Download citation
Download citation
link to html
Polysubstituted piperidones, viz. the title compounds, C27H25NO, (I), C27H23Cl2NO, (II), and C27H23Cl2NO, (III), adopt sofa conformations. The mol­ecular packing in (I) and (II) is a result of van der Waals inter­actions, whereas in (III), a C—H...O inter­action is also found.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107011626/dn3041sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107011626/dn3041Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107011626/dn3041IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107011626/dn3041IIIsup4.hkl
Contains datablock III

CCDC references: 649097; 649098; 649099

Comment top

Piperidine ring systems are of great interest in the pharmaceutical industry as they exhibit a wide range of biological activities (Guengerich et al., 1973; Puder et al., 2000). A number of α,β-unsaturated ketones display cytotoxic and anticancer properties (Dimmock, Elias et al., 1999; Dimmock, Kandepu et al., 1999), and also serve as precursors for various complex heterocycles. (R)-1-Phenylethylamine is one of the most promising and less expensive chiral auxiliaries (Juaristi et al., 1999). It is obvious that the design of a specific chiral environment utilizing chiral auxiliaries provides a useful protocol to prepare optically active substances. The three title substituted piperidones, (I)–(III), being enantiomerically pure, have enormous potential in the construction of more complex optically active compounds, and hence the struture determination of these compounds is of paramount importance.

The piperidone rings in (I), (II) and (III) adopt sofa conformations. Atom N1 deviates from the mean plane passing through atoms C2–C6 by -0.731 (3) Å in (I), -0.774 (5) Å in (II) and -0.705 (4) Å in (III). The differences in the deviations are due to steric factors and the different substitutions at the C3 and C5 positions of the piperidone ring. Both olefinic double bonds have an E configuration, and the aryl rings are not coplanar with the adjacent olefinic double bonds and the planar portion of the piperidone ring in (I), (II) and (III). The aryl rings are rotated to move atoms C53 and C37 in the opposite direction with respect to the displacement of atom N1 from the plane of the other five atoms in the piperidone ring. As a result, the torsion angles C5—C51—C52—C53 (θ1) and C3—C31—C32—C37 (θ2) have the values 40.7 (4) and -43.6 (5)° in (I), -26.0 (8) and 25.3 (7)° in (II), and 137.5 (4) and -135.3 (4)° in (III), respectively. This lack of coplanarity is caused by non-bonded interactions between one of the ortho H atoms in the aryl rings and the equatorial H atoms at the 2- and 6-positions of the piperidone ring (H53/H6A or H6B and H37/H2A or H2B). These steric repulsions are reduced by the expansion of the bond angles C5—C51—C52 (ψ1) and C3—C31—C32 (ψ2) [129.0 (3) and 128.2 (3) in (I), 129.5 (4) and 129.0 (4) in (II), 127.6 (4) and 126.8 (4) in (III), respectively], which are otherwise 120°. Similar effects have been observed in related compounds (Ompraba et al., 2003). The steric repulsion on the C71–C76 phenyl rings and methyl groups in (I), (II) and (III) could be understood in terms of the torsion angles C6—N1—C7—C71 and C2—N1—C7—C8 (Table 4). The dihedral angles between the N1/C7/C71 planes and C71–C77 phenyl rings are 46.4 (2)° in (I), 51.6 (2)° in (II) and 64.2 (2)° in (III).

The data presented here are useful in the design of additional analogues. The replacement of the equatorial H atoms at the 2- and 6-positions, and the inclusion of substituents of varying sizes at atoms C33, C37, C53 and C57, are likely to alter the θ and ψ values. Correlations have been established between the θ values and bioactivity (Pandeya & Dimmock, 1997). In addition, the increased ψ values would lead to variations in the relative locations of the aryl rings, which could affect the alignment (or possibly cause nonalignment) of these rings at a binding site and hence influence bioactivity (Quail et al., 2005).

In (I) and (II), the packing the molecules is governed by van der Waals interactions. Additionally, in (I), two weak C—H···π interactions are observed (Table 1; Cg1 and Cg2 are C71–C76 and C32–C37 ring centroids). In (III), the packing of the molecules is effected by C2—H2A···O1 interactions (Table 3 and Fig. 4) generating a C11(5) graph-set motif (Etter, 1990; Bernstein et al.,1995) to form a linear chain running along the b axis. No C—H···π interactions are observed in (II) and (III) and no π–.π interactions in any of the three compounds. The intramolecular C—H···O interactions (Tables 1, 2 and 3) C51—H51···O1 and C31—H31···O1, each of them generating an S(5) graph-set motif (Etter, 1990; Bernstein et al., 1995), are observed in compounds (I), (II) and (III).

Related literature top

For related literature, see: Bernstein et al. (1995); Dimmock, Elias, Beazely & Kandepu (1999); Dimmock, Kandepu, Nazarali, Kowalchuk, Motaganahalli, Quail, Mykytiuk, Audette, Prasad, Perjési, Allen, Santos, Szydlowski, De Clercq & Balzarini (1999); Etter (1990); Flack (1983); Guengerich et al. (1973); Juaristi et al. (1999); Ompraba et al. (2003); Pandeya & Dimmock (1997); Puder et al. (2000); Quail et al. (2005).

Experimental top

For the preparation of (I), a mixture of (R)-(1-phenylethyl)tetrahydro- 4(1H)-pyridinone (1 mmol 0.5 ml) and benzaldehyde (2 mmol, 0.50 ml) in alcoholic [specify which alcohol] NaOH (30 ml, 10%) was stirred at room temperature for 10 min. The separated solid was filtered off and recrystallized from alcohol (yield 0.740 g, 80%; m.p. 385–386 K). For the preparation of (II), a mixture of (R)-(1-phenylethyl)tetrahydro-4(1H)-pyridinone (1 mmol, 0.5 ml) and 4-chlorobenzaldehyde (2 mmol, 0.69 g) in alcoholic NaOH (30 ml, 10%) was stirred at room temperature for 10 min. The separated solid was filtered off and recrystallized from alcohol (yield 0.905 g, 83%; m.p. 412–413 K). For the preparation of (III), a mixture of (R)-(1-phenylethyl)tetrahydro-4(1H)-pyridinone (1 mmol, 0.5 ml) and 2-chlorobenzaldehyde (2 mmol, 0.55 ml) in alcoholic NaOH (30 ml, 10%) was stirred at room temperature for 10 min. The separated solid was filtered and recrystallized from alcohol (yield 0.927 g, 85%; m.p. 358–359 K).

Refinement top

In the absence of significant anomalous scattering for compound (I), the absolute configuration could not be reliably determined; Friedel pairs were merged and any references to the Flack parameter were removed. The absolute configuration was established from the configuration of the starting reagents. For compounds (II) and (III), the absolute configuration expected from the starting reagents has been confirmed by the refinement of the Flack (1983) parameter. H atoms were placed at calculated positions and allowed to ride on their carrier atoms [C—H = 0.93–0.98 Å, and Uiso(H) = 1.2Ueq(C) for CH2 and CH groups, and Uiso(H) = 1.5Ueq(C) for CH3 groups].

Computing details top

For all compounds, data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular structure of (II), with the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 3] Fig. 3. The molecular structure of (III), with the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 4] Fig. 4. A partial packing view of the molecules in (III), showing the C—H···O bonding. H atoms that do not take part in the bonding have been omitted. [Symmetry code: (i) -x + 1/2, y - 1/2, -z + 1.]
(I) (R)-3,5-Bis[(E)-benzylidene]-1-(1-phenylethyl)piperidin-4-one top
Crystal data top
C27H25NOF(000) = 808
Mr = 379.48Dx = 1.164 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 25 reflections
a = 6.0890 (7) Åθ = 2–25°
b = 15.3562 (9) ŵ = 0.07 mm1
c = 23.1522 (11) ÅT = 293 K
V = 2164.8 (3) Å3Block, colourless
Z = 40.19 × 0.17 × 0.12 mm
Data collection top
Nonius MACH3 four-circle
diffractometer
1421 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
Graphite monochromatorθmax = 25.0°, θmin = 2.2°
ω–scansh = 07
Absorption correction: ψ scan
(North et al., 1968)
k = 018
Tmin = 0.987, Tmax = 0.992l = 127
2330 measured reflections3 standard reflections every 60 min
2213 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0424P)2 + 0.2202P]
where P = (Fo2 + 2Fc2)/3
2213 reflections(Δ/σ)max = 0.001
263 parametersΔρmax = 0.11 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C27H25NOV = 2164.8 (3) Å3
Mr = 379.48Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.0890 (7) ŵ = 0.07 mm1
b = 15.3562 (9) ÅT = 293 K
c = 23.1522 (11) Å0.19 × 0.17 × 0.12 mm
Data collection top
Nonius MACH3 four-circle
diffractometer
1421 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.016
Tmin = 0.987, Tmax = 0.9923 standard reflections every 60 min
2330 measured reflections intensity decay: none
2213 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.06Δρmax = 0.11 e Å3
2213 reflectionsΔρmin = 0.17 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.3698 (5)0.35243 (16)0.41022 (12)0.0451 (7)
H2A0.39880.40970.39440.054*
H2B0.47810.34080.44000.054*
C30.1432 (5)0.35019 (16)0.43599 (10)0.0388 (6)
C40.0325 (5)0.26432 (17)0.44107 (11)0.0394 (6)
C50.1429 (5)0.18739 (16)0.41508 (10)0.0398 (6)
C60.3691 (5)0.19984 (15)0.39133 (12)0.0439 (7)
H6A0.47610.19460.42220.053*
H6B0.39990.15510.36290.053*
C70.5931 (5)0.29374 (17)0.33043 (12)0.0501 (7)
H70.71710.27930.35560.060*
C80.6272 (8)0.3858 (2)0.30650 (16)0.0905 (13)
H8A0.65530.42520.33780.136*
H8B0.49760.40390.28620.136*
H8C0.75010.38580.28050.136*
C310.0311 (5)0.42052 (16)0.45274 (11)0.0439 (7)
H310.11220.41070.46500.053*
C320.1055 (5)0.51147 (17)0.45426 (11)0.0463 (7)
C330.0375 (6)0.57729 (18)0.43711 (13)0.0592 (9)
H330.17730.56310.42390.071*
C340.0270 (7)0.6640 (2)0.43955 (15)0.0695 (10)
H340.06790.70760.42710.083*
C350.2306 (7)0.6853 (2)0.46037 (15)0.0696 (10)
H350.27320.74340.46220.084*
C360.3712 (6)0.62171 (19)0.47835 (14)0.0641 (9)
H360.50840.63650.49310.077*
C370.3092 (5)0.53524 (19)0.47465 (12)0.0541 (8)
H370.40730.49220.48620.065*
C510.0279 (5)0.11336 (16)0.41242 (11)0.0453 (7)
H510.11540.11660.42620.054*
C520.0965 (5)0.02732 (17)0.39074 (12)0.0479 (7)
C530.3022 (6)0.00757 (19)0.40145 (14)0.0589 (9)
H530.40590.02500.42150.071*
C540.3549 (7)0.0907 (2)0.38244 (16)0.0760 (11)
H540.49300.11380.39020.091*
C550.2031 (8)0.1388 (2)0.35216 (17)0.0814 (13)
H550.23850.19440.33920.098*
C560.0002 (8)0.1047 (2)0.34112 (17)0.0866 (12)
H560.10220.13690.32040.104*
C570.0532 (6)0.0225 (2)0.36072 (15)0.0699 (10)
H570.19270.00040.35350.084*
C710.5879 (5)0.22929 (17)0.28064 (12)0.0473 (7)
C720.4087 (6)0.2220 (2)0.24545 (14)0.0680 (10)
H720.28340.25480.25300.082*
C730.4133 (8)0.1658 (3)0.19840 (16)0.0919 (14)
H730.29080.16120.17460.110*
C740.5960 (10)0.1175 (3)0.18676 (17)0.0969 (16)
H740.59940.08080.15480.116*
C750.7723 (9)0.1234 (2)0.22221 (18)0.0906 (14)
H750.89570.08940.21510.109*
C760.7708 (6)0.1793 (2)0.26863 (15)0.0674 (10)
H760.89410.18340.29220.081*
N10.3870 (4)0.28653 (13)0.36433 (9)0.0436 (6)
O10.1455 (3)0.25753 (12)0.46554 (8)0.0515 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0477 (17)0.0371 (14)0.0506 (16)0.0060 (14)0.0067 (15)0.0039 (12)
C30.0392 (16)0.0402 (15)0.0370 (13)0.0031 (14)0.0009 (13)0.0003 (11)
C40.0359 (16)0.0466 (16)0.0357 (14)0.0012 (14)0.0037 (14)0.0013 (12)
C50.0427 (16)0.0379 (14)0.0387 (13)0.0014 (14)0.0014 (14)0.0031 (11)
C60.0478 (17)0.0385 (14)0.0455 (15)0.0006 (14)0.0030 (15)0.0046 (12)
C70.0477 (19)0.0540 (16)0.0486 (16)0.0072 (15)0.0110 (15)0.0044 (14)
C80.130 (4)0.060 (2)0.082 (2)0.029 (3)0.049 (3)0.0129 (18)
C310.0390 (17)0.0457 (16)0.0470 (16)0.0030 (14)0.0010 (14)0.0014 (13)
C320.054 (2)0.0398 (15)0.0454 (16)0.0038 (15)0.0050 (15)0.0047 (12)
C330.064 (2)0.0473 (18)0.066 (2)0.0128 (17)0.0081 (18)0.0050 (15)
C340.089 (3)0.0456 (19)0.074 (2)0.023 (2)0.000 (2)0.0001 (17)
C350.094 (3)0.0416 (18)0.073 (2)0.004 (2)0.006 (2)0.0079 (17)
C360.067 (2)0.0505 (19)0.075 (2)0.0021 (19)0.004 (2)0.0109 (16)
C370.063 (2)0.0419 (17)0.0574 (18)0.0055 (16)0.0034 (17)0.0064 (14)
C510.0449 (17)0.0437 (15)0.0474 (16)0.0045 (15)0.0055 (14)0.0006 (12)
C520.059 (2)0.0367 (14)0.0483 (16)0.0107 (15)0.0091 (16)0.0020 (13)
C530.060 (2)0.0471 (17)0.069 (2)0.0005 (16)0.0002 (18)0.0005 (16)
C540.081 (3)0.0478 (19)0.099 (3)0.012 (2)0.024 (2)0.0063 (18)
C550.117 (4)0.0423 (19)0.085 (3)0.011 (2)0.036 (3)0.0116 (18)
C560.108 (4)0.057 (2)0.095 (3)0.017 (2)0.003 (3)0.023 (2)
C570.068 (2)0.0512 (18)0.090 (2)0.0106 (18)0.003 (2)0.0094 (18)
C710.055 (2)0.0476 (16)0.0399 (15)0.0050 (16)0.0083 (15)0.0022 (13)
C720.062 (2)0.084 (2)0.058 (2)0.007 (2)0.0003 (19)0.0052 (18)
C730.107 (4)0.114 (3)0.054 (2)0.043 (3)0.002 (2)0.016 (2)
C740.157 (5)0.072 (3)0.062 (2)0.031 (3)0.036 (3)0.023 (2)
C750.126 (4)0.068 (2)0.077 (3)0.017 (3)0.036 (3)0.007 (2)
C760.068 (2)0.074 (2)0.060 (2)0.012 (2)0.0105 (18)0.0015 (18)
N10.0489 (14)0.0380 (11)0.0440 (12)0.0014 (12)0.0084 (11)0.0010 (10)
O10.0429 (11)0.0520 (11)0.0596 (11)0.0032 (10)0.0086 (11)0.0037 (9)
Geometric parameters (Å, º) top
C2—N11.471 (3)C35—H350.9300
C2—C31.503 (4)C36—C371.383 (4)
C2—H2A0.9700C36—H360.9300
C2—H2B0.9700C37—H370.9300
C3—C311.335 (3)C51—C521.474 (4)
C3—C41.486 (4)C51—H510.9300
C4—O11.228 (3)C52—C571.378 (4)
C4—C51.486 (4)C52—C531.385 (4)
C5—C511.337 (4)C53—C541.388 (4)
C5—C61.495 (4)C53—H530.9300
C6—N11.475 (3)C54—C551.376 (5)
C6—H6A0.9700C54—H540.9300
C6—H6B0.9700C55—C561.366 (5)
C7—N11.484 (3)C55—H550.9300
C7—C711.520 (4)C56—C571.380 (5)
C7—C81.532 (4)C56—H560.9300
C7—H70.9800C57—H570.9300
C8—H8A0.9600C71—C721.367 (4)
C8—H8B0.9600C71—C761.381 (4)
C8—H8C0.9600C72—C731.390 (5)
C31—C321.469 (4)C72—H720.9300
C31—H310.9300C73—C741.365 (6)
C32—C371.376 (4)C73—H730.9300
C32—C331.392 (4)C74—C751.354 (6)
C33—C341.390 (4)C74—H740.9300
C33—H330.9300C75—C761.375 (5)
C34—C351.369 (5)C75—H750.9300
C34—H340.9300C76—H760.9300
C35—C361.363 (5)
N1—C2—C3109.6 (2)C35—C36—C37119.8 (3)
N1—C2—H2A109.7C35—C36—H36120.1
C3—C2—H2A109.7C37—C36—H36120.1
N1—C2—H2B109.7C32—C37—C36121.5 (3)
C3—C2—H2B109.7C32—C37—H37119.3
H2A—C2—H2B108.2C36—C37—H37119.3
C31—C3—C4117.6 (3)C5—C51—C52129.0 (3)
C31—C3—C2124.5 (3)C5—C51—H51115.5
C4—C3—C2117.9 (2)C52—C51—H51115.5
O1—C4—C3120.8 (2)C57—C52—C53118.3 (3)
O1—C4—C5121.2 (2)C57—C52—C51118.8 (3)
C3—C4—C5117.9 (2)C53—C52—C51122.8 (3)
C51—C5—C4117.2 (3)C52—C53—C54120.6 (3)
C51—C5—C6125.0 (2)C52—C53—H53119.7
C4—C5—C6117.6 (2)C54—C53—H53119.7
N1—C6—C5109.8 (2)C55—C54—C53120.0 (4)
N1—C6—H6A109.7C55—C54—H54120.0
C5—C6—H6A109.7C53—C54—H54120.0
N1—C6—H6B109.7C56—C55—C54119.8 (3)
C5—C6—H6B109.7C56—C55—H55120.1
H6A—C6—H6B108.2C54—C55—H55120.1
N1—C7—C71109.6 (2)C55—C56—C57120.1 (4)
N1—C7—C8112.0 (3)C55—C56—H56119.9
C71—C7—C8109.2 (2)C57—C56—H56119.9
N1—C7—H7108.7C52—C57—C56121.2 (4)
C71—C7—H7108.7C52—C57—H57119.4
C8—C7—H7108.7C56—C57—H57119.4
C7—C8—H8A109.5C72—C71—C76118.6 (3)
C7—C8—H8B109.5C72—C71—C7121.5 (3)
H8A—C8—H8B109.5C76—C71—C7119.9 (3)
C7—C8—H8C109.5C71—C72—C73120.1 (4)
H8A—C8—H8C109.5C71—C72—H72119.9
H8B—C8—H8C109.5C73—C72—H72119.9
C3—C31—C32128.2 (3)C74—C73—C72120.6 (4)
C3—C31—H31115.9C74—C73—H73119.7
C32—C31—H31115.9C72—C73—H73119.7
C37—C32—C33118.0 (3)C75—C74—C73119.3 (3)
C37—C32—C31122.6 (3)C75—C74—H74120.3
C33—C32—C31119.4 (3)C73—C74—H74120.3
C34—C33—C32120.5 (3)C74—C75—C76120.7 (4)
C34—C33—H33119.8C74—C75—H75119.6
C32—C33—H33119.8C76—C75—H75119.6
C35—C34—C33119.9 (3)C75—C76—C71120.6 (4)
C35—C34—H34120.0C75—C76—H76119.7
C33—C34—H34120.0C71—C76—H76119.7
C36—C35—C34120.3 (3)C2—N1—C6108.03 (19)
C36—C35—H35119.8C2—N1—C7113.0 (2)
C34—C35—H35119.8C6—N1—C7110.7 (2)
N1—C2—C3—C31142.0 (3)C57—C52—C53—C540.2 (5)
N1—C2—C3—C435.4 (3)C51—C52—C53—C54176.8 (3)
C31—C3—C4—O17.7 (4)C52—C53—C54—C550.7 (5)
C2—C3—C4—O1174.6 (2)C53—C54—C55—C560.3 (5)
C31—C3—C4—C5171.6 (2)C54—C55—C56—C570.6 (6)
C2—C3—C4—C56.0 (3)C53—C52—C57—C560.7 (5)
O1—C4—C5—C518.9 (4)C51—C52—C57—C56177.9 (3)
C3—C4—C5—C51170.4 (2)C55—C56—C57—C521.1 (6)
O1—C4—C5—C6174.1 (2)N1—C7—C71—C7247.7 (3)
C3—C4—C5—C66.6 (3)C8—C7—C71—C7275.3 (4)
C51—C5—C6—N1140.2 (3)N1—C7—C71—C76135.2 (3)
C4—C5—C6—N136.5 (3)C8—C7—C71—C76101.8 (4)
C4—C3—C31—C32177.3 (3)C76—C71—C72—C730.6 (5)
C2—C3—C31—C325.2 (5)C7—C71—C72—C73176.5 (3)
C3—C31—C32—C3743.6 (5)C71—C72—C73—C740.0 (6)
C3—C31—C32—C33139.5 (3)C72—C73—C74—C751.2 (6)
C37—C32—C33—C341.4 (5)C73—C74—C75—C761.7 (6)
C31—C32—C33—C34178.4 (3)C74—C75—C76—C711.1 (6)
C32—C33—C34—C351.7 (5)C72—C71—C76—C750.1 (5)
C33—C34—C35—C360.5 (6)C7—C71—C76—C75177.1 (3)
C34—C35—C36—C371.1 (5)C3—C2—N1—C666.3 (3)
C33—C32—C37—C360.2 (5)C3—C2—N1—C7170.9 (2)
C31—C32—C37—C36176.7 (3)C5—C6—N1—C267.1 (3)
C35—C36—C37—C321.4 (5)C5—C6—N1—C7168.7 (2)
C4—C5—C51—C52178.1 (3)C71—C7—N1—C2174.7 (2)
C6—C5—C51—C525.2 (5)C8—C7—N1—C253.3 (3)
C5—C51—C52—C57142.3 (3)C71—C7—N1—C664.0 (3)
C5—C51—C52—C5340.7 (4)C8—C7—N1—C6174.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C31—H31···O10.932.362.740 (3)104
C51—H51···O10.932.362.744 (3)105
C55—H55···Cg1i0.932.843.725 (4)159
C74—H74···Cg2i0.932.973.645 (5)130
Symmetry code: (i) x+1, y1/2, z+1/2.
(II) 3,5-bis[(E)-4-chlorobenzylidene]-1-[(R)-1-phenylethyl]piperidin-4-one top
Crystal data top
C27H23Cl2NOF(000) = 468
Mr = 448.36Dx = 1.323 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 6.6409 (3) Åθ = 2–25°
b = 12.9466 (1) ŵ = 0.31 mm1
c = 13.1274 (8) ÅT = 293 K
β = 94.200 (16)°Block, colourless
V = 1125.62 (9) Å30.22 × 0.13 × 0.12 mm
Z = 2
Data collection top
Nonius MACH3 four-circle
diffractometer
1918 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.078
Graphite monochromatorθmax = 25.0°, θmin = 2.2°
ω–scansh = 37
Absorption correction: ψ scan
(North et al., 1968)
k = 215
Tmin = 0.935, Tmax = 0.964l = 1515
2678 measured reflections3 standard reflections every 60 min
2256 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.139 w = 1/[σ2(Fo2) + (0.1087P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
2256 reflectionsΔρmax = 0.34 e Å3
281 parametersΔρmin = 0.40 e Å3
1 restraintAbsolute structure: Flack (1983), 189 Friedel pairs?
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (10)
Crystal data top
C27H23Cl2NOV = 1125.62 (9) Å3
Mr = 448.36Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.6409 (3) ŵ = 0.31 mm1
b = 12.9466 (1) ÅT = 293 K
c = 13.1274 (8) Å0.22 × 0.13 × 0.12 mm
β = 94.200 (16)°
Data collection top
Nonius MACH3 four-circle
diffractometer
1918 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.078
Tmin = 0.935, Tmax = 0.9643 standard reflections every 60 min
2678 measured reflections intensity decay: none
2256 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.139Δρmax = 0.34 e Å3
S = 1.07Δρmin = 0.40 e Å3
2256 reflectionsAbsolute structure: Flack (1983), 189 Friedel pairs?
281 parametersAbsolute structure parameter: 0.08 (10)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C20.7147 (6)0.3566 (4)0.2292 (3)0.0422 (9)
H2A0.60930.33990.27390.051*
H2B0.65590.39910.17390.051*
C30.8809 (6)0.4158 (3)0.2882 (3)0.0404 (9)
C41.0596 (6)0.3536 (4)0.3292 (3)0.0433 (9)
C51.0356 (6)0.2392 (3)0.3332 (3)0.0395 (9)
C60.8580 (6)0.1932 (4)0.2718 (3)0.0388 (9)
H6A0.89500.12650.24510.047*
H6B0.74750.18290.31520.047*
C70.6488 (6)0.2134 (4)0.1104 (3)0.0439 (10)
H70.62120.26520.05680.053*
C80.4443 (7)0.1857 (5)0.1501 (4)0.0677 (15)
H8A0.46340.13470.20300.102*
H8B0.35670.15870.09510.102*
H8C0.38470.24650.17710.102*
C310.8819 (7)0.5177 (4)0.3060 (3)0.0445 (10)
H310.99530.54280.34390.053*
C320.7287 (7)0.5955 (4)0.2738 (3)0.0446 (10)
C370.5243 (7)0.5735 (4)0.2522 (3)0.0502 (10)
H370.47720.50670.26130.060*
C360.3915 (7)0.6498 (4)0.2175 (4)0.0509 (11)
H360.25610.63410.20190.061*
C350.4591 (7)0.7486 (4)0.2060 (3)0.0491 (10)
C340.6610 (8)0.7744 (4)0.2283 (4)0.0588 (12)
H340.70630.84170.22060.071*
C330.7915 (7)0.6970 (4)0.2621 (4)0.0562 (12)
H330.92670.71320.27770.067*
C511.1738 (6)0.1862 (4)0.3903 (3)0.0457 (10)
H511.27680.22560.42250.055*
C521.1874 (6)0.0746 (4)0.4098 (3)0.0449 (10)
C571.3770 (7)0.0315 (5)0.4363 (5)0.0645 (14)
H571.48880.07490.44320.077*
C561.4041 (8)0.0713 (5)0.4523 (4)0.0611 (14)
H561.53260.09760.46910.073*
C551.2392 (7)0.1364 (4)0.4436 (3)0.0479 (11)
C541.0470 (7)0.0973 (4)0.4210 (3)0.0488 (10)
H540.93560.14110.41670.059*
C531.0228 (6)0.0075 (4)0.4048 (3)0.0461 (10)
H530.89360.03390.39030.055*
C710.7509 (6)0.1236 (4)0.0606 (3)0.0409 (9)
C720.9345 (7)0.1385 (4)0.0186 (3)0.0489 (10)
H720.99450.20340.02250.059*
C731.0301 (8)0.0590 (5)0.0287 (4)0.0613 (14)
H731.15340.07100.05600.074*
C740.9441 (9)0.0382 (5)0.0360 (4)0.0628 (14)
H741.00890.09210.06710.075*
C750.7608 (9)0.0535 (5)0.0038 (4)0.0681 (14)
H750.69990.11820.00150.082*
C760.6662 (8)0.0255 (4)0.0511 (4)0.0595 (13)
H760.54230.01310.07760.071*
Cl10.2885 (2)0.84431 (11)0.16353 (11)0.0683 (4)
Cl21.2708 (2)0.26869 (10)0.45888 (10)0.0653 (4)
N10.7940 (5)0.2619 (3)0.1878 (2)0.0391 (8)
O11.2164 (5)0.3962 (3)0.3610 (3)0.0639 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.041 (2)0.045 (2)0.041 (2)0.001 (2)0.0006 (16)0.0056 (19)
C30.039 (2)0.044 (2)0.037 (2)0.0029 (18)0.0016 (16)0.0024 (18)
C40.0357 (19)0.049 (2)0.044 (2)0.004 (2)0.0015 (16)0.003 (2)
C50.0378 (19)0.047 (2)0.0337 (17)0.0020 (19)0.0002 (15)0.0011 (18)
C60.039 (2)0.044 (2)0.0322 (18)0.0030 (18)0.0060 (15)0.0007 (17)
C70.0402 (19)0.049 (3)0.0407 (19)0.0018 (19)0.0085 (16)0.0043 (19)
C80.040 (2)0.081 (4)0.081 (4)0.002 (3)0.005 (2)0.031 (3)
C310.042 (2)0.046 (3)0.044 (2)0.006 (2)0.0017 (17)0.0019 (19)
C320.045 (2)0.045 (2)0.043 (2)0.0005 (19)0.0004 (17)0.0068 (19)
C370.049 (2)0.044 (2)0.059 (2)0.003 (2)0.0106 (19)0.004 (2)
C360.042 (2)0.052 (3)0.058 (2)0.002 (2)0.0020 (18)0.005 (2)
C350.052 (2)0.051 (3)0.043 (2)0.007 (2)0.0017 (18)0.003 (2)
C340.061 (3)0.042 (3)0.072 (3)0.006 (2)0.003 (2)0.002 (2)
C330.047 (2)0.049 (3)0.070 (3)0.006 (2)0.010 (2)0.002 (2)
C510.040 (2)0.052 (3)0.044 (2)0.000 (2)0.0091 (17)0.004 (2)
C520.038 (2)0.052 (2)0.043 (2)0.004 (2)0.0113 (16)0.0046 (19)
C570.039 (2)0.063 (3)0.089 (4)0.000 (2)0.014 (2)0.002 (3)
C560.043 (2)0.067 (3)0.071 (3)0.011 (2)0.016 (2)0.011 (3)
C550.056 (3)0.048 (3)0.039 (2)0.012 (2)0.0019 (18)0.0052 (19)
C540.044 (2)0.054 (3)0.047 (2)0.003 (2)0.0040 (18)0.003 (2)
C530.038 (2)0.050 (3)0.049 (2)0.0052 (19)0.0052 (17)0.007 (2)
C710.045 (2)0.046 (2)0.0296 (17)0.0010 (19)0.0102 (15)0.0006 (17)
C720.049 (2)0.052 (3)0.044 (2)0.003 (2)0.0047 (18)0.007 (2)
C730.055 (3)0.079 (4)0.049 (2)0.012 (3)0.002 (2)0.005 (3)
C740.083 (4)0.057 (3)0.048 (2)0.016 (3)0.002 (2)0.009 (2)
C750.085 (4)0.050 (3)0.068 (3)0.004 (3)0.002 (3)0.010 (3)
C760.063 (3)0.055 (3)0.060 (3)0.007 (3)0.005 (2)0.001 (2)
Cl10.0672 (8)0.0590 (7)0.0771 (8)0.0133 (6)0.0056 (6)0.0101 (7)
Cl20.0813 (9)0.0532 (7)0.0610 (7)0.0189 (7)0.0031 (6)0.0127 (6)
N10.0396 (17)0.0389 (18)0.0377 (16)0.0001 (14)0.0047 (13)0.0018 (14)
O10.0466 (19)0.052 (2)0.090 (3)0.0103 (16)0.0148 (16)0.0011 (19)
Geometric parameters (Å, º) top
C2—N11.456 (6)C35—Cl11.742 (5)
C2—C31.511 (6)C34—C331.377 (7)
C2—H2A0.9700C34—H340.9300
C2—H2B0.9700C33—H330.9300
C3—C311.339 (6)C51—C521.468 (7)
C3—C41.501 (6)C51—H510.9300
C4—O11.224 (5)C52—C531.395 (7)
C4—C51.491 (6)C52—C571.397 (6)
C5—C511.332 (6)C57—C561.358 (9)
C5—C61.502 (5)C57—H570.9300
C6—N11.456 (5)C56—C551.380 (7)
C6—H6A0.9700C56—H560.9300
C6—H6B0.9700C55—C541.385 (6)
C7—N11.487 (5)C55—Cl21.736 (5)
C7—C711.518 (6)C54—C531.381 (7)
C7—C81.532 (7)C54—H540.9300
C7—H70.9800C53—H530.9300
C8—H8A0.9600C71—C721.388 (6)
C8—H8B0.9600C71—C761.391 (7)
C8—H8C0.9600C72—C731.381 (7)
C31—C321.471 (6)C72—H720.9300
C31—H310.9300C73—C741.383 (9)
C32—C331.391 (7)C73—H730.9300
C32—C371.396 (6)C74—C751.374 (8)
C37—C361.379 (7)C74—H740.9300
C37—H370.9300C75—C761.373 (8)
C36—C351.368 (7)C75—H750.9300
C36—H360.9300C76—H760.9300
C35—C341.392 (7)
N1—C2—C3110.4 (3)C33—C34—C35117.9 (5)
N1—C2—H2A109.6C33—C34—H34121.1
C3—C2—H2A109.6C35—C34—H34121.1
N1—C2—H2B109.6C34—C33—C32122.5 (4)
C3—C2—H2B109.6C34—C33—H33118.8
H2A—C2—H2B108.1C32—C33—H33118.8
C31—C3—C4118.2 (4)C5—C51—C52129.5 (4)
C31—C3—C2125.7 (4)C5—C51—H51115.2
C4—C3—C2116.1 (4)C52—C51—H51115.2
O1—C4—C5121.7 (4)C53—C52—C57116.9 (5)
O1—C4—C3120.7 (4)C53—C52—C51124.5 (4)
C5—C4—C3117.5 (4)C57—C52—C51118.6 (5)
C51—C5—C4117.4 (4)C56—C57—C52122.5 (5)
C51—C5—C6125.3 (4)C56—C57—H57118.8
C4—C5—C6117.2 (4)C52—C57—H57118.8
N1—C6—C5109.7 (3)C57—C56—C55119.4 (5)
N1—C6—H6A109.7C57—C56—H56120.3
C5—C6—H6A109.7C55—C56—H56120.3
N1—C6—H6B109.7C56—C55—C54120.6 (5)
C5—C6—H6B109.7C56—C55—Cl2120.3 (4)
H6A—C6—H6B108.2C54—C55—Cl2119.1 (4)
N1—C7—C71109.3 (3)C53—C54—C55119.1 (4)
N1—C7—C8114.4 (4)C53—C54—H54120.4
C71—C7—C8113.7 (4)C55—C54—H54120.4
N1—C7—H7106.3C54—C53—C52121.5 (4)
C71—C7—H7106.3C54—C53—H53119.2
C8—C7—H7106.3C52—C53—H53119.2
C7—C8—H8A109.5C72—C71—C76116.9 (4)
C7—C8—H8B109.5C72—C71—C7119.8 (4)
H8A—C8—H8B109.5C76—C71—C7123.2 (4)
C7—C8—H8C109.5C73—C72—C71121.4 (5)
H8A—C8—H8C109.5C73—C72—H72119.3
H8B—C8—H8C109.5C71—C72—H72119.3
C3—C31—C32129.0 (4)C72—C73—C74120.5 (5)
C3—C31—H31115.5C72—C73—H73119.7
C32—C31—H31115.5C74—C73—H73119.7
C33—C32—C37117.7 (4)C75—C74—C73118.6 (5)
C33—C32—C31118.2 (4)C75—C74—H74120.7
C37—C32—C31124.1 (4)C73—C74—H74120.7
C36—C37—C32120.7 (5)C76—C75—C74120.8 (5)
C36—C37—H37119.7C76—C75—H75119.6
C32—C37—H37119.7C74—C75—H75119.6
C35—C36—C37120.0 (4)C75—C76—C71121.7 (5)
C35—C36—H36120.0C75—C76—H76119.1
C37—C36—H36120.0C71—C76—H76119.1
C36—C35—C34121.3 (4)C2—N1—C6109.0 (3)
C36—C35—Cl1119.3 (3)C2—N1—C7112.1 (3)
C34—C35—Cl1119.4 (4)C6—N1—C7113.5 (3)
N1—C2—C3—C31155.7 (4)C53—C52—C57—C562.8 (8)
N1—C2—C3—C423.8 (5)C51—C52—C57—C56177.8 (5)
C31—C3—C4—O113.3 (6)C52—C57—C56—C550.8 (9)
C2—C3—C4—O1166.3 (4)C57—C56—C55—C541.5 (8)
C31—C3—C4—C5164.5 (4)C57—C56—C55—Cl2177.5 (5)
C2—C3—C4—C515.9 (5)C56—C55—C54—C531.5 (7)
O1—C4—C5—C5112.9 (6)Cl2—C55—C54—C53177.5 (4)
C3—C4—C5—C51164.8 (4)C55—C54—C53—C520.6 (7)
O1—C4—C5—C6166.6 (4)C57—C52—C53—C542.7 (7)
C3—C4—C5—C615.7 (5)C51—C52—C53—C54177.9 (5)
C51—C5—C6—N1155.1 (4)N1—C7—C71—C7252.7 (5)
C4—C5—C6—N124.4 (5)C8—C7—C71—C72178.2 (4)
C4—C3—C31—C32179.3 (4)N1—C7—C71—C76129.6 (4)
C2—C3—C31—C320.2 (8)C8—C7—C71—C760.4 (6)
C3—C31—C32—C33153.3 (5)C76—C71—C72—C731.1 (6)
C3—C31—C32—C3725.3 (7)C7—C71—C72—C73179.0 (4)
C33—C32—C37—C361.9 (7)C71—C72—C73—C740.3 (7)
C31—C32—C37—C36176.7 (4)C72—C73—C74—C750.8 (7)
C32—C37—C36—C351.3 (7)C73—C74—C75—C761.0 (8)
C37—C36—C35—C340.3 (7)C74—C75—C76—C710.2 (8)
C37—C36—C35—Cl1179.2 (3)C72—C71—C76—C750.9 (7)
C36—C35—C34—C330.2 (7)C7—C71—C76—C75178.7 (4)
Cl1—C35—C34—C33179.7 (4)C3—C2—N1—C666.5 (4)
C35—C34—C33—C320.4 (8)C3—C2—N1—C7167.1 (3)
C37—C32—C33—C341.4 (7)C5—C6—N1—C266.6 (4)
C31—C32—C33—C34177.2 (5)C5—C6—N1—C7167.7 (3)
C4—C5—C51—C52178.9 (4)C71—C7—N1—C2172.6 (3)
C6—C5—C51—C521.6 (7)C8—C7—N1—C258.6 (5)
C5—C51—C52—C5326.0 (8)C71—C7—N1—C663.4 (4)
C5—C51—C52—C57154.6 (5)C8—C7—N1—C665.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C31—H31···O10.932.402.774 (6)104
C51—H51···O10.932.382.763 (6)105
(III) 3,5-bis[(E)-2-chlorobenzylidene]-1-[(R)-1-phenylethyl]piperidin-4-one top
Crystal data top
C27H23Cl2NOF(000) = 936
Mr = 448.36Dx = 1.273 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 25 reflections
a = 25.746 (5) Åθ = 2–25°
b = 6.1251 (9) ŵ = 0.30 mm1
c = 16.1829 (19) ÅT = 293 K
β = 113.55 (1)°Block, colourless
V = 2339.4 (7) Å30.22 × 0.18 × 0.11 mm
Z = 4
Data collection top
Nonius MACH3 four-circle
diffractometer
1990 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.014
Graphite monochromatorθmax = 25.0°, θmin = 2.6°
ω–scansh = 030
Absorption correction: ψ scan
(North et al., 1968)
k = 17
Tmin = 0.938, Tmax = 0.968l = 1917
2735 measured reflections3 standard reflections every 60 min
2680 independent reflections intensity decay: none
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0336P)2 + 1.3089P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.086(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.29 e Å3
2680 reflectionsΔρmin = 0.23 e Å3
282 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0017 (4)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 407 Friedel pairs?
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.04 (9)
Crystal data top
C27H23Cl2NOV = 2339.4 (7) Å3
Mr = 448.36Z = 4
Monoclinic, C2Mo Kα radiation
a = 25.746 (5) ŵ = 0.30 mm1
b = 6.1251 (9) ÅT = 293 K
c = 16.1829 (19) Å0.22 × 0.18 × 0.11 mm
β = 113.55 (1)°
Data collection top
Nonius MACH3 four-circle
diffractometer
1990 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.014
Tmin = 0.938, Tmax = 0.9683 standard reflections every 60 min
2735 measured reflections intensity decay: none
2680 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.086Δρmax = 0.29 e Å3
S = 1.04Δρmin = 0.23 e Å3
2680 reflectionsAbsolute structure: Flack (1983), 407 Friedel pairs?
282 parametersAbsolute structure parameter: 0.04 (9)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.21215 (9)0.6348 (4)0.46839 (13)0.0487 (6)
N10.12083 (10)0.0660 (5)0.40098 (15)0.0409 (6)
Cl10.07738 (5)0.7167 (2)0.61796 (9)0.0983 (4)
Cl20.11540 (5)0.7128 (2)0.13066 (7)0.0981 (4)
C20.15440 (12)0.1038 (6)0.49819 (19)0.0418 (8)
C30.17134 (11)0.3401 (6)0.51699 (19)0.0371 (8)
C40.18959 (11)0.4554 (6)0.45188 (19)0.0383 (7)
C50.17932 (11)0.3425 (6)0.36435 (19)0.0382 (8)
C60.15883 (12)0.1083 (6)0.3543 (2)0.0421 (8)
C70.06808 (11)0.1962 (7)0.36424 (17)0.0443 (8)
C80.03231 (13)0.1528 (8)0.4189 (2)0.0651 (12)
C310.16691 (11)0.4604 (6)0.58276 (19)0.0450 (8)
C320.15182 (12)0.3823 (6)0.6562 (2)0.0473 (9)
C330.17726 (14)0.1992 (8)0.7057 (2)0.0648 (11)
C340.16464 (18)0.1296 (9)0.7774 (2)0.0837 (15)
C350.12579 (19)0.2417 (11)0.7994 (2)0.0865 (16)
C360.10020 (17)0.4242 (9)0.7515 (3)0.0784 (14)
C370.11302 (14)0.4943 (7)0.6809 (2)0.0595 (11)
C510.18626 (12)0.4580 (6)0.30027 (19)0.0464 (8)
C520.18514 (13)0.3782 (7)0.2133 (2)0.0538 (9)
C530.15768 (15)0.4914 (8)0.1331 (2)0.0642 (11)
C540.1624 (2)0.4252 (11)0.0540 (3)0.0928 (17)
C550.1949 (2)0.2464 (12)0.0556 (3)0.1002 (19)
C560.22136 (17)0.1271 (10)0.1329 (3)0.0893 (16)
C570.21620 (15)0.1939 (8)0.2109 (2)0.0658 (11)
C710.03538 (12)0.1428 (6)0.2651 (2)0.0454 (9)
C720.02589 (14)0.2996 (7)0.2010 (2)0.0575 (10)
C730.00639 (16)0.2586 (8)0.1110 (2)0.0700 (12)
C740.02890 (16)0.0550 (9)0.0844 (3)0.0715 (13)
C750.01960 (15)0.1034 (8)0.1479 (3)0.0733 (12)
C760.01277 (14)0.0628 (7)0.2388 (2)0.0619 (10)
H2A0.18820.01350.51830.050*
H2B0.13220.06140.53190.050*
H6A0.13890.07500.29070.050*
H6B0.19130.01170.37850.050*
H70.07820.35130.36960.053*
H8A0.03060.00150.42790.098*
H8B0.00530.20830.38670.098*
H8C0.04930.22440.47630.098*
H310.17410.60900.58200.054*
H330.20330.12110.69090.078*
H340.18250.00700.81050.100*
H350.11690.19400.84670.104*
H360.07410.50100.76660.094*
H510.19260.60670.31130.056*
H540.14370.50150.00060.111*
H550.19910.20530.00330.120*
H560.24240.00360.13290.107*
H570.23400.11330.26340.079*
H720.04150.43760.21820.069*
H730.01290.36900.06860.084*
H740.05020.02520.02380.086*
H750.03520.24130.13030.088*
H760.01910.17300.28130.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0569 (13)0.0361 (15)0.0567 (13)0.0081 (12)0.0263 (10)0.0035 (12)
N10.0423 (13)0.0398 (17)0.0438 (13)0.0049 (13)0.0206 (11)0.0048 (13)
Cl10.0995 (8)0.0842 (9)0.1346 (9)0.0281 (8)0.0712 (7)0.0059 (9)
Cl20.1153 (9)0.0876 (9)0.0804 (7)0.0228 (9)0.0275 (6)0.0321 (8)
C20.0429 (16)0.038 (2)0.0463 (17)0.0024 (16)0.0201 (14)0.0039 (16)
C30.0335 (15)0.040 (2)0.0364 (15)0.0005 (16)0.0123 (12)0.0018 (15)
C40.0330 (15)0.037 (2)0.0425 (16)0.0054 (16)0.0131 (13)0.0045 (16)
C50.0336 (15)0.044 (2)0.0408 (16)0.0043 (15)0.0186 (13)0.0001 (16)
C60.0418 (16)0.040 (2)0.0476 (17)0.0003 (16)0.0208 (14)0.0045 (16)
C70.0367 (15)0.048 (2)0.0484 (16)0.0045 (17)0.0170 (13)0.0021 (18)
C80.0445 (17)0.098 (4)0.0564 (19)0.002 (2)0.0244 (15)0.002 (2)
C310.0399 (16)0.047 (2)0.0462 (17)0.0045 (17)0.0156 (14)0.0028 (18)
C320.0452 (17)0.056 (2)0.0400 (16)0.0091 (18)0.0164 (14)0.0065 (18)
C330.063 (2)0.083 (3)0.0491 (18)0.002 (2)0.0233 (17)0.006 (2)
C340.090 (3)0.102 (4)0.053 (2)0.005 (3)0.022 (2)0.016 (3)
C350.088 (3)0.131 (5)0.050 (2)0.035 (4)0.037 (2)0.005 (3)
C360.073 (3)0.109 (4)0.070 (3)0.022 (3)0.045 (2)0.021 (3)
C370.054 (2)0.076 (3)0.0525 (19)0.010 (2)0.0251 (17)0.016 (2)
C510.0467 (17)0.047 (2)0.0445 (16)0.0029 (18)0.0172 (14)0.0009 (17)
C520.0503 (18)0.065 (3)0.0457 (18)0.008 (2)0.0188 (15)0.0019 (19)
C530.059 (2)0.085 (3)0.0456 (18)0.007 (2)0.0184 (16)0.009 (2)
C540.101 (3)0.128 (5)0.043 (2)0.004 (4)0.022 (2)0.005 (3)
C550.101 (3)0.152 (6)0.051 (2)0.000 (4)0.034 (2)0.020 (4)
C560.089 (3)0.121 (5)0.066 (2)0.010 (3)0.039 (2)0.015 (3)
C570.067 (2)0.082 (3)0.0501 (18)0.006 (2)0.0245 (17)0.000 (2)
C710.0401 (17)0.050 (2)0.0486 (17)0.0017 (17)0.0206 (14)0.0015 (18)
C720.066 (2)0.059 (3)0.0531 (19)0.008 (2)0.0295 (17)0.005 (2)
C730.085 (3)0.079 (4)0.048 (2)0.001 (3)0.0282 (19)0.007 (2)
C740.069 (2)0.095 (4)0.0461 (19)0.000 (3)0.0190 (18)0.018 (3)
C750.070 (2)0.073 (3)0.067 (2)0.018 (2)0.017 (2)0.024 (2)
C760.062 (2)0.056 (3)0.062 (2)0.006 (2)0.0188 (18)0.001 (2)
Geometric parameters (Å, º) top
Cl2—C531.730 (5)C2—H2A0.9700
Cl1—C371.729 (4)C2—H2B0.9700
C3—C311.336 (4)C33—C341.391 (5)
C3—C41.492 (4)C33—H330.9300
C3—C21.507 (4)C76—C751.392 (5)
C5—C511.325 (4)C76—H760.9300
C5—C41.502 (4)C72—C731.381 (5)
C5—C61.515 (4)C72—H720.9300
O1—C41.221 (4)C8—H8A0.9600
C31—C321.470 (4)C8—H8B0.9600
C31—H310.9300C8—H8C0.9600
C71—C721.363 (5)C73—C741.371 (7)
C71—C761.381 (5)C73—H730.9300
C71—C71.520 (4)C35—C361.370 (7)
C51—C521.480 (4)C35—C341.372 (6)
C51—H510.9300C35—H350.9300
C7—N11.480 (4)C75—C741.364 (6)
C7—C81.533 (4)C75—H750.9300
C7—H70.9800C74—H740.9300
C6—N11.478 (3)C54—C551.372 (7)
C6—H6A0.9700C54—C531.393 (6)
C6—H6B0.9700C54—H540.9300
N1—C21.479 (3)C56—C551.373 (7)
C57—C561.382 (5)C56—H560.9300
C57—C521.392 (6)C55—H550.9300
C57—H570.9300C37—C361.377 (5)
C52—C531.390 (5)C34—H340.9300
C32—C331.382 (5)C36—H360.9300
C32—C371.396 (5)
C31—C3—C4116.9 (3)C32—C33—C34121.2 (4)
C31—C3—C2125.5 (3)C32—C33—H33119.4
C4—C3—C2117.3 (3)C34—C33—H33119.4
C51—C5—C4117.6 (3)C71—C76—C75119.3 (4)
C51—C5—C6124.9 (3)C71—C76—H76120.4
C4—C5—C6117.4 (3)C75—C76—H76120.4
C3—C31—C32126.8 (4)C71—C72—C73121.6 (4)
C3—C31—H31116.6C71—C72—H72119.2
C32—C31—H31116.6C73—C72—H72119.2
O1—C4—C3121.8 (3)C7—C8—H8A109.5
O1—C4—C5120.7 (3)C7—C8—H8B109.5
C3—C4—C5117.5 (3)H8A—C8—H8B109.5
C72—C71—C76118.8 (3)C7—C8—H8C109.5
C72—C71—C7120.5 (3)H8A—C8—H8C109.5
C76—C71—C7120.6 (3)H8B—C8—H8C109.5
C5—C51—C52127.6 (4)C74—C73—C72119.9 (4)
C5—C51—H51116.2C74—C73—H73120.1
C52—C51—H51116.2C72—C73—H73120.1
N1—C7—C71109.9 (3)C36—C35—C34119.8 (4)
N1—C7—C8109.9 (3)C36—C35—H35120.1
C71—C7—C8111.3 (2)C34—C35—H35120.1
N1—C7—H7108.5C74—C75—C76121.4 (4)
C71—C7—H7108.5C74—C75—H75119.3
C8—C7—H7108.5C76—C75—H75119.3
N1—C6—C5112.6 (3)C75—C74—C73119.0 (4)
N1—C6—H6A109.1C75—C74—H74120.5
C5—C6—H6A109.1C73—C74—H74120.5
N1—C6—H6B109.1C55—C54—C53119.4 (4)
C5—C6—H6B109.1C55—C54—H54120.3
H6A—C6—H6B107.8C53—C54—H54120.3
C6—N1—C2106.9 (2)C52—C53—C54120.9 (4)
C6—N1—C7112.9 (2)C52—C53—Cl2119.5 (3)
C2—N1—C7113.3 (2)C54—C53—Cl2119.5 (4)
C56—C57—C52122.1 (4)C55—C56—C57118.7 (5)
C56—C57—H57119.0C55—C56—H56120.6
C52—C57—H57119.0C57—C56—H56120.6
C53—C52—C57117.5 (3)C54—C55—C56121.3 (4)
C53—C52—C51122.2 (4)C54—C55—H55119.4
C57—C52—C51120.1 (3)C56—C55—H55119.4
C33—C32—C37117.4 (3)C36—C37—C32121.4 (4)
C33—C32—C31121.1 (3)C36—C37—Cl1119.2 (3)
C37—C32—C31121.5 (3)C32—C37—Cl1119.3 (3)
N1—C2—C3111.3 (3)C35—C34—C33120.0 (5)
N1—C2—H2A109.4C35—C34—H34120.0
C3—C2—H2A109.4C33—C34—H34120.0
N1—C2—H2B109.4C35—C36—C37120.2 (4)
C3—C2—H2B109.4C35—C36—H36119.9
H2A—C2—H2B108.0C37—C36—H36119.9
C4—C3—C31—C32177.6 (3)C7—N1—C2—C359.4 (3)
C2—C3—C31—C328.3 (5)C31—C3—C2—N1133.5 (3)
C31—C3—C4—O116.9 (4)C4—C3—C2—N140.5 (3)
C2—C3—C4—O1168.6 (3)C37—C32—C33—C340.0 (5)
C31—C3—C4—C5163.2 (3)C31—C32—C33—C34177.6 (4)
C2—C3—C4—C511.3 (4)C72—C71—C76—C750.9 (5)
C51—C5—C4—O111.5 (4)C7—C71—C76—C75176.5 (3)
C6—C5—C4—O1171.6 (3)C76—C71—C72—C731.1 (5)
C51—C5—C4—C3168.6 (3)C7—C71—C72—C73176.3 (3)
C6—C5—C4—C38.3 (4)C71—C72—C73—C741.2 (6)
C4—C5—C51—C52172.4 (3)C71—C76—C75—C740.7 (6)
C6—C5—C51—C5211.0 (5)C76—C75—C74—C730.8 (6)
C72—C71—C7—N1117.1 (3)C72—C73—C74—C751.0 (6)
C76—C71—C7—N165.5 (4)C57—C52—C53—C541.6 (6)
C72—C71—C7—C8120.8 (4)C51—C52—C53—C54173.0 (4)
C76—C71—C7—C856.6 (4)C57—C52—C53—Cl2176.6 (3)
C51—C5—C6—N1142.1 (3)C51—C52—C53—Cl28.9 (5)
C4—C5—C6—N134.6 (3)C55—C54—C53—C520.4 (7)
C5—C6—N1—C262.7 (3)C55—C54—C53—Cl2178.5 (4)
C5—C6—N1—C762.5 (3)C52—C57—C56—C550.1 (7)
C71—C7—N1—C660.0 (3)C53—C54—C55—C562.2 (8)
C8—C7—N1—C6177.1 (3)C57—C56—C55—C542.0 (8)
C71—C7—N1—C2178.3 (3)C33—C32—C37—C360.5 (5)
C8—C7—N1—C255.4 (4)C31—C32—C37—C36178.1 (3)
C56—C57—C52—C531.8 (6)C33—C32—C37—Cl1176.9 (3)
C56—C57—C52—C51172.9 (4)C31—C32—C37—Cl15.5 (4)
C5—C51—C52—C53137.5 (4)C36—C35—C34—C331.0 (7)
C5—C51—C52—C5748.0 (5)C32—C33—C34—C350.8 (6)
C3—C31—C32—C3347.3 (5)C34—C35—C36—C370.5 (7)
C3—C31—C32—C37135.3 (4)C32—C37—C36—C350.3 (6)
C6—N1—C2—C365.6 (3)Cl1—C37—C36—C35176.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.972.603.263 (4)126
C31—H31···O10.932.412.765 (4)103
C51—H51···O10.932.392.751 (4)103
Symmetry code: (i) x+1/2, y1/2, z+1.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC27H25NOC27H23Cl2NOC27H23Cl2NO
Mr379.48448.36448.36
Crystal system, space groupOrthorhombic, P212121Monoclinic, P21Monoclinic, C2
Temperature (K)293293293
a, b, c (Å)6.0890 (7), 15.3562 (9), 23.1522 (11)6.6409 (3), 12.9466 (1), 13.1274 (8)25.746 (5), 6.1251 (9), 16.1829 (19)
α, β, γ (°)90, 90, 9090, 94.200 (16), 9090, 113.55 (1), 90
V3)2164.8 (3)1125.62 (9)2339.4 (7)
Z424
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.070.310.30
Crystal size (mm)0.19 × 0.17 × 0.120.22 × 0.13 × 0.120.22 × 0.18 × 0.11
Data collection
DiffractometerNonius MACH3 four-circle
diffractometer
Nonius MACH3 four-circle
diffractometer
Nonius MACH3 four-circle
diffractometer
Absorption correctionψ scan
(North et al., 1968)
ψ scan
(North et al., 1968)
ψ scan
(North et al., 1968)
Tmin, Tmax0.987, 0.9920.935, 0.9640.938, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
2330, 2213, 1421 2678, 2256, 1918 2735, 2680, 1990
Rint0.0160.0780.014
(sin θ/λ)max1)0.5940.5940.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.093, 1.06 0.049, 0.139, 1.07 0.034, 0.086, 1.04
No. of reflections221322562680
No. of parameters263281282
No. of restraints011
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.11, 0.170.34, 0.400.29, 0.23
Absolute structure?Flack (1983), 189 Friedel pairs?Flack (1983), 407 Friedel pairs?
Absolute structure parameter?0.08 (10)0.04 (9)

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97.

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C31—H31···O10.932.362.740 (3)104
C51—H51···O10.932.362.744 (3)105
C55—H55···Cg1i0.932.843.725 (4)159
C74—H74···Cg2i0.932.973.645 (5)130
Symmetry code: (i) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C31—H31···O10.932.402.774 (6)104
C51—H51···O10.932.382.763 (6)105
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O1i0.972.603.263 (4)126
C31—H31···O10.932.412.765 (4)103
C51—H51···O10.932.392.751 (4)103
Symmetry code: (i) x+1/2, y1/2, z+1.
Comparison of of selected geometric parameters (°) of (I), (II) and (III) top
AtomsCompound(I)Compound(II)Compound(III)
C31-C3-C2124.5 (3)125.7 (4)125.5 (3)
C51-C5-C6125.0 (2)125.3 (4)124.9 (3)
C37-C32-C31122.6 (3)124.1 (4)121.5 (3)
C53-C52-C51122.8 (3)124.5 (4)122.2 (4)
C2-C3-C31-C32-5.2 (5)-0.2 (8)8.3 (5)
C8-C7-N1-C2-53.3 (3)-58.6 (5)-55.4 (4)
C6-C5-C51-C525.2 (5)-1.6 (7)-11.0 (5)
C71-C7-N1-C664.0 (3)-63.4 (4)60.0 (3)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds