Ni12.077 (2)Ni1—Cl1i2.6231 (8)
N2—Ni1—N178.89 (9)N3—Ni1—Cl289.31 (6)
N2—Ni1—N378.37 (9)Cl1—Ni1—Cl298.78 (3)
N1—Ni1—N3157.26 (9)N2—Ni1—Cl1i85.07 (7)
N2—Ni1—Cl1170.45 (7)N1—Ni1—Cl1i87.10 (6)
N1—Ni1—Cl1100.69 (6)N3—Ni1—Cl1i90.60 (6)
N3—Ni1—Cl1101.67 (6)Cl1—Ni1—Cl1i85.38 (3)
N2—Ni1—Cl290.77 (7)Cl2—Ni1—Cl1i175.77 (3)
N1—Ni1—Cl291.36 (6)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Cl2ii0.932.593.512 (3)171
C7—H7···Cl2ii0.932.913.837 (2)170
C17—H17···Cl2ii0.932.933.851 (3)170
C22—H22C···Cl2iii0.962.823.693 (3)151
Symmetry codes: (ii) x, y+3/2, z+1/2; (iii) x+1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds