Download citation
Download citation
link to html
The title molecule, [Ni(C6H17N3O)2](ClO4)2, possesses a crystallographic centre of symmetry at the NiII position. The coordination geometry around the NiII atom is distorted octahedral, consisting of six N atoms from two tripodal poly­amine ligands, while the ethanol O atoms of the ligands remain uncoordinated. The crystal packing shows two-dimensional layers and an infinite three-dimensional framework which is stabilized by a hydrogen-bonded network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100014682/de1158sup1.cif
Contains datablocks I, [NiL2(ClO4)2]

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100014682/de1158Isup2.hkl
Contains datablock I

CCDC reference: 158237

Comment top

Nonredox-active metals such as NiII and ZnII are potentially of interest as hydrolytic cleaving agents of DNA, and their reactivity in model systems may lead to functional DNA cleaving molecules. Metal-polyamine complexes of NiII or ZnII are frequently used as models for hydrolases. Among the polyamine ligands designed, tripodal polyamines are especially of interest owing to their implication in a wide variety of biochemical and supramolecular systems (Mao et al., 1993; Anderegg & Gramlich, 1994; Murthy & Karlin, 1993; Lu et al., 1998). Some reported NiII-tripodal polyamine complexes exhibit very high hydrolytic activity towards phosphate esters and are potential artificial DNA-cut agents (De Rosch & Trogler, 1990; Tafesse et al., 1993). In the course of our work on synthesis of metal-asymmetric tripodal heteropolyamine complexes, we obtained a new 1:2 NiIIL complex, the title complex, with a structure of firstly infinite two-dimensional layers, then infinite three-dimensional framework stabilized by the hydrogen-bond network. \sch

As depicted in Fig. 1, NiII is located at the symmetric center and exhibits a slightly distorted octahedral geometry with six nitrogen atoms from two of the tripodal polyamine ligands. Four primary amine N atoms form the equatorial plane in which the NiII atom lies almost in the middle with equal NiII—N distances [NiII—N2 = NiII—N2(-x, -y, -z) = 2.122 Å, NiII—N3 = NiII—N3(-x, -y, -z) = 2.129 Å], while the apical N atom (tertiary amine N atom) is a little bit further from the central NiII atom [NiII—N1= NiII—N1(-x, -y, -z) = 2.191 Å]. All the N—NiII—N bond angles range from 82.32° to 91.17°. The perchlorate anions ClO2O3O4O5 and Cl'O2'O3'O4'O5' are disorder, with occupancy factors of 0.50. Six kinds of hydrogen disordered bonds occur in the structure. The hydrogen bond between O1 of the ethoxyl-pod and N3 of ethenyl amine pod of the adjacent ligand [N3—H3a—O1(0.5 - x, -0.5 + y, 0.5 - z), N3—O1 = 3.114 Å and N3—H3a—O1 154.5°] is responsible for the formation of the two-dimensional sheet-like NiIIL2 cation polymers which spread along the (1, 0, -1) plane to form an infinite network (see Fig. 2). Three kinds of additional hydrogen bonds exist inside the layer between the nitrogen atoms of the ethenyl amine pods and perchlorate anions: N2—H2a—O3(-x, -y, -z), N2—O3 = 3.156 Å and N2—H2a—O3 161.02°; N3—H3b—O4(-x, -y, -z), N3—O4 = 3.089 Å and N3—H3b—O4 155.01°; N3—H3b—O4'(-x, -y, -z), N3—O4' = 3.038 Å and N3—H3b—O4' 170.87°. The other two kinds of hydrogen bond [O1—H1— O2(1 + x, y, z), O1—O2 = 2.895 Å and O1—H1—O2 168°; O1—H1—O2'(1 + x, y, z), O1—O2' = 3.041 Å and O1—H1—O2' 162°] between oxygen of the ethoxyl-pod and perchlorate anions cross-link the layers into one three-dimensional framework, as is depicted in Fig 2.

Experimental top

The title compound was synthesized by mixing the ligand 2-[bis(2-aminoethyl)amino]ethanol (0.147 g, 1 mmol) and NiII(ClO4)2. 6H2O (0.366 g, 1 mmol) in water. Purple crystals were obtained upon evaporation.

Refinement top

Data were corrected for Lorentz and polarization effects. The H atoms were geometrically fixed.

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids and atom-numbering scheme. H atoms have been omitted for clarity. [Symmetry code: (i) -x, -y, -z.]
[Figure 2] Fig. 2. A view of the two-dimensional network along the (1,0,-1) plane. Unrelated H atoms and perchlorate anions have been omitted for clarity.
[Figure 3] Fig. 3. Packing diagram viewed down the b axis, showing the three-dimensional framework.
Bis{2-[bis(2-aminoethyl)amino]ethanol}-nickel(II) perchlorate top
Crystal data top
[Ni(C6H17N3O)2](ClO4)2F(000) = 580
Mr = 552.06Dx = 1.648 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.026 (1) ÅCell parameters from 25 reflections
b = 12.623 (2) Åθ = 3.0–16.2°
c = 10.683 (1) ŵ = 1.17 mm1
β = 113.90 (1)°T = 298 K
V = 1112.8 (2) Å3Prism, purple
Z = 20.50 × 0.44 × 0.32 mm
Data collection top
Siemens P4
diffractometer
1700 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.016
Graphite monochromatorθmax = 25.5°, θmin = 2.5°
ω scansh = 010
Absorption correction: empirical (using intensity measurements)
(North et al., 1968)
k = 015
Tmin = 0.598, Tmax = 0.687l = 1211
2397 measured reflections3 standard reflections every 97 reflections
2061 independent reflections intensity decay: 2.3%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.105 w = 1/[σ2(Fo2) + (0.0669P)2 + 0.1837P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
2061 reflectionsΔρmax = 0.59 e Å3
192 parametersΔρmin = 0.39 e Å3
10 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0079 (18)
Crystal data top
[Ni(C6H17N3O)2](ClO4)2V = 1112.8 (2) Å3
Mr = 552.06Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.026 (1) ŵ = 1.17 mm1
b = 12.623 (2) ÅT = 298 K
c = 10.683 (1) Å0.50 × 0.44 × 0.32 mm
β = 113.90 (1)°
Data collection top
Siemens P4
diffractometer
1700 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
(North et al., 1968)
Rint = 0.016
Tmin = 0.598, Tmax = 0.6873 standard reflections every 97 reflections
2397 measured reflections intensity decay: 2.3%
2061 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03710 restraints
wR(F2) = 0.105H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.59 e Å3
2061 reflectionsΔρmin = 0.39 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni0.00000.00000.00000.03322 (19)
O10.3478 (3)0.3406 (2)0.0922 (3)0.0696 (7)
N10.1795 (3)0.11752 (18)0.0019 (2)0.0399 (5)
N20.0635 (3)0.07110 (19)0.1514 (3)0.0475 (6)
H2A0.08530.14020.13200.057*
H2B0.02030.06610.23380.057*
N30.2068 (3)0.06743 (19)0.1594 (2)0.0450 (6)
H3A0.18940.07180.23640.054*
H3B0.22310.13340.13550.054*
C10.2132 (5)0.0962 (3)0.1195 (4)0.0661 (10)
H1A0.32020.12290.10300.079*
H1B0.13550.13470.19680.079*
C20.2054 (6)0.0183 (3)0.1560 (5)0.0717 (11)
H2C0.20260.02510.24740.086*
H2D0.30270.05340.09300.086*
C30.3212 (4)0.1045 (3)0.1340 (4)0.0633 (9)
H3C0.41660.13050.12340.076*
H3D0.30520.14860.20190.076*
C40.3522 (5)0.0024 (3)0.1854 (5)0.0775 (13)
H4A0.41580.00040.28350.093*
H4B0.41740.03760.14460.093*
C50.1144 (4)0.2271 (3)0.0080 (4)0.0623 (9)
H5A0.09760.24070.07470.075*
H5B0.00860.22850.08370.075*
C60.2115 (5)0.3185 (3)0.0272 (4)0.0701 (10)
H6A0.24550.30150.10010.084*
H6B0.14330.38100.05450.084*
Cl0.2791 (7)0.3491 (5)0.0071 (5)0.0512 (11)0.50
O20.3952 (13)0.4190 (7)0.0207 (17)0.068 (3)0.50
O30.1755 (11)0.3094 (7)0.1357 (6)0.079 (3)0.50
O40.3545 (12)0.2592 (6)0.0712 (11)0.117 (4)0.50
O50.1852 (10)0.4025 (6)0.0511 (10)0.111 (3)0.50
Cl'0.2914 (8)0.3279 (5)0.0128 (6)0.0567 (14)0.50
O2'0.4037 (18)0.4124 (10)0.0151 (19)0.111 (6)0.50
O3'0.3515 (17)0.2410 (8)0.0609 (19)0.205 (6)0.50
O4'0.2909 (14)0.2925 (11)0.1112 (8)0.122 (4)0.50
O5'0.1399 (12)0.3495 (13)0.1173 (15)0.201 (9)0.50
H10.417 (3)0.372 (4)0.075 (2)0.110 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0295 (3)0.0379 (3)0.0331 (3)0.00180 (19)0.01355 (19)0.00067 (19)
O10.0707 (16)0.0752 (17)0.0666 (16)0.0282 (14)0.0316 (14)0.0081 (13)
N10.0337 (12)0.0455 (13)0.0412 (13)0.0011 (10)0.0160 (10)0.0023 (10)
N20.0505 (15)0.0484 (14)0.0488 (14)0.0003 (11)0.0254 (12)0.0096 (11)
N30.0412 (13)0.0450 (14)0.0458 (13)0.0047 (11)0.0146 (11)0.0041 (11)
C10.078 (2)0.077 (2)0.062 (2)0.019 (2)0.0470 (19)0.0085 (18)
C20.091 (3)0.068 (2)0.087 (3)0.009 (2)0.068 (3)0.0165 (19)
C30.0449 (17)0.074 (2)0.056 (2)0.0156 (17)0.0050 (15)0.0099 (17)
C40.050 (2)0.068 (2)0.082 (3)0.0069 (18)0.0062 (19)0.020 (2)
C50.0443 (17)0.0475 (18)0.092 (3)0.0049 (14)0.0243 (17)0.0018 (17)
C60.065 (2)0.053 (2)0.084 (3)0.0085 (18)0.021 (2)0.0076 (19)
Cl0.063 (2)0.0437 (17)0.0414 (17)0.0168 (12)0.0157 (13)0.0030 (12)
O20.078 (5)0.041 (4)0.115 (8)0.010 (3)0.071 (5)0.002 (4)
O30.100 (7)0.084 (5)0.037 (3)0.031 (4)0.011 (3)0.008 (3)
O40.113 (7)0.064 (5)0.129 (8)0.007 (4)0.002 (5)0.066 (6)
O50.127 (6)0.118 (6)0.142 (6)0.040 (5)0.112 (6)0.043 (5)
Cl'0.062 (2)0.055 (3)0.063 (2)0.0285 (16)0.0362 (17)0.0077 (15)
O2'0.144 (9)0.093 (7)0.111 (9)0.081 (7)0.068 (6)0.016 (5)
O3'0.251 (15)0.126 (8)0.324 (15)0.055 (9)0.205 (14)0.116 (10)
O4'0.130 (8)0.178 (11)0.066 (4)0.080 (7)0.048 (5)0.005 (5)
O5'0.057 (5)0.239 (17)0.260 (18)0.032 (8)0.016 (8)0.146 (13)
Geometric parameters (Å, º) top
Ni—N22.122 (2)C1—C21.492 (5)
Ni—N2i2.122 (2)C3—C41.441 (5)
Ni—N32.129 (2)C5—C61.512 (5)
Ni—N3i2.129 (2)Cl—O31.404 (4)
Ni—N1i2.191 (2)Cl—O51.409 (5)
Ni—N12.191 (2)Cl—O41.410 (4)
O1—C61.395 (5)Cl—O21.422 (5)
N1—C11.472 (4)Cl'—O5'1.398 (5)
N1—C31.480 (4)Cl'—O4'1.400 (5)
N1—C51.490 (4)Cl'—O3'1.410 (5)
N2—C21.462 (4)Cl'—O2'1.417 (5)
N3—C41.475 (4)
N2—Ni—N2i180.00 (16)C2—N2—Ni110.11 (19)
N2—Ni—N391.17 (10)C4—N3—Ni110.69 (18)
N2i—Ni—N388.83 (10)N1—C1—C2113.8 (3)
N2—Ni—N3i88.83 (10)N2—C2—C1112.4 (3)
N2i—Ni—N3i91.17 (10)C4—C3—N1115.3 (3)
N3—Ni—N3i180.00 (16)C3—C4—N3115.4 (3)
N2—Ni—N1i97.68 (9)N1—C5—C6119.0 (3)
N2i—Ni—N1i82.32 (9)O1—C6—C5111.9 (3)
N3—Ni—N1i98.18 (9)O3—Cl—O5108.7 (6)
N3i—Ni—N1i81.82 (9)O3—Cl—O4105.3 (7)
N2—Ni—N182.32 (9)O5—Cl—O4110.8 (7)
N2i—Ni—N197.68 (9)O3—Cl—O2110.3 (8)
N3—Ni—N181.82 (9)O5—Cl—O2110.4 (6)
N3i—Ni—N198.18 (9)O4—Cl—O2111.2 (8)
N1i—Ni—N1180.00 (12)O5'—Cl'—O4'116.1 (10)
C1—N1—C3114.3 (3)O5'—Cl'—O3'104.9 (9)
C1—N1—C5108.9 (3)O4'—Cl'—O3'104.2 (8)
C3—N1—C5109.5 (3)O5'—Cl'—O2'114.0 (11)
C1—N1—Ni106.50 (19)O4'—Cl'—O2'108.5 (9)
C3—N1—Ni106.47 (18)O3'—Cl'—O2'108.3 (9)
C5—N1—Ni111.06 (17)
N2—Ni—N1—C112.6 (2)N2—Ni—N3—C482.5 (3)
N2i—Ni—N1—C1167.4 (2)N2i—Ni—N3—C497.5 (3)
N3—Ni—N1—C1104.9 (2)N3i—Ni—N3—C485 (96)
N3i—Ni—N1—C175.1 (2)N1i—Ni—N3—C4179.6 (3)
N1i—Ni—N1—C1104 (22)N1—Ni—N3—C40.4 (3)
N2—Ni—N1—C3109.8 (2)C3—N1—C1—C283.5 (4)
N2i—Ni—N1—C370.2 (2)C5—N1—C1—C2153.6 (3)
N3—Ni—N1—C317.5 (2)Ni—N1—C1—C233.8 (4)
N3i—Ni—N1—C3162.5 (2)Ni—N2—C2—C131.3 (4)
N1i—Ni—N1—C3134 (21)N1—C1—C2—N245.1 (5)
N2—Ni—N1—C5131.0 (2)C1—N1—C3—C483.8 (4)
N2i—Ni—N1—C549.0 (2)C5—N1—C3—C4153.7 (4)
N3—Ni—N1—C5136.6 (2)Ni—N1—C3—C433.5 (4)
N3i—Ni—N1—C543.4 (2)N1—C3—C4—N336.1 (5)
N1i—Ni—N1—C515 (21)Ni—N3—C4—C318.3 (5)
N2i—Ni—N2—C2104 (98)C1—N1—C5—C655.0 (4)
N3—Ni—N2—C271.7 (3)C3—N1—C5—C670.7 (4)
N3i—Ni—N2—C2108.3 (3)Ni—N1—C5—C6172.0 (3)
N1i—Ni—N2—C2170.1 (2)N1—C5—C6—O173.1 (5)
N1—Ni—N2—C29.9 (2)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2ii0.82 (3)2.09 (3)2.895 (14)168 (5)
O1—H1···O2ii0.82 (3)2.25 (3)3.041 (18)162 (4)
N2—H2A···O3i0.902.293.156 (9)161
N3—H3A···O1iii0.902.283.113 (4)155
N3—H3B···O4i0.902.253.089 (10)155
N3—H3B···O4i0.902.153.038 (14)171
Symmetry codes: (i) x, y, z; (ii) x+1, y, z; (iii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Ni(C6H17N3O)2](ClO4)2
Mr552.06
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)9.026 (1), 12.623 (2), 10.683 (1)
β (°) 113.90 (1)
V3)1112.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.17
Crystal size (mm)0.50 × 0.44 × 0.32
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(North et al., 1968)
Tmin, Tmax0.598, 0.687
No. of measured, independent and
observed [I > 2σ(I)] reflections
2397, 2061, 1700
Rint0.016
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.105, 1.06
No. of reflections2061
No. of parameters192
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.59, 0.39

Computer programs: XSCANS (Siemens, 1994), XSCANS, SHELXTL (Sheldrick, 1990), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
Ni—N22.122 (2)Ni—N3i2.129 (2)
Ni—N2i2.122 (2)Ni—N1i2.191 (2)
Ni—N32.129 (2)Ni—N12.191 (2)
N2—Ni—N2i180.00 (16)N2i—Ni—N1i82.32 (9)
N2—Ni—N391.17 (10)N3—Ni—N1i98.18 (9)
N2i—Ni—N388.83 (10)N3i—Ni—N1i81.82 (9)
N3—Ni—N3i180.00 (16)N1i—Ni—N1180.00 (12)
N2—Ni—N1i97.68 (9)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2ii0.82 (3)2.09 (3)2.895 (14)168 (5)
O1—H1···O2'ii0.82 (3)2.25 (3)3.041 (18)162 (4)
N2—H2A···O3i0.89972.29183.156 (9)161.02
N3—H3A···O1iii0.89952.27743.113 (4)154.47
N3—H3B···O4i0.90042.24953.089 (10)155.01
N3—H3B···O4'i0.90042.14573.038 (14)170.87
Symmetry codes: (i) x, y, z; (ii) x+1, y, z; (iii) x+1/2, y1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds