Download citation
Download citation
link to html
The title compounds, (E)-2-[(2-bromo­phenyl)imino­methyl]-4-methoxy­phenol, C14H12BrNO2, (I), (E)-2-[(3-bromo­phenyl)­imino­methyl]-4-methoxy­phenol, C14H12BrNO2, (II), and (E)-2-[(4-bromo­phenyl)imino­methyl]-4-methoxy­phenol, C14H12BrNO2, (III), adopt the phenol–imine tautomeric form. In all three structures, there are strong intra­molecular O—H...N hydrogen bonds. Compound (I) has strong inter­molecular hydrogen bonds, while compound (III) has weak inter­molecular hydrogen bonds. In addition to these inter­molecular inter­actions, C—H...π inter­actions in (I) and (III), and π–π inter­actions in (I), play roles in the crystal packing. The dihedral angles between the aromatic rings are 15.34 (12), 6.1 (3) and 39.2 (14)° for (I), (II) and (III), respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107003241/dn3025sup1.cif
Contains datablocks global, II, III, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107003241/dn3025Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107003241/dn3025IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107003241/dn3025IIIsup4.hkl
Contains datablock III

CCDC references: 641809; 641810; 641811

Comment top

Although Schiff bases have been widely used as ligands in the formation of transition metal complexes and structurally characterized, a relatively small number of free Schiff bases have been similarly characterized (Calligaris & Randaccio, 1987). Schiff bases, however, play an important role in many fields of chemistry and biochemistry (Lozier et al., 1975; Garnovskii et al., 1993). The overall behaviour of these compounds has been defined as a proton-transfer reaction between the phenol–imine and keto–amine tautomers. It is known that the phenol–imine tautomer is dominant in salicylaldimine, while the keto–amine form is preferred in naphthaldimine Schiff bases, depending on the solvent polarities. Moreover, in the solid state, the keto–amine tautomer is present in naphthaldimines (Hökelek et al., 2000; Odabaşoğlu et al., 2003), while the phenol–imine form exists in salicylaldimine Schiff bases (Kaitner & Pavlovic, 1996; Yıldız et al., 1998). As part of a general study of the crystal chemistry of dyes, and to provide templates for molecular-modelling studies, the crystal structures of the title compounds, (I), (II) and (III), have been determined.

The molecular structures of (I), (II) and (III), with the atom-labelling schemes, are shown in Figs. 1, 2 and 3, respectively, and selected bond lengths and angles are given in Table 1. In all three molecules, (I), (II) and (III), the phenol–imine tautomer is favoured over the keto–amine form, as indicated by the C6—O1, C8—N1, C1—C8 and C1—C6 bond lengths (Figs. 1–3 and Table 1). A similar situation was observed for 2-(3-methoxysalicylideneamino)-1H-benzimidazolemonohydrate [C—O = 1.357 (2) Å and C—N = 1.285 (2) Å; Albayrak et al., 2005]. The H atom in all three compounds is located on atom O1, thus confirming a preference for the phenol–imine tautomer in the solid state. The O1—C6 bond lengths are approximately the same, indicating single-bond character, whereas the C8–N1 bond lengths are indicative of significant double-bond character in (I), (II) and (III).

It is known that Schiff bases may exhibit thermochromism or photochromism, depending on the planarity or non-planarity of the molecule, respectively. This planarity of the molecule allows the H atom to be transferred through the hydrogen bond in the ground state with a low energy requirement (Hadjoudis et al., 1987). Therefore, one can expect thermochromic properties in (I) and (II) caused by planarity of the molecules: the dihedral angles between rings A (C1–C6) and B (C9–C14) are 15.34 (12) and 6.1 (3)°, respectively. One can also expect photochromic properties in (III) caused by the non-planarity of the molecule: the dihedral angle between the A and B rings is 39.2 (14)°.

These differences in planarity are also reflected in the C14—C9—N1—C8 torsion angles (Table 1) and are certainly related to the occurrence of intermolecular C—H···O and C—H···π interactions observed in compounds (I) and (III) (Tables 2 and 4), which influence the packing of the molecules of (I) and (III) as shown in Figs. 4–6. Indeed, in compound (II), there is only an intramolecular O—H···N hydrogen bond (Table 3). The higher value of the torsion angle observed in compound (III) [-31.1 (4)°] compared with the lower values observed in (I) and (II) [-20.9 (3)° and -6.6 (9)°] may result from the occurrence of three C—H···π interactions in (III) (Table 4, Fig. 7), whereas only one is present in compound (I) (Table 2, Fig. 5). In (II), there are no C—H···π and ππ interactions, and the only interactions playing a role in the packing are intermolecular van der Waals interactions, resulting in a rather low torsion angle of -6.6 (9)°.

The occurrence of C—H···O hydrogen bonds results in the formation of C(5) and C(8) chains (Bernstein et al., 1995) developing parallel to the c axis in (I) and (III), respectively (Tables 2 and 4, Figs. 4 and 6). In addition to these interactions, only compound (I) presents ππ stacking (Fig. 5). This slipped ππ interaction occurs between Cg1···Cg1i [Cg1 is the centroid of the C1–C6 ring; symmetry code: (i) 1 - x, 1 - y, 1 - z], with a centroid-to-centroid distance of 3.851 Å and a plane-to-plane separation of 3.486 Å, resulting in an offset angle of 25.2°.

Related literature top

For related literature, see: Albayrak et al. (2005); Bernstein et al. (1995); Calligaris & Randaccio (1987); Flack (1983); Garnovskii et al. (1993); Hökelek et al. (2000); Hadjoudis et al. (1987); Kaitner & Pavlovic (1996); Lozier et al. (1975); Odabaşoğlu et al. (2003, 2005); Yıldız, Kılıç & Hökelek (1998).

Experimental top

The title compounds were prepared by reported procedures (Odabaşoğlu et al., 2005), using 2-, 3-, and 4-bromoanilines and 5-methoxysalicylaldehyde as starting materials. Well shaped crystals of (I), (II) and (III) were obtained by slow evaporation of ethanol solutions [for (I), yield 72% and m.p. 399–400 K; for (II), yield 86% and m.p. 367–368 K; for (III), yield 78% and m.p. 396–397 K].

Refinement top

For all three compounds, all H atoms were refined using a riding model, with C—H distances of 0.93 Å for aromatic H atoms and 0.96 Å for methyl H atoms, and O—H distances of 0.82 Å. and with Uiso(H) = 1.5Ueq(C) for the methyl H atoms or 1.2Ueq(C,O) for the remaining H atoms. For (II), there is a twin by inversion (racemic twin), as suggested by the value of the Flack parameter (Flack, 1983) of 0.47 (2).

Computing details top

For all compounds, data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1998).

Figures top
[Figure 1] Fig. 1. A view of (I), with the atom-numbering scheme and 50% probability displacement ellipsoids. The dashed line indicates the hydrogen bond. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of (II), with the atom-numbering scheme and 50% probability displacement ellipsoids. The dashed line indicates the hydrogen bond. H atoms are represented as small spheres of arbitrary radii.
[Figure 3] Fig. 3. A view of (III), with the atom-numbering scheme and 50% probability displacement ellipsoids. The dashed line indicates the hydrogen bond. H atoms are represented as small spheres of arbitrary radii.
[Figure 4] Fig. 4. A partial packing view of (I), showing the formation of the C(5) chain through C—H···O hydrogen bonds (dashed lines). H atoms are represented as small spheres of arbitrary radii. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry codes: (i) x, 3/2 - y, z + 1/2; (ii) x, 3/2 - y, z - 1/2.]
[Figure 5] Fig. 5. A partial packing view of (I), showing the C—H···π and ππ interactions. Dashed lines indicate hydrogen bonds. H atoms are represented as small spheres of arbitrary radii. H atoms not involved in hydrogen bonding have been omitted for clarity.
[Figure 6] Fig. 6. A partial packing view of (III), showing the formation of the C(8) chain through C—H···O hydrogen bonds (dashed lines). H atoms are represented as small spheres of arbitrary radii. H atoms not involved in hydrogen bonding have been omitted for clarity. [Symmetry code: (i) x, y, 1 + z.]
[Figure 7] Fig. 7. A partial packing view of (III). Dashed lines indicates C10–H···π and C13—H···π interactions. H atoms not involved in hydrogen bonding have been omitted for clarity. Cg2 is the centroid of the C9—C14 ring. [Symmetry codes: (i) x, -y, z - 1/2; (ii) x, y + 1/2, z + 1/2.]
(I) (E)-2-[(2-bromophenyl)iminomethyl]-4-methoxyphenol top
Crystal data top
C14H12BrNO2F(000) = 616
Mr = 306.16Dx = 1.600 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 17760 reflections
a = 13.3255 (8) Åθ = 2.9–28.0°
b = 8.7090 (5) ŵ = 3.23 mm1
c = 11.9743 (6) ÅT = 296 K
β = 113.845 (4)°Prism, red
V = 1271.02 (12) Å30.66 × 0.35 × 0.17 mm
Z = 4
Data collection top
Stoe IPDS 2
diffractometer
2500 independent reflections
Radiation source: fine-focus sealed tube2041 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.9°
ω scansh = 1616
Absorption correction: integration
(X-RED; Stoe & Cie, 2002)
k = 1010
Tmin = 0.264, Tmax = 0.603l = 1414
17760 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0246P)2 + 0.369P]
where P = (Fo2 + 2Fc2)/3
2500 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C14H12BrNO2V = 1271.02 (12) Å3
Mr = 306.16Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.3255 (8) ŵ = 3.23 mm1
b = 8.7090 (5) ÅT = 296 K
c = 11.9743 (6) Å0.66 × 0.35 × 0.17 mm
β = 113.845 (4)°
Data collection top
Stoe IPDS 2
diffractometer
2500 independent reflections
Absorption correction: integration
(X-RED; Stoe & Cie, 2002)
2041 reflections with I > 2σ(I)
Tmin = 0.264, Tmax = 0.603Rint = 0.043
17760 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.057H-atom parameters constrained
S = 1.05Δρmax = 0.21 e Å3
2500 reflectionsΔρmin = 0.27 e Å3
163 parameters
Special details top

Experimental. 360 frames, detector distance = 80 mm

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.50831 (17)0.6980 (2)0.43648 (19)0.0398 (5)
C20.41462 (17)0.6863 (3)0.4623 (2)0.0459 (5)
H20.41490.73060.53310.055*
C30.32298 (19)0.6105 (3)0.3843 (2)0.0511 (6)
C40.3238 (2)0.5426 (3)0.2800 (2)0.0598 (6)
H40.26180.49050.22730.072*
C50.4143 (2)0.5512 (3)0.2533 (2)0.0560 (6)
H50.41350.50450.18300.067*
C60.50727 (19)0.6292 (3)0.3304 (2)0.0460 (5)
C70.2211 (2)0.6636 (4)0.5037 (3)0.0702 (8)
H7A0.15060.64360.50450.105*
H7B0.23130.77240.50050.105*
H7C0.27750.62250.57640.105*
C80.60408 (17)0.7762 (3)0.52179 (18)0.0414 (5)
H80.60430.81190.59510.050*
C90.78170 (17)0.8774 (2)0.57851 (18)0.0378 (5)
C100.88022 (18)0.8589 (2)0.5652 (2)0.0416 (5)
C110.97437 (19)0.9346 (3)0.6388 (2)0.0513 (6)
H111.03940.91840.62910.062*
C120.9720 (2)1.0342 (3)0.7265 (2)0.0576 (6)
H121.03541.08560.77660.069*
C130.8752 (2)1.0575 (3)0.7398 (2)0.0558 (6)
H130.87311.12620.79830.067*
C140.78146 (19)0.9799 (3)0.6673 (2)0.0473 (5)
H140.71690.99640.67780.057*
N10.68871 (14)0.7972 (2)0.49842 (16)0.0404 (4)
O10.59561 (14)0.6341 (2)0.30092 (15)0.0580 (4)
H10.64510.68310.35300.087*
O20.22715 (14)0.5934 (2)0.40032 (19)0.0692 (5)
Br10.88677 (2)0.72396 (3)0.44408 (2)0.05510 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0391 (11)0.0417 (12)0.0354 (11)0.0026 (9)0.0117 (10)0.0016 (9)
C20.0414 (13)0.0501 (14)0.0468 (13)0.0039 (9)0.0186 (12)0.0016 (10)
C30.0384 (13)0.0523 (14)0.0578 (15)0.0041 (10)0.0146 (12)0.0024 (11)
C40.0471 (14)0.0611 (16)0.0550 (16)0.0128 (12)0.0040 (13)0.0070 (13)
C50.0584 (15)0.0624 (16)0.0404 (13)0.0072 (12)0.0130 (12)0.0109 (11)
C60.0483 (13)0.0489 (13)0.0400 (12)0.0024 (10)0.0170 (11)0.0003 (10)
C70.0538 (16)0.0813 (19)0.086 (2)0.0022 (14)0.0391 (16)0.0103 (16)
C80.0435 (12)0.0475 (11)0.0338 (11)0.0030 (10)0.0164 (10)0.0001 (9)
C90.0389 (11)0.0387 (11)0.0333 (11)0.0023 (9)0.0120 (10)0.0050 (9)
C100.0416 (12)0.0404 (12)0.0425 (12)0.0003 (9)0.0167 (11)0.0045 (9)
C110.0409 (13)0.0507 (14)0.0601 (15)0.0056 (10)0.0180 (12)0.0001 (12)
C120.0480 (15)0.0595 (16)0.0540 (16)0.0167 (12)0.0088 (13)0.0046 (12)
C130.0671 (17)0.0553 (15)0.0465 (14)0.0149 (12)0.0244 (13)0.0098 (11)
C140.0475 (13)0.0514 (13)0.0461 (13)0.0053 (10)0.0221 (11)0.0013 (10)
N10.0375 (9)0.0449 (10)0.0377 (9)0.0024 (8)0.0140 (8)0.0008 (8)
O10.0562 (10)0.0760 (12)0.0487 (10)0.0107 (9)0.0284 (9)0.0156 (8)
O20.0407 (10)0.0810 (13)0.0865 (14)0.0153 (9)0.0263 (10)0.0078 (11)
Br10.05384 (15)0.05616 (14)0.06409 (16)0.00428 (12)0.03293 (12)0.00926 (13)
Geometric parameters (Å, º) top
C1—C61.399 (3)C8—N11.280 (3)
C1—C21.406 (3)C8—H80.9300
C1—C81.443 (3)C9—C141.389 (3)
C2—C31.370 (3)C9—C101.394 (3)
C2—H20.9300C9—N11.408 (3)
C3—O21.374 (3)C10—C111.376 (3)
C3—C41.386 (4)C10—Br11.896 (2)
C4—C51.370 (4)C11—C121.372 (4)
C4—H40.9300C11—H110.9300
C5—C61.387 (3)C12—C131.378 (4)
C5—H50.9300C12—H120.9300
C6—O11.360 (3)C13—C141.376 (3)
C7—O21.412 (3)C13—H130.9300
C7—H7A0.9600C14—H140.9300
C7—H7B0.9600O1—H10.8200
C7—H7C0.9600
C6—C1—C2119.0 (2)N1—C8—C1121.20 (19)
C6—C1—C8121.74 (19)N1—C8—H8119.4
C2—C1—C8119.24 (19)C1—C8—H8119.4
C3—C2—C1120.8 (2)C14—C9—C10117.1 (2)
C3—C2—H2119.6C14—C9—N1124.50 (19)
C1—C2—H2119.6C10—C9—N1118.35 (18)
C2—C3—O2125.5 (2)C11—C10—C9121.9 (2)
C2—C3—C4119.3 (2)C11—C10—Br1118.37 (16)
O2—C3—C4115.2 (2)C9—C10—Br1119.72 (16)
C5—C4—C3121.1 (2)C12—C11—C10119.8 (2)
C5—C4—H4119.5C12—C11—H11120.1
C3—C4—H4119.5C10—C11—H11120.1
C4—C5—C6120.3 (2)C11—C12—C13119.6 (2)
C4—C5—H5119.9C11—C12—H12120.2
C6—C5—H5119.9C13—C12—H12120.2
O1—C6—C5118.4 (2)C14—C13—C12120.5 (2)
O1—C6—C1122.0 (2)C14—C13—H13119.7
C5—C6—C1119.5 (2)C12—C13—H13119.7
O2—C7—H7A109.5C13—C14—C9121.1 (2)
O2—C7—H7B109.5C13—C14—H14119.4
H7A—C7—H7B109.5C9—C14—H14119.4
O2—C7—H7C109.5C8—N1—C9122.19 (18)
H7A—C7—H7C109.5C6—O1—H1109.5
H7B—C7—H7C109.5C3—O2—C7117.4 (2)
C6—C1—C2—C30.8 (3)N1—C9—C10—C11179.2 (2)
C8—C1—C2—C3178.8 (2)C14—C9—C10—Br1178.84 (16)
C1—C2—C3—O2179.5 (2)N1—C9—C10—Br11.6 (3)
C1—C2—C3—C41.0 (4)C9—C10—C11—C121.4 (4)
C2—C3—C4—C50.5 (4)Br1—C10—C11—C12179.37 (19)
O2—C3—C4—C5180.0 (2)C10—C11—C12—C130.1 (4)
C3—C4—C5—C60.3 (4)C11—C12—C13—C141.0 (4)
C4—C5—C6—O1179.6 (2)C12—C13—C14—C90.4 (4)
C4—C5—C6—C10.6 (4)C10—C9—C14—C131.0 (3)
C2—C1—C6—O1179.0 (2)N1—C9—C14—C13178.0 (2)
C8—C1—C6—O11.0 (3)C1—C8—N1—C9177.96 (19)
C2—C1—C6—C50.0 (3)C14—C9—N1—C820.9 (3)
C8—C1—C6—C5178.0 (2)C10—C9—N1—C8162.1 (2)
C6—C1—C8—N16.2 (3)C2—C3—O2—C72.0 (4)
C2—C1—C8—N1175.8 (2)C4—C3—O2—C7178.5 (2)
C14—C9—C10—C112.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.882.603 (2)146
O1—H1···Br10.822.973.6368 (17)139
C12—H12···O2i0.932.843.377 (3)118
C8—H8···O1ii0.932.563.478 (3)171
C7—H7B···Cg2iii0.96 (1)2.98 (1)3.763 (4)140 (1)
Symmetry codes: (i) x+1, y+3/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x+1, y, z+1.
(II) (E)-2-[(3-bromophenyl)iminomethyl]-4-methoxyphenol top
Crystal data top
C14H12BrNO2F(000) = 308
Mr = 306.16Dx = 1.600 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 8350 reflections
a = 12.6852 (19) Åθ = 3.0–27.9°
b = 4.5157 (4) ŵ = 3.23 mm1
c = 12.1383 (18) ÅT = 296 K
β = 113.915 (11)°Prism, red
V = 635.62 (15) Å30.75 × 0.33 × 0.11 mm
Z = 2
Data collection top
Stoe IPDS 2
diffractometer
1259 independent reflections
Radiation source: fine-focus sealed tube1105 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.086
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 3.4°
ω scansh = 1515
Absorption correction: integration
(X-RED; Stoe & Cie, 2002)
k = 55
Tmin = 0.279, Tmax = 0.723l = 1414
8350 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0243P)2 + 0.2013P]
where P = (Fo2 + 2Fc2)/3
S = 1.37(Δ/σ)max < 0.001
2504 reflectionsΔρmax = 0.33 e Å3
164 parametersΔρmin = 0.35 e Å3
2 restraintsAbsolute structure: Flack (1983), with how many Friedel pairs?
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.467 (16)
Crystal data top
C14H12BrNO2V = 635.62 (15) Å3
Mr = 306.16Z = 2
Monoclinic, PcMo Kα radiation
a = 12.6852 (19) ŵ = 3.23 mm1
b = 4.5157 (4) ÅT = 296 K
c = 12.1383 (18) Å0.75 × 0.33 × 0.11 mm
β = 113.915 (11)°
Data collection top
Stoe IPDS 2
diffractometer
1259 independent reflections
Absorption correction: integration
(X-RED; Stoe & Cie, 2002)
1105 reflections with I > 2σ(I)
Tmin = 0.279, Tmax = 0.723Rint = 0.086
8350 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.101Δρmax = 0.33 e Å3
S = 1.37Δρmin = 0.35 e Å3
2504 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs?
164 parametersAbsolute structure parameter: 0.467 (16)
2 restraints
Special details top

Experimental. 360 frames, detector distance = 80 mm

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4760 (5)0.0273 (12)0.3835 (5)0.0418 (13)
C20.3939 (5)0.1410 (13)0.4206 (5)0.0523 (15)
H20.39680.08600.49560.063*
C30.3091 (6)0.3309 (17)0.3509 (6)0.0519 (19)
C40.3068 (5)0.4181 (15)0.2397 (5)0.0581 (16)
H40.24950.54590.19070.070*
C50.3888 (6)0.3158 (14)0.2024 (5)0.0572 (16)
H50.38700.37920.12870.069*
C60.4741 (7)0.1214 (14)0.2713 (7)0.050 (2)
C70.1382 (6)0.6010 (19)0.3252 (7)0.081 (2)
H7A0.07650.58060.35140.122*
H7B0.16240.80410.33270.122*
H7C0.11180.54050.24260.122*
C80.5611 (5)0.1791 (12)0.4600 (5)0.0458 (14)
H80.56070.22650.53430.055*
C90.7163 (5)0.5078 (11)0.5079 (5)0.0430 (14)
C100.8037 (5)0.6000 (14)0.4748 (5)0.0463 (13)
H100.80760.52840.40480.056*
C110.8843 (5)0.7977 (13)0.5466 (5)0.0472 (14)
C120.8812 (5)0.9152 (15)0.6492 (5)0.0505 (14)
H120.93611.05200.69540.061*
C130.7942 (5)0.8243 (14)0.6816 (5)0.0529 (15)
H130.79010.90130.75080.064*
C140.7121 (6)0.6184 (17)0.6123 (6)0.0490 (17)
H140.65480.55580.63620.059*
Br11.00608 (6)0.91668 (16)0.50129 (6)0.0731 (3)
N10.6371 (4)0.2999 (10)0.4304 (4)0.0443 (11)
O10.5527 (5)0.0196 (13)0.2316 (4)0.0656 (15)
H10.59760.09270.28200.098*
O20.2323 (5)0.4205 (13)0.3977 (5)0.0819 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.054 (3)0.035 (3)0.033 (3)0.002 (3)0.014 (2)0.002 (2)
C20.067 (4)0.055 (4)0.040 (3)0.006 (3)0.027 (3)0.002 (3)
C30.065 (4)0.044 (4)0.050 (5)0.009 (3)0.027 (4)0.002 (3)
C40.064 (4)0.056 (4)0.046 (3)0.012 (4)0.013 (3)0.007 (3)
C50.074 (4)0.057 (4)0.042 (3)0.007 (3)0.025 (3)0.008 (3)
C60.063 (4)0.050 (5)0.042 (4)0.003 (3)0.026 (3)0.005 (3)
C70.072 (4)0.077 (5)0.099 (6)0.025 (4)0.039 (4)0.009 (5)
C80.061 (3)0.040 (3)0.038 (3)0.000 (3)0.022 (3)0.002 (3)
C90.050 (3)0.039 (4)0.036 (3)0.001 (2)0.013 (3)0.000 (3)
C100.050 (3)0.048 (3)0.043 (3)0.000 (3)0.020 (3)0.000 (3)
C110.052 (3)0.050 (4)0.041 (3)0.005 (3)0.019 (3)0.014 (3)
C120.050 (3)0.046 (3)0.048 (3)0.011 (3)0.013 (3)0.001 (3)
C130.066 (4)0.050 (4)0.043 (3)0.006 (3)0.023 (3)0.005 (3)
C140.049 (4)0.052 (4)0.045 (4)0.006 (3)0.018 (3)0.008 (3)
Br10.0668 (4)0.0881 (5)0.0680 (4)0.0187 (6)0.0312 (3)0.0094 (6)
N10.052 (3)0.039 (3)0.042 (3)0.002 (2)0.020 (2)0.002 (2)
O10.074 (3)0.086 (4)0.046 (3)0.025 (3)0.034 (3)0.018 (3)
O20.084 (4)0.094 (4)0.081 (4)0.038 (3)0.046 (3)0.021 (3)
Geometric parameters (Å, º) top
C1—C21.390 (8)C8—N11.278 (6)
C1—C61.417 (9)C8—H80.9300
C1—C81.444 (8)C9—C141.383 (9)
C2—C31.369 (9)C9—C101.387 (7)
C2—H20.9300C9—N11.417 (7)
C3—O21.373 (8)C10—C111.371 (8)
C3—C41.394 (9)C10—H100.9300
C4—C51.373 (9)C11—C121.368 (8)
C4—H40.9300C11—Br11.915 (5)
C5—C61.381 (10)C12—C131.376 (8)
C5—H50.9300C12—H120.9300
C6—O11.352 (7)C13—C141.395 (9)
C7—O21.418 (8)C13—H130.9300
C7—H7A0.9600C14—H140.9300
C7—H7B0.9600O1—H10.8200
C7—H7C0.9600
C2—C1—C6118.5 (6)N1—C8—C1123.2 (5)
C2—C1—C8119.5 (5)N1—C8—H8118.4
C6—C1—C8121.9 (6)C1—C8—H8118.4
C3—C2—C1122.4 (5)C14—C9—C10119.2 (6)
C3—C2—H2118.8C14—C9—N1124.5 (5)
C1—C2—H2118.8C10—C9—N1116.2 (5)
C2—C3—O2116.1 (6)C11—C10—C9119.3 (5)
C2—C3—C4118.6 (6)C11—C10—H10120.4
O2—C3—C4125.3 (7)C9—C10—H10120.4
C5—C4—C3120.3 (6)C12—C11—C10122.8 (5)
C5—C4—H4119.9C12—C11—Br1118.5 (4)
C3—C4—H4119.9C10—C11—Br1118.7 (4)
C4—C5—C6121.7 (6)C11—C12—C13117.8 (6)
C4—C5—H5119.1C11—C12—H12121.1
C6—C5—H5119.1C13—C12—H12121.1
O1—C6—C5120.7 (6)C12—C13—C14121.0 (6)
O1—C6—C1120.8 (6)C12—C13—H13119.5
C5—C6—C1118.5 (7)C14—C13—H13119.5
O2—C7—H7A109.5C9—C14—C13119.8 (6)
O2—C7—H7B109.5C9—C14—H14120.1
H7A—C7—H7B109.5C13—C14—H14120.1
O2—C7—H7C109.5C8—N1—C9120.6 (4)
H7A—C7—H7C109.5C6—O1—H1109.5
H7B—C7—H7C109.5C3—O2—C7118.2 (6)
C6—C1—C2—C32.6 (9)C14—C9—C10—C110.3 (8)
C8—C1—C2—C3178.1 (6)N1—C9—C10—C11179.1 (5)
C1—C2—C3—O2178.6 (6)C9—C10—C11—C121.5 (9)
C1—C2—C3—C41.5 (10)C9—C10—C11—Br1178.8 (4)
C2—C3—C4—C50.4 (11)C10—C11—C12—C131.3 (9)
O2—C3—C4—C5179.5 (7)Br1—C11—C12—C13179.0 (5)
C3—C4—C5—C61.2 (11)C11—C12—C13—C140.2 (10)
C4—C5—C6—O1178.8 (6)C10—C9—C14—C131.1 (10)
C4—C5—C6—C10.1 (10)N1—C9—C14—C13179.6 (6)
C2—C1—C6—O1179.3 (6)C12—C13—C14—C91.4 (11)
C8—C1—C6—O10.1 (10)C1—C8—N1—C9178.1 (5)
C2—C1—C6—C51.7 (9)C14—C9—N1—C86.6 (9)
C8—C1—C6—C5179.0 (6)C10—C9—N1—C8172.7 (5)
C2—C1—C8—N1177.8 (5)C2—C3—O2—C7175.7 (7)
C6—C1—C8—N12.9 (9)C4—C3—O2—C74.3 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.912.638 (7)148
(III) (E)-2-[(4-bromophenyl)iminomethyl]-4-methoxyphenol top
Crystal data top
C14H12BrNO2F(000) = 308
Mr = 306.16Dx = 1.603 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 8753 reflections
a = 14.0683 (12) Åθ = 2.9–28.0°
b = 6.9497 (7) ŵ = 3.23 mm1
c = 6.5553 (6) ÅT = 296 K
β = 98.264 (7)°Prism, red
V = 634.26 (10) Å30.36 × 0.27 × 0.11 mm
Z = 2
Data collection top
Stoe IPDS 2
diffractometer
2785 independent reflections
Radiation source: fine-focus sealed tube2225 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
Detector resolution: 6.67 pixels mm-1θmax = 27.5°, θmin = 2.9°
ω scansh = 1818
Absorption correction: integration
(X-RED; Stoe & Cie, 2002)
k = 99
Tmin = 0.287, Tmax = 0.732l = 88
8753 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075 w = 1/[σ2(Fo2) + (0.037P)2 + 0.0074P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2785 reflectionsΔρmax = 0.18 e Å3
167 parametersΔρmin = 0.23 e Å3
2 restraintsAbsolute structure: Flack (1983), with how many Friedel pairs?
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.015 (9)
Crystal data top
C14H12BrNO2V = 634.26 (10) Å3
Mr = 306.16Z = 2
Monoclinic, PcMo Kα radiation
a = 14.0683 (12) ŵ = 3.23 mm1
b = 6.9497 (7) ÅT = 296 K
c = 6.5553 (6) Å0.36 × 0.27 × 0.11 mm
β = 98.264 (7)°
Data collection top
Stoe IPDS 2
diffractometer
2785 independent reflections
Absorption correction: integration
(X-RED; Stoe & Cie, 2002)
2225 reflections with I > 2σ(I)
Tmin = 0.287, Tmax = 0.732Rint = 0.075
8753 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.075Δρmax = 0.18 e Å3
S = 1.04Δρmin = 0.23 e Å3
2785 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs?
167 parametersAbsolute structure parameter: 0.015 (9)
2 restraints
Special details top

Experimental. 314 frames, detector distance = 80 mm

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4847 (2)0.2212 (4)0.2358 (5)0.0408 (6)
C20.3945 (2)0.2001 (4)0.3025 (5)0.0443 (6)
H20.39120.15790.43590.053*
C30.3111 (3)0.2414 (5)0.1722 (7)0.0467 (8)
C40.3161 (3)0.2975 (5)0.0299 (6)0.0508 (7)
H40.25990.32270.11890.061*
C50.4034 (3)0.3162 (4)0.0992 (5)0.0488 (8)
H50.40600.35460.23420.059*
C60.4878 (2)0.2776 (4)0.0324 (5)0.0441 (7)
C70.2064 (3)0.2081 (7)0.4271 (9)0.0669 (13)
H7A0.13890.20820.43610.100*
H7B0.23700.31150.50850.100*
H7C0.23390.08780.47770.100*
C80.5713 (2)0.2014 (4)0.3814 (5)0.0432 (7)
H80.56690.17240.51820.052*
C90.7391 (2)0.2329 (4)0.4688 (6)0.0408 (6)
C100.8243 (3)0.1755 (5)0.4013 (7)0.0461 (9)
H100.82270.12620.26900.055*
C110.9105 (2)0.1909 (4)0.5284 (6)0.0547 (8)
H110.96700.15100.48330.066*
C120.9124 (3)0.2664 (4)0.7237 (6)0.0522 (8)
C130.8295 (2)0.3245 (4)0.7926 (5)0.0474 (7)
H130.83180.37510.92450.057*
C140.7425 (3)0.3080 (4)0.6663 (7)0.0452 (9)
H140.68620.34700.71320.054*
N10.65442 (19)0.2233 (3)0.3245 (4)0.0444 (6)
O10.5720 (2)0.3005 (4)0.0433 (4)0.0610 (6)
O20.22008 (19)0.2324 (4)0.2201 (5)0.0746 (8)
Br11.03106 (3)0.28753 (5)0.90101 (5)0.07099 (14)
H10.614 (4)0.282 (5)0.051 (9)0.073 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0402 (15)0.0401 (12)0.0415 (18)0.0001 (12)0.0037 (13)0.0008 (12)
C20.0385 (16)0.0527 (15)0.0410 (17)0.0047 (13)0.0035 (13)0.0008 (13)
C30.0358 (16)0.0580 (19)0.045 (2)0.0034 (15)0.0011 (15)0.0056 (16)
C40.0443 (17)0.0641 (17)0.041 (2)0.0042 (15)0.0039 (15)0.0060 (15)
C50.056 (2)0.0547 (17)0.0354 (17)0.0018 (13)0.0045 (15)0.0007 (12)
C60.0433 (16)0.0445 (13)0.0457 (19)0.0015 (12)0.0104 (14)0.0022 (13)
C70.043 (2)0.095 (3)0.065 (3)0.000 (2)0.018 (2)0.012 (2)
C80.0384 (14)0.0448 (14)0.0465 (19)0.0006 (12)0.0059 (15)0.0025 (13)
C90.0342 (16)0.0392 (13)0.0490 (19)0.0021 (11)0.0058 (14)0.0007 (12)
C100.041 (2)0.0489 (17)0.049 (2)0.0028 (13)0.0085 (17)0.0047 (13)
C110.0365 (16)0.0538 (17)0.075 (3)0.0058 (13)0.0113 (17)0.0031 (16)
C120.0398 (16)0.0466 (16)0.067 (2)0.0017 (12)0.0034 (16)0.0021 (14)
C130.0442 (17)0.0505 (17)0.0466 (18)0.0029 (12)0.0039 (15)0.0020 (12)
C140.0387 (17)0.0499 (19)0.049 (2)0.0056 (13)0.0132 (16)0.0001 (14)
N10.0364 (13)0.0489 (12)0.0477 (17)0.0011 (11)0.0056 (12)0.0002 (11)
O10.0502 (14)0.0878 (17)0.0467 (16)0.0038 (12)0.0125 (13)0.0074 (12)
O20.0333 (12)0.136 (2)0.0534 (17)0.0049 (14)0.0012 (13)0.0070 (14)
Br10.04227 (16)0.0812 (2)0.0837 (3)0.0039 (4)0.01056 (15)0.0024 (4)
Geometric parameters (Å, º) top
C1—C61.397 (4)C8—N11.287 (4)
C1—C21.407 (5)C8—H80.9300
C1—C81.442 (4)C9—C141.390 (5)
C2—C31.379 (5)C9—C101.394 (5)
C2—H20.9300C9—N11.413 (4)
C3—O21.364 (5)C10—C111.373 (5)
C3—C41.392 (6)C10—H100.9300
C4—C51.376 (5)C11—C121.381 (6)
C4—H40.9300C11—H110.9300
C5—C61.389 (5)C12—C131.371 (5)
C5—H50.9300C12—Br11.897 (4)
C6—O11.358 (4)C13—C141.380 (6)
C7—O21.408 (6)C13—H130.9300
C7—H7A0.9600C14—H140.9300
C7—H7B0.9600O1—H10.80 (6)
C7—H7C0.9600
C6—C1—C2118.6 (3)N1—C8—C1120.9 (3)
C6—C1—C8121.3 (3)N1—C8—H8119.5
C2—C1—C8119.9 (3)C1—C8—H8119.5
C3—C2—C1120.7 (3)C14—C9—C10119.2 (3)
C3—C2—H2119.7C14—C9—N1123.7 (3)
C1—C2—H2119.7C10—C9—N1117.0 (3)
O2—C3—C2126.3 (4)C11—C10—C9120.6 (4)
O2—C3—C4114.2 (4)C11—C10—H10119.7
C2—C3—C4119.5 (4)C9—C10—H10119.7
C5—C4—C3120.7 (3)C10—C11—C12119.4 (3)
C5—C4—H4119.7C10—C11—H11120.3
C3—C4—H4119.7C12—C11—H11120.3
C4—C5—C6120.0 (3)C13—C12—C11120.9 (3)
C4—C5—H5120.0C13—C12—Br1119.4 (3)
C6—C5—H5120.0C11—C12—Br1119.7 (3)
O1—C6—C5117.6 (3)C12—C13—C14120.1 (3)
O1—C6—C1122.0 (3)C12—C13—H13120.0
C5—C6—C1120.4 (3)C14—C13—H13120.0
O2—C7—H7A109.5C13—C14—C9119.9 (4)
O2—C7—H7B109.5C13—C14—H14120.1
H7A—C7—H7B109.5C9—C14—H14120.1
O2—C7—H7C109.5C8—N1—C9121.7 (3)
H7A—C7—H7C109.5C6—O1—H1107 (4)
H7B—C7—H7C109.5C3—O2—C7119.4 (3)
C6—C1—C2—C32.5 (4)C14—C9—C10—C110.6 (5)
C8—C1—C2—C3172.1 (3)N1—C9—C10—C11176.2 (3)
C1—C2—C3—O2177.9 (3)C9—C10—C11—C120.8 (5)
C1—C2—C3—C42.4 (5)C10—C11—C12—C130.5 (5)
O2—C3—C4—C5178.9 (3)C10—C11—C12—Br1179.7 (2)
C2—C3—C4—C51.4 (5)C11—C12—C13—C140.0 (5)
C3—C4—C5—C60.4 (5)Br1—C12—C13—C14179.2 (2)
C4—C5—C6—O1179.2 (3)C12—C13—C14—C90.2 (5)
C4—C5—C6—C10.5 (4)C10—C9—C14—C130.1 (4)
C2—C1—C6—O1179.8 (3)N1—C9—C14—C13175.4 (3)
C8—C1—C6—O15.7 (4)C1—C8—N1—C9170.4 (2)
C2—C1—C6—C51.5 (4)C14—C9—N1—C831.1 (4)
C8—C1—C6—C5173.0 (3)C10—C9—N1—C8153.5 (3)
C6—C1—C8—N14.4 (4)C2—C3—O2—C710.6 (6)
C2—C1—C8—N1178.8 (3)C4—C3—O2—C7169.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.80 (6)1.85 (6)2.577 (4)151 (6)
C14—H14···O1i0.932.443.270 (5)148
C7—H7C···O2ii0.962.763.604 (6)148
C5—H5···Cg1iii0.932.893.538 (3)129
C10—H10···Cg2iv0.932.853.569 (4)135
C13—H13···Cg2v0.932.853.572 (2)136
Symmetry codes: (i) x, y, z+1; (ii) x, y, z+1/2; (iii) x, y+1, z1/2; (iv) x, y, z1/2; (v) x, y+1, z+1/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC14H12BrNO2C14H12BrNO2C14H12BrNO2
Mr306.16306.16306.16
Crystal system, space groupMonoclinic, P21/cMonoclinic, PcMonoclinic, Pc
Temperature (K)296296296
a, b, c (Å)13.3255 (8), 8.7090 (5), 11.9743 (6)12.6852 (19), 4.5157 (4), 12.1383 (18)14.0683 (12), 6.9497 (7), 6.5553 (6)
α, β, γ (°)90, 113.845 (4), 9090, 113.915 (11), 9090, 98.264 (7), 90
V3)1271.02 (12)635.62 (15)634.26 (10)
Z422
Radiation typeMo KαMo KαMo Kα
µ (mm1)3.233.233.23
Crystal size (mm)0.66 × 0.35 × 0.170.75 × 0.33 × 0.110.36 × 0.27 × 0.11
Data collection
DiffractometerStoe IPDS 2
diffractometer
Stoe IPDS 2
diffractometer
Stoe IPDS 2
diffractometer
Absorption correctionIntegration
(X-RED; Stoe & Cie, 2002)
Integration
(X-RED; Stoe & Cie, 2002)
Integration
(X-RED; Stoe & Cie, 2002)
Tmin, Tmax0.264, 0.6030.279, 0.7230.287, 0.732
No. of measured, independent and
observed [I > 2σ(I)] reflections
17760, 2500, 2041 8350, 1259, 1105 8753, 2785, 2225
Rint0.0430.0860.075
(sin θ/λ)max1)0.6170.6170.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.057, 1.05 0.051, 0.101, 1.37 0.034, 0.075, 1.04
No. of reflections250025042785
No. of parameters163164167
No. of restraints022
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.21, 0.270.33, 0.350.18, 0.23
Absolute structure?Flack (1983), with how many Friedel pairs?Flack (1983), with how many Friedel pairs?
Absolute structure parameter?0.467 (16)0.015 (9)

Computer programs: X-AREA (Stoe & Cie, 2002), X-AREA, X-RED (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1998).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.882.603 (2)146.2
O1—H1···Br10.822.973.6368 (17)139.4
C12—H12···O2i0.932.843.377 (3)117.5
C8—H8···O1ii0.932.563.478 (3)170.7
C7—H7B···Cg2iii0.96 (0)2.98 (0)3.763 (4)139.8 (0)
Symmetry codes: (i) x+1, y+3/2, z+1/2; (ii) x, y+3/2, z+1/2; (iii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.912.638 (7)147.6
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.80 (6)1.85 (6)2.577 (4)151 (6)
C14—H14···O1i0.932.443.270 (5)148.0
C7—H7C···O2ii0.962.763.604 (6)147.5
C5—H5···Cg1iii0.932.8873.538 (3)128.5
C10—H10···Cg2iv0.932.8493.569 (4)135.1
C13—H13···Cg2v0.932.84723.572 (2)135.7
Symmetry codes: (i) x, y, z+1; (ii) x, y, z+1/2; (iii) x, y+1, z1/2; (iv) x, y, z1/2; (v) x, y+1, z+1/2.
Selected geometric parameters (Å, ° ) for (I), (II) and (III) top
(I)(II)(III)
C1-C61.399 (3)1.417 (9)1.397 (4)
C1-C81.443 (3)1.444 (8)1.442 (4)
C3-O21.374 (3)1.373 (8)1.364 (5)
C6-O11.360 (3)1.352 (7)1.358 (4)
C8-N11.280 (3)1.278 (6)1.287 (4)
C10-Br11.896 (2)
C11-Br11.915 (5)
C12-Br11.897 (4)
O1-H10.820.820.80 (6)
C6-C1-C8121.74 (19)121.9 (6)121.3 (3)
C2-C1-C8119.24 (19)119.5 (5)119.9 (3)
C2-C3-O2125.5 (2)116.1 (6)126.3 (4)
O1-C6-C1122.0 (2)120.8 (6)122.0 (3)
N1-C8-C1121.20 (19)123.2 (5)120.9 (3)
C14-C9-N1124.50 (19)124.5 (5)123.7 (3)
C10-C9-N1118.35 (18)116.2 (5)117.0 (3)
C9-C10-Br1119.72 (16)
C10-C11-Br1118.7 (4)
C13-C12-Br1119.4 (3)
C8-N1-C9122.19 (18)120.6 (4)121.7 (3)
C6-O1-H1110110107 (4)
C8-C1-C2-C3-178.8 (2)178.1 (6)172.1 (3)
C1-C2-C3-O2-179.5 (2)-178.6 (6)-177.9 (3)
C8-C1-C6-O1-1.0 (3)-0.1 (10)5.7 (4)
C6-C1-C8-N16.2 (3)2.9 (9)-4.4 (4)
C2-C1-C8-N1-175.8 (2)-177.8 (5)-178.8 (3)
N1-C9-C10-C11179.2 (2)-179.1 (5)176.2 (3)
N1-C9-C10-Br1-1.6 (3)
C1-C8-N1-C9177.96 (19)178.1 (5)170.4 (2)
C14-C9-N1-C8-20.9 (3)-6.6 (9)-31.1 (4)
C10-C9-N1-C8162.1 (2)172.7 (5)153.5 (3)
C2-C3-O2-C72.0 (4)175.7 (7)-169.8 (3)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds