Download citation
Download citation
link to html
The crystal structure of the title compound, C12H7Br4N3, shows that the stereochemistry about the N=N double bond of the N=N—N(H) moiety is trans. The whole mol­ecule deviates slightly from planarity (r.m.s. deviation 0.164 Å). While one of the aryl substituents is almost coplanar with the triazene chain, weak intermolecular Br...C contacts cause the second aryl substituent to deviate by an angle of 9.1 (8)° from the plane defined by the N=N—N group. Weak intermolecular N—H...Br interactions between mol­ecules related by the diagonal glide plane give rise to chains, which are stacked along the [100] crystallographic direction. An unequal distribution of double-bond character between the N atoms suggests a delocalization of π electrons over the diazo­amino group and the adjacent aryl groups.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102001683/da1213sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102001683/da1213Isup2.hkl
Contains datablock I

CCDC reference: 183037

Comment top

Free 1,3-disubstituted triazenes, RNN—N(H)R, are generally believed to adopt a trans stereochemistry about the NN double-bond (Moore & Robinson, 1986). This arrangement has been confirmed for numerous examples characterized by X-ray diffraction. Here, we report the synthesis and structural characterization of the title compound, (I), a symmetric disubstituted 1,3-diaryltriazene having polarizable halogen atoms on the terminal aryl rings. These halogen atoms make contacts with the H atom of the protonated triazenide chain. \sch

The molecular structure of (I) is shown in Fig. 1 and selected geometric parameters are given in Table 1. Deviations from the normal N—N and Car—N bond lengths suggest delocalization of the π electrons on the triazene group extended to the terminal aryl substituents. N1N2 [1.267 (7) Å] is longer than the characteristic value for a double bond (1.24 Å), whereas N2—N3 [1.332 (7) Å] is shorter than the characteristic value for a single bond (1.44 Å) (International Tables for X-Ray Crystallography, 1985, Vol. III, p. 270). Both N1—C11 [1.422 (7) Å] and N3—C31 [1.388 (8) Å] are shorter than expected for a Car—N single bond. These values are in good agreement with those found in related compounds (Zhang et al., 1999; Walton et al., 1991).

The terminal 2,4-dibromophenyl substituents make an interplanar angle of 14.7 (2)°, indicating the lack of planarity of the whole molecule. Due to the weak intramolecular N3—H3···Br3 interaction [N3···Br3 3.076 (5) Å], the related 2,4-dibromophenyl substituent is nearly coplanar with the N1 N2—N3 group [N2—N3—C31—C32 174.7 (6)°].

The crystal structure of (I) reveals that diagonal glide-plane-related molecules are ordered as polymer chains by weak N3—H3···Br2 intermolecular interactions [N3···Br2i 3.717 (6) Å; symmetry code: (i) x + 1/2, 1/2 - y, z - 1/2]. These polymer chains are stacked along the [100] direction, and are associated in pairs by an inversion centre. Weak interactions between these pairs can be recognized by intermolecular C···Br contacts [C16···Br1ii 3.788 (7) Å; symmetry code: (ii) 2 - x, 1 - y, 2 - z]. On the other hand, weak intermolecular C···Br contacts [C13···Br3iii 3.419 (6) Å and C14···Br3iii 3.455 (7) Å; symmetry code: (iii) x - 1/2, 1/2 - y, 1/2 + z] observed along the individual polymer chains hinder the coplanarity of the C11—C16 aryl group with the plane defined by the N1N2—N3 group [interplanar angle 9.1 (8)°].

Experimental top

2,4-Dibromoaniline (5.02 g, 20.0 mmol) was dissolved in glacial acetic acid (40 ml) and cooled below room temperature. A sodium nitrite solution (0.69 g, 10 mmol) in water (10 ml) was slowly added with continuous stirring. A yellow precipitate was observed. After complete addition of the above solution, the resulting mixture was neutralized with a 10% aqueous solution of NaHCO3. The yellow crude product was isolated by filtration and dried over P2O5 under vacuum. The product was recrystallized from a tetrahydrofuran/n-hexane mixture (1:1). Yellow plate-shaped crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of the solvent mixture (yield 6.35 g, 95%; m.p. 428–429 K).

Refinement top

H atoms were treated as riding, with C—H = 0.93 Å, N—H = 0.86 Å and Uiso(H) = 1.2Ueq of the parent atom. Are these the correct restraints?

Computing details top

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: SET4 in CAD-4 EXPRESS; data reduction: HELENA (Spek, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-32 (Farrugia, 1997) and PLATON (Spek, 1999); software used to prepare material for publication: SHELXL97 and ORTEP-32.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 70% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.
1,3-Bis(2,4-dibromophenyl)triazene top
Crystal data top
C12H7Br4N3F(000) = 960
Mr = 512.85Dx = 2.304 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
a = 10.701 (5) ÅCell parameters from 25 reflections
b = 9.949 (5) Åθ = 6.2–15.1°
c = 13.888 (5) ŵ = 10.88 mm1
β = 90°T = 293 K
V = 1478.6 (11) Å3Plate, yellow
Z = 40.3 × 0.2 × 0.1 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
2045 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 26.0°, θmin = 3.2°
θ/2θ scansh = 1313
Absorption correction: ψ-scan
(Spek, 1990)
k = 121
Tmin = 0.115, Tmax = 0.337l = 017
3358 measured reflections3 standard reflections every 60 min
2878 independent reflections intensity decay: variation 0.5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0616P)2]
where P = (Fo2 + 2Fc2)/3
2878 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 1.01 e Å3
0 restraintsΔρmin = 1.00 e Å3
Crystal data top
C12H7Br4N3V = 1478.6 (11) Å3
Mr = 512.85Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.701 (5) ŵ = 10.88 mm1
b = 9.949 (5) ÅT = 293 K
c = 13.888 (5) Å0.3 × 0.2 × 0.1 mm
β = 90°
Data collection top
Enraf-Nonius CAD-4
diffractometer
2045 reflections with I > 2σ(I)
Absorption correction: ψ-scan
(Spek, 1990)
Rint = 0.037
Tmin = 0.115, Tmax = 0.3373 standard reflections every 60 min
3358 measured reflections intensity decay: variation 0.5%
2878 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.111H-atom parameters constrained
S = 1.02Δρmax = 1.01 e Å3
2878 reflectionsΔρmin = 1.00 e Å3
172 parameters
Special details top

Geometry. Mean-plane data from final SHELXL refinement run:-

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

6.0726 (0.0241) x - 6.8524 (0.0199) y - 6.2773 (0.0343) z = 4.4174 (0.0279)

* -0.0005 (0.0045) C11 * 0.0006 (0.0046) C12 * 0.0037 (0.0046) C13 * -0.0081 (0.0047) C14 * 0.0080 (0.0048) C15 * -0.0038 (0.0047) C16

Rms deviation of fitted atoms = 0.0051

6.4038 (0.0317) x - 5.7985 (0.0621) y - 7.6461 (0.0976) z = 4.8162 (0.0239)

Angle to previous plane (with approximate e.s.d.) = 8.48 (0.81)

* 0.0000 (0.0000) N1 * 0.0000 (0.0000) N2 * 0.0000 (0.0000) N3

Rms deviation of fitted atoms = 0.0000

6.1338 (0.0228) x - 5.2575 (0.0219) y - 8.7085 (0.0292) z = 4.7291 (0.0091)

Angle to previous plane (with approximate e.s.d.) = 5.57 (0.85)

* 0.0034 (0.0043) C31 * -0.0096 (0.0046) C32 * 0.0080 (0.0046) C33 * -0.0004 (0.0046) C34 * -0.0057 (0.0047) C35 * 0.0043 (0.0046) C36

Rms deviation of fitted atoms = 0.0060

6.0530 (0.0142) x - 6.9156 (0.0124) y - 6.1730 (0.0103) z = 4.4060 (0.0171)

Angle to previous plane (with approximate e.s.d.) = 14.21 (0.30)

* 0.0191 (0.0030) Br1 * 0.0038 (0.0031) Br2 * -0.0086 (0.0050) C11 * -0.0166 (0.0054) C12 * -0.0094 (0.0052) C13 * -0.0076 (0.0056) C14 * 0.0179 (0.0056) C15 * 0.0015 (0.0048) C16

Rms deviation of fitted atoms = 0.0122

6.0142 (0.0138) x - 5.2511 (0.0065) y - 8.8552 (0.0169) z = 4.6711 (0.0050)

Angle to previous plane (with approximate e.s.d.) = 14.68 (0.18)

* -0.0273 (0.0030) Br3 * -0.0267 (0.0029) Br4 * 0.0019 (0.0048) C31 * 0.0105 (0.0054) C32 * 0.0385 (0.0053) C33 * 0.0190 (0.0053) C34 * -0.0079 (0.0053) C35 * -0.0080 (0.0047) C36

Rms deviation of fitted atoms = 0.0210

6.4038 (0.0317) x - 5.7985 (0.0621) y - 7.6461 (0.0976) z = 4.8162 (0.0239)

Angle to previous plane (with approximate e.s.d.) = 6.26 (0.81)

* 0.0000 (0.0000) N1 * 0.0000 (0.0000) N2 * 0.0000 (0.0000) N3

Rms deviation of fitted atoms = 0.0000

6.0530 (0.0142) x - 6.9156 (0.0124) y - 6.1730 (0.0103) z = 4.4060 (0.0171)

Angle to previous plane (with approximate e.s.d.) = 9.06 (0.76)

* 0.0191 (0.0030) Br1 * 0.0038 (0.0031) Br2 * -0.0086 (0.0050) C11 * -0.0166 (0.0054) C12 * -0.0094 (0.0052) C13 * -0.0076 (0.0056) C14 * 0.0179 (0.0056) C15 * 0.0015 (0.0048) C16

Rms deviation of fitted atoms = 0.0122

6.4038 (0.0317) x - 5.7985 (0.0621) y - 7.6461 (0.0976) z = 4.8162 (0.0239)

Angle to previous plane (with approximate e.s.d.) = 9.06 (0.76)

* 0.0000 (0.0000) N1 * 0.0000 (0.0000) N2 * 0.0000 (0.0000) N3

Rms deviation of fitted atoms = 0.0000

6.0142 (0.0138) x - 5.2511 (0.0065) y - 8.8552 (0.0169) z = 4.6711 (0.0050)

Angle to previous plane (with approximate e.s.d.) = 6.26 (0.81)

* -0.0273 (0.0030) Br3 * -0.0267 (0.0029) Br4 * 0.0019 (0.0048) C31 * 0.0105 (0.0054) C32 * 0.0385 (0.0053) C33 * 0.0190 (0.0053) C34 * -0.0079 (0.0053) C35 * -0.0080 (0.0047) C36

Rms deviation of fitted atoms = 0.0210

5.9745 (0.0251) x - 5.2365 (0.0268) y - 8.9172 (0.0161) z = 4.6544 (0.0135)

Angle to previous plane (with approximate e.s.d.) = 0.34 (1/3)

* 0.0308 (0.0012) H3 * -0.0302 (0.0016) N3 * -0.0014 (0.0041) C31 * 0.0152 (0.0038) C32 * -0.0144 (0.0018) Br3

Rms deviation of fitted atoms = 0.0215

6.4883 (0.0042) x - 5.8950 (0.0056) y - 7.3775 (0.0085) z = 4.8734 (0.0034)

Angle to previous plane (with approximate e.s.d.) = 7.90 (0.31)

* 0.4050 (0.0025) Br1 * -0.0972 (0.0028) Br2 * -0.0229 (0.0060) C11 * 0.1222 (0.0058) C12 * 0.1055 (0.0056) C13 * -0.0719 (0.0058) C14 * -0.2030 (0.0060) C15 * -0.1894 (0.0061) C16 * -0.0019 (0.0052) N1 * 0.0046 (0.0052) N2 * -0.0207 (0.0048) N3 * -0.0685 (0.0045) H3 * -0.3762 (0.0026) Br3 * 0.0694 (0.0028) Br4 * 0.0297 (0.0057) C31 * -0.1069 (0.0060) C32 * -0.0606 (0.0058) C33 * 0.0858 (0.0055) C34 * 0.2091 (0.0057) C35 * 0.1881 (0.0060) C36

Rms deviation of fitted atoms = 0.1637

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br30.47146 (7)0.04492 (7)0.23083 (5)0.0345 (2)
Br40.27792 (6)0.43594 (8)0.07722 (6)0.0377 (2)
Br11.02540 (6)0.31836 (8)0.06805 (5)0.0340 (2)
Br21.23075 (7)0.17883 (10)0.29211 (5)0.0455 (2)
N30.6699 (5)0.0053 (6)0.0729 (4)0.0258 (12)
H30.66790.06620.11680.031*
N20.7566 (5)0.0105 (6)0.0041 (4)0.0251 (12)
N10.8307 (5)0.1083 (5)0.0163 (4)0.0255 (12)
C310.5827 (5)0.0980 (6)0.0739 (4)0.0198 (13)
C320.4850 (6)0.0983 (7)0.1410 (4)0.0267 (14)
C330.3964 (5)0.1995 (7)0.1443 (5)0.0285 (16)
H330.33390.19860.19080.034*
C340.4023 (5)0.3008 (7)0.0780 (5)0.0260 (15)
C350.4975 (6)0.3041 (7)0.0084 (5)0.0288 (15)
H350.50050.37320.03670.035*
C360.5859 (6)0.2044 (7)0.0074 (4)0.0264 (15)
H360.64950.20730.03830.032*
C110.9217 (5)0.1192 (7)0.0579 (4)0.0231 (14)
C121.0164 (6)0.2143 (7)0.0455 (4)0.0250 (14)
C131.1087 (6)0.2326 (7)0.1144 (4)0.0281 (15)
H131.17200.29540.10540.034*
C141.1042 (6)0.1554 (8)0.1961 (4)0.0300 (16)
C151.0126 (6)0.0584 (8)0.2108 (5)0.0364 (18)
H151.01240.00520.26580.044*
C160.9225 (6)0.0441 (7)0.1411 (5)0.0279 (15)
H160.85940.01880.15050.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br30.0336 (4)0.0362 (4)0.0335 (4)0.0021 (3)0.0129 (3)0.0050 (3)
Br40.0223 (3)0.0322 (4)0.0585 (5)0.0081 (3)0.0077 (3)0.0024 (4)
Br10.0283 (4)0.0367 (4)0.0369 (4)0.0100 (3)0.0060 (3)0.0048 (3)
Br20.0261 (4)0.0766 (6)0.0339 (4)0.0073 (4)0.0136 (3)0.0163 (4)
N30.019 (3)0.024 (3)0.034 (3)0.003 (2)0.009 (2)0.003 (2)
N20.020 (3)0.031 (3)0.024 (3)0.003 (3)0.006 (2)0.004 (2)
N10.022 (3)0.024 (3)0.031 (3)0.002 (2)0.012 (2)0.005 (3)
C310.014 (3)0.022 (3)0.023 (3)0.001 (3)0.004 (2)0.007 (3)
C320.023 (3)0.031 (4)0.026 (3)0.006 (3)0.003 (3)0.000 (3)
C330.011 (3)0.038 (4)0.036 (3)0.001 (3)0.008 (3)0.007 (3)
C340.009 (3)0.031 (4)0.038 (3)0.001 (3)0.001 (3)0.009 (3)
C350.021 (3)0.021 (3)0.044 (4)0.001 (3)0.001 (3)0.001 (3)
C360.019 (3)0.032 (4)0.028 (3)0.000 (3)0.005 (3)0.001 (3)
C110.013 (3)0.029 (4)0.027 (3)0.000 (3)0.001 (2)0.005 (3)
C120.029 (3)0.022 (3)0.024 (3)0.002 (3)0.001 (3)0.008 (3)
C130.016 (3)0.037 (4)0.031 (3)0.001 (3)0.001 (3)0.009 (3)
C140.018 (3)0.047 (4)0.026 (3)0.001 (3)0.004 (3)0.016 (3)
C150.030 (4)0.052 (5)0.027 (3)0.015 (4)0.003 (3)0.006 (4)
C160.020 (3)0.028 (4)0.036 (3)0.003 (3)0.001 (3)0.002 (3)
Geometric parameters (Å, º) top
Br3—C321.900 (7)C35—C361.371 (9)
Br4—C341.892 (6)C35—H350.9300
Br1—C121.890 (6)C36—H360.9300
Br2—C141.913 (6)C11—C161.376 (9)
N3—N21.332 (7)C11—C121.397 (9)
N3—C311.388 (8)C12—C131.386 (8)
N3—H30.8600C13—C141.371 (9)
N2—N11.267 (7)C13—Br3i3.419 (6)
N1—C111.422 (7)C13—H130.9300
C31—C321.400 (8)C14—C151.391 (10)
C31—C361.405 (9)C14—Br3i3.455 (7)
C32—C331.384 (9)C15—C161.373 (9)
C33—C341.366 (9)C15—H150.9300
C33—H330.9300C16—Br1ii3.788 (7)
C34—C351.404 (9)C16—H160.9300
N2—N3—C31120.2 (5)C12—C11—N1117.3 (6)
N2—N3—H3119.9C13—C12—C11121.4 (6)
C31—N3—H3119.9C13—C12—Br1117.8 (5)
N1—N2—N3111.6 (5)C11—C12—Br1120.8 (4)
N2—N1—C11112.9 (5)C14—C13—C12118.1 (6)
N3—C31—C32120.7 (6)C14—C13—Br3i80.0 (4)
N3—C31—C36122.4 (5)C12—C13—Br3i102.3 (4)
C32—C31—C36116.9 (6)C14—C13—H13120.9
C33—C32—C31122.3 (6)C12—C13—H13120.9
C33—C32—Br3118.2 (4)Br3i—C13—H1387.8
C31—C32—Br3119.5 (5)C13—C14—C15122.4 (6)
C34—C33—C32118.9 (5)C13—C14—Br2118.9 (5)
C34—C33—H33120.5C15—C14—Br2118.7 (5)
C32—C33—H33120.5C13—C14—Br3i77.0 (4)
C33—C34—C35121.0 (6)C15—C14—Br3i105.4 (4)
C33—C34—Br4119.8 (4)Br2—C14—Br3i88.9 (2)
C35—C34—Br4119.3 (5)C16—C15—C14117.6 (6)
C36—C35—C34119.3 (6)C16—C15—H15121.2
C36—C35—H35120.3C14—C15—H15121.2
C34—C35—H35120.3C15—C16—C11122.6 (6)
C35—C36—C31121.5 (6)C15—C16—Br1ii100.6 (5)
C35—C36—H36119.2C11—C16—Br1ii107.0 (4)
C31—C36—H36119.2C15—C16—H16118.7
C16—C11—C12117.9 (5)C11—C16—H16118.7
C16—C11—N1124.8 (6)Br1ii—C16—H1660.2
C31—N3—N2—N1177.7 (5)C16—C11—C12—Br1178.2 (5)
N3—N2—N1—C11177.9 (5)N1—C11—C12—Br12.4 (8)
N2—N3—C31—C32174.7 (6)C11—C12—C13—C140.6 (10)
N2—N3—C31—C363.9 (9)Br1—C12—C13—C14178.7 (5)
N3—C31—C32—C33179.9 (6)C11—C12—C13—Br3i85.7 (6)
C36—C31—C32—C331.4 (9)Br1—C12—C13—Br3i96.2 (4)
N3—C31—C32—Br30.4 (8)C12—C13—C14—C151.5 (10)
C36—C31—C32—Br3178.2 (5)Br3i—C13—C14—C15100.1 (6)
C31—C32—C33—C341.9 (10)C12—C13—C14—Br2180.0 (5)
Br3—C32—C33—C34177.8 (5)Br3i—C13—C14—Br281.4 (4)
C32—C33—C34—C351.0 (10)C12—C13—C14—Br3i98.6 (6)
C32—C33—C34—Br4177.1 (5)C13—C14—C15—C161.9 (10)
C33—C34—C35—C360.3 (10)Br2—C14—C15—C16179.6 (5)
Br4—C34—C35—C36178.4 (5)Br3i—C14—C15—C1682.3 (6)
C34—C35—C36—C310.8 (10)C14—C15—C16—C111.5 (10)
N3—C31—C36—C35178.7 (6)C14—C15—C16—Br1ii119.7 (6)
C32—C31—C36—C350.1 (9)C12—C11—C16—C150.7 (10)
N2—N1—C11—C167.8 (9)N1—C11—C16—C15180.0 (6)
N2—N1—C11—C12172.9 (6)C12—C11—C16—Br1ii115.8 (5)
C16—C11—C12—C130.3 (10)N1—C11—C16—Br1ii64.9 (7)
N1—C11—C12—C13179.6 (6)N2—N3—C31—C32174.7 (6)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···Br2iii0.862.913.717 (6)156
N3—H3···Br30.862.643.076 (5)113
Symmetry code: (iii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC12H7Br4N3
Mr512.85
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.701 (5), 9.949 (5), 13.888 (5)
β (°)90, 90, 90
V3)1478.6 (11)
Z4
Radiation typeMo Kα
µ (mm1)10.88
Crystal size (mm)0.3 × 0.2 × 0.1
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ-scan
(Spek, 1990)
Tmin, Tmax0.115, 0.337
No. of measured, independent and
observed [I > 2σ(I)] reflections
3358, 2878, 2045
Rint0.037
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.111, 1.02
No. of reflections2878
No. of parameters172
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.01, 1.00

Computer programs: CAD-4 EXPRESS (Enraf-Nonius, 1994), SET4 in CAD-4 EXPRESS, HELENA (Spek, 1996), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-32 (Farrugia, 1997) and PLATON (Spek, 1999), SHELXL97 and ORTEP-32.

Selected geometric parameters (Å, º) top
Br3—C321.900 (7)N3—H30.8600
Br4—C341.892 (6)N2—N11.267 (7)
Br1—C121.890 (6)N1—C111.422 (7)
Br2—C141.913 (6)C13—Br3i3.419 (6)
N3—N21.332 (7)C14—Br3i3.455 (7)
N3—C311.388 (8)C16—Br1ii3.788 (7)
N2—N3—C31120.2 (5)C35—C34—Br4119.3 (5)
N1—N2—N3111.6 (5)C12—C11—N1117.3 (6)
N2—N1—C11112.9 (5)C11—C12—Br1120.8 (4)
N3—C31—C32120.7 (6)C13—C14—Br2118.9 (5)
C31—C32—Br3119.5 (5)
C31—N3—N2—N1177.7 (5)N2—N1—C11—C167.8 (9)
N3—N2—N1—C11177.9 (5)N2—N1—C11—C12172.9 (6)
N2—N3—C31—C32174.7 (6)N1—C11—C12—Br12.4 (8)
N2—N3—C31—C363.9 (9)N2—N3—C31—C32174.7 (6)
N3—C31—C32—Br30.4 (8)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···Br2iii0.862.913.717 (6)156
N3—H3···Br30.862.643.076 (5)113
Symmetry code: (iii) x1/2, y+1/2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds