Download citation
Download citation
link to html
The reaction of Co(acac)3 with N-(2-amino­ethyl)-1,3-propane­di­amine in the presence of NaNO2 results in the preparation of an unexpected di­nitro­cobalt(III) compound, (11-amino-4-methyl-5,8-di­aza­undeca-2,4-dien-2-olato-κ4­N5,8,11,O)-di­nitrocobalt(III), [Co(C10H20N3O)(NO2)2], containing the tetra­dentate anion of 11-amino-4-methyl-5,8-diazaundeca-2,4-dien-­2-ol. Two isomers of the compound were obtained by recrystallization of the crude product. In one isomer, the two trans nitro groups are staggered, and in the other they are eclipsed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100014463/da1150sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100014463/da1150Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100014463/da1150IIsup3.hkl
Contains datablock II

CCDC references: 158234; 158235

Comment top

Tris(acetylacetonato)cobalt(III), Co(acac)3, is a useful starting material for the preparation of various CoIII complexes. Although the same is true for the anionic complex, [Co(CO3)3]3-, Co(acac)3 has an advantage when there is a need for using organic solvents for the reaction. Also, a coordinated acac ligand can undergo an organic reaction with nucleophilic reagents to generate a new chelating ligand.

The title compounds, (I) amd (II), were obtained while trying to prepare trinitrocobalt(III) complexes with facial configurations by replacing the acac ligands of Co(acac)3 with a tridentate amine ligand and nitro groups. Instead, a condensation reaction occurred between an –NH2 group of the amine ligand and a carbonyl group of a coordinated acac ligand to give the monoanionic tetradentate ligand. Compound (I) has two nitro groups in a staggered conformation [O2—N4···N5—O5 = 63.7 (2)°] and appears to be less soluble than compound (II) in which the two nitro groups are almost eclipsed [O2—N4···N5—O5 = 13.3 (5)°]. A similar case is known in which two conformational isomers of mer-Co(en)(NH3)(NO2)3 crystallize with different crystal habits and color (brown and yellow), but in the same space group (P21/c) (Jensen et al., 1970) \sch

The geometry of the tetradentate ligand around the cobalt atom is quite similar in both structures. For example, N1—C4 [1.298 (3) for (I); 1.294 (5) Å for (II)] and C2—C3 [1.367 (4) for (I); 1.362 Å for (II)] are considered as double bonds and the single negative charge is mostly assigned to O1 since the O1—C2 bond [1.289 (3) for (I); 1.293 (4) Å for (II)] is rather long for a carbonyl group. Also, the relatively short distance of Co—O1 [1.889 (2) for (I); 1.880 (3) Å for (II)] reflects an anionic character of the ligand atom. The distances between cobalt and NO2 nitrogen atoms of (I) are uneven with the difference being 20σ; in (II), the difference is only 4σ. No severe distortion is observed in the angular geometry of the octahedral cobalt atom. The four N—O bond distances in the two nitro groups of (II) fall within the 3 σ range with an average of 1.226 (4) Å. In (I), N4—O2 [1.252 (3) Å] is significantly longer than the other three N—O bonds whose average is 1.226 (2) Å, probably because of the short intramolecular contact between O2 and the hydrogen atom of N2 [1.993 (24) Å].

In the packing structure of (I) (Fig. 3), the two nitro groups, staggered to each other, form hydrogen bonds with –NH2 hydrogen atoms of neighboring molecules, related by inversion symmetry. This one-dimensional interaction extends along the c direction of the unit cell, and no other hydrogen bonding is found in other directions. The structure can therefore be described as a stack of one-dimensional strings along which the chirality of the molecules alternates. Also, the molecules of (I) are arranged such that the approximate planes of the tetradentate ligand are parallel to one another over the whole structure.

The packing diagram of (II) shows that there is only one intermolecular hydrogen bond, involving O4 and the hydrogen atom of N2 [d(O···H) = 2.151 (40) Å]. The oxygen atoms of the other nitro group have only very weak interactions with amine hydrogen atoms [d(O···H) > 2.6 Å]. As Fig. 4 clearly shows, the hydrogen bond is always formed by a pair of molecules around crystallographic inversion centers; and, unlike the other isomer, the planes of the tetradentate ligands are not parallel but alternate along the c direction.

Experimental top

A aqueous solution (5 ml) containing NaNO2 (15 mmol) was added to an acetonitrile solution (25 ml) of Co(acac)3 (Bryan & Fernelius, 1957) (5 mmol). The solution was mildly heated, and N-(2-aminoethyl)-1,3-propanediamine (10 mmol) was added. After further heating for 30 minutes, the solution was cooled to room temperature. A dark brown residue obtained after the solution dried out (3 weeks) was washed with water (20 ml) (yield 45%). The crude product was dissolved in hot water, filtered through charcoal and recrystallized to give rod-shaped crystals of deep red color (I). The crystals were collected by filtration. Upon further standing, the filtrate gave dark red, brick-shaped crystals of larger size (II). Analysis found (calc) for the mixture: C 34.37 (34.39), H 5.77 (5.78), N 19.88 (20.06)%. 13C NMR (CDCl3, 300 MHz, TMS): δ (p.p.m.) = 176.97 (C N), 166.24 (C–O), 96.11 (CH), 52.23, 51.00, 49.83, 39.60, 27.46 (5 CH2), 25.14, 22.44 (2 CH3).

Computing details top

For both compounds, data collection: CAD-4-PC (Enraf-Nonius, 1989); cell refinement: CAD-4-PC; data reduction: NRCVAX DATRD2 (Le Page & Gabe, 1979); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: ORTEPIII (Burnett & Johnson, 1996).

Figures top
[Figure 1] Fig. 1. ORTEP view of (I) with displacement ellipsoids drawn at the 40% probability level.
[Figure 2] Fig. 2. ORTEP view of (II) with displacement ellipsoids drawn at the 40% probability level.
[Figure 3] Fig. 3. Packing diagram of (I), with hydrogen bonding indicated.
[Figure 4] Fig. 4. Packing diagram of (II), with hydrogen bonding indicated.
(I) trans-dinitro[2-hydroxo-4-methyl-5,8,12-triazadodec-2-ene-4-imine] cobalt(III) top
Crystal data top
[Co(C10H20N3O)(NO2)2]F(000) = 728
Mr = 349.24Dx = 1.599 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.375 (2) ÅCell parameters from 25 reflections
b = 20.065 (3) Åθ = 8.7–13.5°
c = 9.8088 (9) ŵ = 1.21 mm1
β = 91.717 (7)°T = 293 K
V = 1450.8 (4) Å3Rod, dark red
Z = 40.60 × 0.17 × 0.14 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
1855 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.015
Graphite monochromatorθmax = 25.0°, θmin = 2.0°
ω–2θ scansh = 88
Absorption correction: ψ scan
(NRCVAX ABSORP; Gabe et al., 1989)
k = 023
Tmin = 0.776, Tmax = 0.844l = 011
2702 measured reflections3 standard reflections every 240 min
2554 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: difference Fourier map
wR(F2) = 0.064All H-atom parameters refined
S = 1.01 w = 1/[σ2(Fo2) + (0.0428P)2]
where P = (Fo2 + 2Fc2)/3
2554 reflections(Δ/σ)max = 0.004
270 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Co(C10H20N3O)(NO2)2]V = 1450.8 (4) Å3
Mr = 349.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.375 (2) ŵ = 1.21 mm1
b = 20.065 (3) ÅT = 293 K
c = 9.8088 (9) Å0.60 × 0.17 × 0.14 mm
β = 91.717 (7)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
1855 reflections with I > 2σ(I)
Absorption correction: ψ scan
(NRCVAX ABSORP; Gabe et al., 1989)
Rint = 0.015
Tmin = 0.776, Tmax = 0.8443 standard reflections every 240 min
2702 measured reflections intensity decay: none
2554 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.064All H-atom parameters refined
S = 1.01Δρmax = 0.25 e Å3
2554 reflectionsΔρmin = 0.36 e Å3
270 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating _R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.19333 (4)0.084501 (14)0.25009 (3)0.02674 (11)
N10.3185 (3)0.16449 (10)0.2080 (2)0.0395 (5)
N20.4010 (2)0.03760 (10)0.1744 (2)0.0353 (5)
H1N0.357 (3)0.0277 (12)0.088 (3)0.044 (7)*
N30.0611 (3)0.00080 (9)0.2815 (2)0.0287 (4)
H2N0.009 (3)0.0116 (12)0.343 (3)0.039 (7)*
H3N0.004 (3)0.0096 (11)0.209 (2)0.034 (7)*
N40.0831 (3)0.08965 (10)0.0641 (2)0.0360 (4)
N50.2978 (2)0.08213 (9)0.4336 (2)0.0323 (4)
O10.0113 (2)0.12628 (7)0.32371 (15)0.0341 (4)
O20.1471 (2)0.05617 (11)0.0308 (2)0.0573 (5)
O30.0459 (3)0.12607 (10)0.0387 (2)0.0603 (5)
O40.4535 (2)0.10143 (9)0.4583 (2)0.0482 (5)
O50.2061 (2)0.06127 (9)0.5272 (2)0.0474 (4)
C10.1819 (4)0.2097 (2)0.4291 (4)0.0573 (8)
H1C0.281 (5)0.196 (2)0.390 (4)0.111 (16)*
H2C0.206 (5)0.2558 (19)0.430 (4)0.097 (12)*
H3C0.156 (5)0.200 (2)0.521 (4)0.121 (16)*
C20.0198 (3)0.18921 (11)0.3490 (2)0.0387 (5)
C30.1033 (4)0.23601 (12)0.3106 (3)0.0518 (7)
H4C0.080 (4)0.2809 (16)0.328 (3)0.082 (10)*
C40.2607 (4)0.22401 (13)0.2352 (3)0.0483 (7)
C50.3635 (7)0.2840 (2)0.1864 (6)0.0861 (13)
H5C0.480 (7)0.286 (3)0.226 (5)0.17 (2)*
H6C0.304 (5)0.3206 (19)0.214 (3)0.078 (12)*
H7C0.367 (7)0.284 (3)0.094 (5)0.16 (3)*
C60.4764 (4)0.1518 (2)0.1238 (3)0.0551 (8)
H8C0.445 (4)0.1547 (13)0.024 (3)0.059 (8)*
H9C0.562 (4)0.1830 (13)0.136 (3)0.049 (7)*
C70.5535 (3)0.0853 (2)0.1627 (3)0.0483 (7)
H10C0.615 (3)0.0858 (11)0.251 (3)0.036 (6)*
H11C0.635 (3)0.0667 (12)0.099 (3)0.045 (7)*
C80.4606 (3)0.02644 (14)0.2362 (3)0.0437 (6)
H12C0.561 (3)0.0429 (11)0.183 (2)0.036 (6)*
H13C0.504 (3)0.0184 (12)0.331 (2)0.042 (7)*
C90.3109 (3)0.07728 (13)0.2352 (3)0.0447 (6)
H14C0.267 (3)0.0846 (11)0.141 (2)0.035 (6)*
H15C0.360 (3)0.1202 (14)0.267 (2)0.049 (7)*
C100.1575 (4)0.06063 (12)0.3272 (3)0.0391 (6)
H16C0.200 (3)0.0543 (12)0.421 (3)0.042 (7)*
H17C0.070 (4)0.0954 (12)0.330 (2)0.043 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.0228 (2)0.0321 (2)0.0254 (2)0.00557 (12)0.00108 (10)0.00118 (13)
N10.0369 (11)0.0452 (12)0.0363 (11)0.0184 (9)0.0002 (9)0.0056 (9)
N20.0255 (10)0.0548 (13)0.0256 (9)0.0051 (9)0.0011 (8)0.0028 (9)
N30.0254 (9)0.0309 (10)0.0298 (10)0.0011 (8)0.0019 (9)0.0006 (8)
N40.0319 (10)0.0418 (11)0.0340 (10)0.0124 (9)0.0050 (8)0.0069 (9)
N50.0300 (10)0.0390 (10)0.0281 (9)0.0049 (8)0.0016 (8)0.0029 (9)
O10.0300 (8)0.0292 (8)0.0432 (9)0.0000 (6)0.0038 (7)0.0008 (7)
O20.0527 (11)0.0884 (15)0.0305 (9)0.0024 (10)0.0054 (8)0.0106 (10)
O30.0528 (12)0.0686 (13)0.0580 (12)0.0118 (10)0.0202 (9)0.0068 (10)
O40.0343 (9)0.0734 (13)0.0364 (9)0.0158 (9)0.0049 (7)0.0040 (8)
O50.0414 (9)0.0729 (12)0.0283 (8)0.0129 (9)0.0072 (7)0.0037 (8)
C10.049 (2)0.047 (2)0.076 (2)0.0141 (14)0.001 (2)0.016 (2)
C20.0398 (13)0.0320 (13)0.0436 (13)0.0030 (10)0.0093 (11)0.0011 (10)
C30.058 (2)0.0281 (14)0.068 (2)0.0045 (12)0.0094 (14)0.0001 (13)
C40.051 (2)0.0421 (15)0.051 (2)0.0210 (12)0.0115 (13)0.0127 (12)
C50.084 (3)0.051 (2)0.123 (4)0.031 (2)0.002 (3)0.023 (2)
C60.050 (2)0.072 (2)0.044 (2)0.034 (2)0.0115 (13)0.0024 (14)
C70.0283 (13)0.078 (2)0.0392 (14)0.0129 (13)0.0108 (11)0.0075 (14)
C80.0311 (13)0.061 (2)0.0390 (14)0.0141 (12)0.0022 (11)0.0023 (12)
C90.0438 (14)0.0425 (15)0.0479 (15)0.0142 (13)0.0019 (12)0.0022 (13)
C100.0417 (14)0.0326 (12)0.0434 (15)0.0073 (11)0.0052 (11)0.0058 (11)
Geometric parameters (Å, º) top
Co—O11.8886 (15)C1—H3C0.94 (4)
Co—N11.903 (2)C2—C31.367 (4)
Co—N51.937 (2)C3—C41.416 (4)
Co—N21.962 (2)C3—H4C0.93 (3)
Co—N31.971 (2)C4—C51.508 (4)
Co—N41.977 (2)C5—H5C0.93 (5)
N1—C41.298 (3)C5—H6C0.90 (4)
N1—C61.471 (3)C5—H7C0.91 (5)
N2—C81.482 (3)C6—C71.495 (4)
N2—C71.484 (3)C6—H8C1.00 (3)
N2—H1N0.92 (2)C6—H9C0.89 (3)
N3—C101.485 (3)C7—H10C0.96 (2)
N3—H2N0.83 (2)C7—H11C0.96 (2)
N3—H3N0.87 (2)C8—C91.503 (4)
N4—O31.219 (3)C8—H12C0.97 (2)
N4—O21.252 (3)C8—H13C0.99 (2)
N5—O41.229 (2)C9—C101.506 (3)
N5—O51.230 (2)C9—H14C0.98 (2)
O1—C21.289 (3)C9—H15C0.98 (3)
C1—C21.506 (4)C10—H16C0.97 (2)
C1—H1C0.86 (4)C10—H17C0.95 (3)
C1—H2C0.94 (4)
O1—Co—N196.13 (8)O1—C2—C1114.3 (2)
O1—Co—N587.46 (7)C3—C2—C1120.0 (2)
N1—Co—N592.31 (8)C2—C3—C4126.1 (2)
O1—Co—N2177.67 (7)C2—C3—H4C119 (2)
N1—Co—N286.19 (9)C4—C3—H4C115 (2)
N5—Co—N292.68 (8)N1—C4—C3122.9 (2)
O1—Co—N385.05 (7)N1—C4—C5119.9 (3)
N1—Co—N3176.48 (8)C3—C4—C5117.2 (3)
N5—Co—N391.05 (8)C4—C5—H5C111 (3)
N2—Co—N392.62 (8)C4—C5—H6C108 (2)
O1—Co—N491.05 (8)H5C—C5—H6C107 (4)
N1—Co—N486.83 (8)C4—C5—H7C110 (3)
N5—Co—N4178.19 (8)H5C—C5—H7C111 (4)
N2—Co—N488.85 (8)H6C—C5—H7C110 (4)
N3—Co—N489.84 (8)N1—C6—C7108.2 (2)
C4—N1—C6123.0 (2)N1—C6—H8C112.2 (15)
C4—N1—Co124.6 (2)C7—C6—H8C112.1 (16)
C6—N1—Co111.9 (2)N1—C6—H9C112.0 (17)
C8—N2—C7112.0 (2)C7—C6—H9C109.3 (17)
C8—N2—Co119.11 (15)H8C—C6—H9C103 (2)
C7—N2—Co108.8 (2)N2—C7—C6108.2 (2)
C8—N2—H1N106.4 (15)N2—C7—H10C105.9 (14)
C7—N2—H1N108.3 (15)C6—C7—H10C112.6 (14)
Co—N2—H1N101.2 (15)N2—C7—H11C106.9 (15)
C10—N3—Co121.3 (2)C6—C7—H11C114.9 (15)
C10—N3—H2N107.5 (16)H10C—C7—H11C108 (2)
Co—N3—H2N102.3 (17)N2—C8—C9112.1 (2)
C10—N3—H3N107.2 (15)N2—C8—H12C107.2 (13)
Co—N3—H3N109.9 (15)C9—C8—H12C109.6 (13)
H2N—N3—H3N108 (2)N2—C8—H13C109.1 (14)
O3—N4—O2118.6 (2)C9—C8—H13C109.4 (14)
O3—N4—Co121.1 (2)H12C—C8—H13C109.4 (18)
O2—N4—Co120.3 (2)C8—C9—C10114.2 (2)
O4—N5—O5119.4 (2)C8—C9—H14C109.3 (13)
O4—N5—Co121.25 (14)C10—C9—H14C111.4 (14)
O5—N5—Co119.34 (14)C8—C9—H15C109.2 (15)
C2—O1—Co123.55 (15)C10—C9—H15C106.5 (14)
C2—C1—H1C111 (3)H14C—C9—H15C105.9 (19)
C2—C1—H2C115 (2)N3—C10—C9111.4 (2)
H1C—C1—H2C99 (3)N3—C10—H16C108.4 (14)
C2—C1—H3C108 (2)C9—C10—H16C111.6 (14)
H1C—C1—H3C121 (4)N3—C10—H17C107.4 (15)
H2C—C1—H3C103 (3)C9—C10—H17C112.3 (15)
O1—C2—C3125.7 (2)H16C—C10—H17C105 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H2N···O5i0.83 (2)2.45 (2)3.029 (3)127.8 (2.1)
N3—H3N···O2ii0.87 (2)2.22 (2)3.080 (3)168.5 (2.1)
Symmetry codes: (i) x, y, z+1; (ii) x, y, z.
(II) trans-dinitro[2-hydroxo-4-methyl-5,8,12-triazadodec-2-ene-4-imine] cobalt(III) top
Crystal data top
[Co(C10H20N3O)(NO2)2]F(000) = 728
Mr = 349.24Dx = 1.594 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.923 (3) ÅCell parameters from 25 reflections
b = 13.105 (1) Åθ = 8.2–13.1°
c = 14.0273 (13) ŵ = 1.21 mm1
β = 91.908 (10)°T = 293 K
V = 1455.7 (5) Å3Brick, dark red
Z = 40.52 × 0.40 × 0.30 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
1985 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
ω–2θ scansh = 99
Absorption correction: ψ scan
(NRCVAX ABSORP; Gabe et al., 1989)
k = 015
Tmin = 0.648, Tmax = 0.696l = 016
2672 measured reflections3 standard reflections every 240 min
2568 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: difference Fourier map
wR(F2) = 0.105All H-atom parameters refined
S = 1.14 w = 1/[σ2(Fo2) + (0.0464P)2 + 2.1606P]
where P = (Fo2 + 2Fc2)/3
2568 reflections(Δ/σ)max = 0.002
270 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Co(C10H20N3O)(NO2)2]V = 1455.7 (5) Å3
Mr = 349.24Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.923 (3) ŵ = 1.21 mm1
b = 13.105 (1) ÅT = 293 K
c = 14.0273 (13) Å0.52 × 0.40 × 0.30 mm
β = 91.908 (10)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
1985 reflections with I > 2σ(I)
Absorption correction: ψ scan
(NRCVAX ABSORP; Gabe et al., 1989)
Rint = 0.039
Tmin = 0.648, Tmax = 0.6963 standard reflections every 240 min
2672 measured reflections intensity decay: none
2568 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.105All H-atom parameters refined
S = 1.14Δρmax = 0.37 e Å3
2568 reflectionsΔρmin = 0.48 e Å3
270 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating _R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co0.05180 (6)0.22034 (3)0.08760 (3)0.0255 (2)
N10.0635 (4)0.1707 (2)0.1949 (2)0.0310 (7)
N20.2067 (4)0.1057 (2)0.1088 (2)0.0319 (7)
H1N0.174 (5)0.060 (3)0.071 (3)0.028 (10)*
N30.1679 (4)0.2711 (3)0.0248 (3)0.0363 (7)
H2N0.117 (6)0.242 (4)0.075 (4)0.053 (14)*
H3N0.144 (6)0.332 (4)0.024 (3)0.052 (15)*
N40.1841 (4)0.3144 (2)0.1681 (2)0.0386 (8)
N50.0885 (4)0.1326 (2)0.0035 (2)0.0345 (7)
O10.0980 (3)0.3281 (2)0.0588 (2)0.0389 (6)
O20.2272 (5)0.2945 (3)0.2509 (2)0.0641 (10)
O30.2236 (5)0.3977 (2)0.1346 (2)0.0611 (9)
O40.1636 (4)0.0589 (2)0.0350 (2)0.0562 (8)
O50.1049 (5)0.1494 (3)0.0817 (2)0.0726 (11)
C10.3194 (6)0.4441 (4)0.0750 (4)0.0463 (11)
H1C0.349 (7)0.443 (4)0.010 (4)0.079 (18)*
H2C0.248 (7)0.499 (4)0.083 (4)0.076 (17)*
H3C0.419 (8)0.460 (5)0.105 (4)0.09 (2)*
C20.2264 (4)0.3504 (3)0.1094 (3)0.0315 (8)
C30.2795 (5)0.2974 (3)0.1863 (3)0.0367 (9)
H4C0.377 (6)0.319 (3)0.218 (3)0.045 (12)*
C40.2026 (5)0.2080 (3)0.2258 (3)0.0339 (8)
C50.2909 (7)0.1557 (5)0.3057 (4)0.0531 (12)
H5C0.235 (7)0.159 (4)0.363 (4)0.070 (17)*
H6C0.399 (8)0.184 (4)0.312 (4)0.080 (18)*
H7C0.315 (7)0.089 (5)0.294 (4)0.074 (18)*
C60.0069 (6)0.0738 (3)0.2329 (3)0.0428 (10)
H8C0.056 (5)0.018 (3)0.202 (3)0.046 (12)*
H9C0.002 (6)0.070 (4)0.300 (3)0.052 (13)*
C70.1906 (6)0.0683 (3)0.2078 (3)0.0417 (10)
H10C0.229 (5)0.001 (4)0.214 (3)0.046 (12)*
H11C0.260 (5)0.112 (3)0.249 (3)0.034 (10)*
C80.3892 (5)0.1186 (4)0.0849 (3)0.0437 (10)
H12C0.442 (6)0.054 (4)0.095 (3)0.049 (13)*
H13C0.427 (5)0.167 (3)0.127 (3)0.039 (11)*
C90.4079 (6)0.1530 (4)0.0164 (4)0.0492 (11)
H14C0.348 (6)0.110 (3)0.062 (3)0.048 (12)*
H15C0.514 (7)0.149 (4)0.029 (3)0.056 (14)*
C100.3502 (6)0.2612 (4)0.0341 (4)0.0464 (11)
H16C0.377 (6)0.282 (3)0.099 (3)0.051 (13)*
H17C0.411 (5)0.305 (3)0.012 (3)0.040 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co0.0241 (3)0.0240 (3)0.0284 (3)0.0005 (2)0.0022 (2)0.0023 (2)
N10.032 (2)0.030 (2)0.031 (2)0.0013 (13)0.0024 (12)0.0053 (13)
N20.034 (2)0.027 (2)0.035 (2)0.0010 (13)0.0015 (13)0.0046 (14)
N30.035 (2)0.039 (2)0.036 (2)0.003 (2)0.0087 (14)0.003 (2)
N40.043 (2)0.031 (2)0.042 (2)0.0001 (14)0.008 (2)0.0060 (15)
N50.033 (2)0.033 (2)0.038 (2)0.0045 (14)0.0002 (14)0.0001 (14)
O10.041 (2)0.0329 (14)0.044 (2)0.0086 (12)0.0080 (12)0.0089 (12)
O20.088 (3)0.057 (2)0.046 (2)0.015 (2)0.022 (2)0.002 (2)
O30.090 (3)0.034 (2)0.060 (2)0.022 (2)0.010 (2)0.006 (2)
O40.067 (2)0.048 (2)0.053 (2)0.027 (2)0.001 (2)0.004 (2)
O50.090 (3)0.082 (3)0.044 (2)0.034 (2)0.023 (2)0.011 (2)
C10.039 (3)0.038 (2)0.061 (3)0.011 (2)0.012 (2)0.006 (2)
C20.020 (2)0.032 (2)0.041 (2)0.0010 (14)0.0088 (15)0.010 (2)
C30.029 (2)0.038 (2)0.042 (2)0.004 (2)0.004 (2)0.009 (2)
C40.032 (2)0.040 (2)0.030 (2)0.008 (2)0.003 (2)0.005 (2)
C50.051 (3)0.065 (3)0.044 (3)0.010 (3)0.020 (2)0.003 (2)
C60.052 (3)0.037 (2)0.039 (2)0.001 (2)0.002 (2)0.013 (2)
C70.046 (2)0.035 (2)0.044 (2)0.006 (2)0.007 (2)0.007 (2)
C80.026 (2)0.045 (3)0.059 (3)0.007 (2)0.004 (2)0.007 (2)
C90.025 (2)0.063 (3)0.060 (3)0.000 (2)0.011 (2)0.014 (2)
C100.041 (2)0.052 (3)0.048 (3)0.013 (2)0.014 (2)0.002 (2)
Geometric parameters (Å, º) top
Co—O11.880 (3)C1—H3C0.93 (6)
Co—N11.901 (3)C2—C31.362 (6)
Co—N41.953 (3)C3—C41.423 (6)
Co—N21.956 (3)C3—H4C0.94 (4)
Co—N51.965 (3)C4—C51.506 (6)
Co—N31.968 (3)C5—H5C0.90 (6)
N1—C41.294 (5)C5—H6C0.94 (6)
N1—C61.480 (5)C5—H7C0.91 (6)
N2—C71.482 (5)C6—C71.511 (6)
N2—C81.505 (5)C6—H8C0.98 (4)
N2—H1N0.84 (4)C6—H9C0.95 (5)
N3—C101.460 (6)C7—H10C0.94 (5)
N3—H2N0.88 (5)C7—H11C0.97 (4)
N3—H3N0.82 (5)C8—C91.503 (7)
N4—O21.227 (4)C8—H12C0.95 (5)
N4—O31.233 (4)C8—H13C0.90 (4)
N5—O51.219 (4)C9—C101.508 (7)
N5—O41.225 (4)C9—H14C0.97 (5)
O1—C21.293 (4)C9—H15C0.87 (5)
C1—C21.503 (6)C10—H16C0.97 (5)
C1—H1C0.93 (6)C10—H17C0.98 (4)
C1—H2C0.92 (6)
O1—Co—N196.35 (12)O1—C2—C1113.3 (4)
O1—Co—N488.44 (13)C3—C2—C1120.7 (4)
N1—Co—N491.19 (13)C2—C3—C4126.1 (4)
O1—Co—N2176.28 (13)C2—C3—H4C120 (3)
N1—Co—N286.13 (13)C4—C3—H4C114 (3)
N4—Co—N294.29 (14)N1—C4—C3122.6 (3)
O1—Co—N588.30 (13)N1—C4—C5119.9 (4)
N1—Co—N589.90 (13)C3—C4—C5117.4 (4)
N4—Co—N5176.66 (13)C4—C5—H5C114 (4)
N2—Co—N588.94 (13)C4—C5—H6C110 (4)
O1—Co—N383.25 (13)H5C—C5—H6C109 (5)
N1—Co—N3179.06 (14)C4—C5—H7C114 (3)
N4—Co—N389.7 (2)H5C—C5—H7C108 (5)
N2—Co—N394.23 (14)H6C—C5—H7C102 (5)
N5—Co—N389.24 (15)N1—C6—C7108.1 (3)
C4—N1—C6121.2 (3)N1—C6—H8C107 (2)
C4—N1—Co125.0 (3)C7—C6—H8C110 (3)
C6—N1—Co113.2 (2)N1—C6—H9C111 (3)
C7—N2—C8111.0 (3)C7—C6—H9C109 (3)
C7—N2—Co108.9 (2)H8C—C6—H9C111 (4)
C8—N2—Co118.9 (3)N2—C7—C6108.4 (3)
C7—N2—H1N109 (3)N2—C7—H10C111 (3)
C8—N2—H1N103 (3)C6—C7—H10C109 (3)
Co—N2—H1N106 (3)N2—C7—H11C108 (2)
C10—N3—Co122.1 (3)C6—C7—H11C111 (2)
C10—N3—H2N109 (3)H10C—C7—H11C109 (3)
Co—N3—H2N106 (3)C9—C8—N2111.7 (3)
C10—N3—H3N109 (3)C9—C8—H12C111 (3)
Co—N3—H3N101 (3)N2—C8—H12C107 (3)
H2N—N3—H3N110 (5)C9—C8—H13C111 (3)
O2—N4—O3118.9 (4)N2—C8—H13C104 (3)
O2—N4—Co122.7 (3)H12C—C8—H13C113 (4)
O3—N4—Co118.4 (3)C8—C9—C10113.5 (4)
O5—N5—O4117.3 (3)C8—C9—H14C113 (3)
O5—N5—Co121.6 (3)C10—C9—H14C108 (3)
O4—N5—Co121.1 (3)C8—C9—H15C107 (3)
C2—O1—Co123.7 (2)C10—C9—H15C109 (3)
C2—C1—H1C114 (3)H14C—C9—H15C106 (4)
C2—C1—H2C108 (3)N3—C10—C9111.3 (4)
H1C—C1—H2C105 (5)N3—C10—H16C108 (3)
C2—C1—H3C117 (4)C9—C10—H16C110 (3)
H1C—C1—H3C105 (5)N3—C10—H17C111 (2)
H2C—C1—H3C108 (5)C9—C10—H17C108 (2)
O1—C2—C3126.1 (3)H16C—C10—H17C109 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···O4i0.84 (4)2.15 (4)2.966 (4)164.13 (3.59)
Symmetry code: (i) x, y, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Co(C10H20N3O)(NO2)2][Co(C10H20N3O)(NO2)2]
Mr349.24349.24
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)293293
a, b, c (Å)7.375 (2), 20.065 (3), 9.8088 (9)7.923 (3), 13.105 (1), 14.0273 (13)
β (°) 91.717 (7) 91.908 (10)
V3)1450.8 (4)1455.7 (5)
Z44
Radiation typeMo KαMo Kα
µ (mm1)1.211.21
Crystal size (mm)0.60 × 0.17 × 0.140.52 × 0.40 × 0.30
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Enraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(NRCVAX ABSORP; Gabe et al., 1989)
ψ scan
(NRCVAX ABSORP; Gabe et al., 1989)
Tmin, Tmax0.776, 0.8440.648, 0.696
No. of measured, independent and
observed [I > 2σ(I)] reflections
2702, 2554, 1855 2672, 2568, 1985
Rint0.0150.039
(sin θ/λ)max1)0.5940.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.064, 1.01 0.032, 0.105, 1.14
No. of reflections25542568
No. of parameters270270
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.25, 0.360.37, 0.48

Computer programs: CAD-4-PC (Enraf-Nonius, 1989), CAD-4-PC, NRCVAX DATRD2 (Le Page & Gabe, 1979), SHELXS86 (Sheldrick, 1990), SHELXL93 (Sheldrick, 1993), ORTEPIII (Burnett & Johnson, 1996).

Selected geometric parameters (Å, º) for (I) top
Co—O11.8886 (15)Co—N41.977 (2)
Co—N11.903 (2)N1—C41.298 (3)
Co—N51.937 (2)O1—C21.289 (3)
Co—N21.962 (2)C2—C31.367 (4)
Co—N31.971 (2)C3—C41.416 (4)
O1—Co—N196.13 (8)N5—Co—N4178.19 (8)
O1—Co—N587.46 (7)O1—C2—C3125.7 (2)
O1—Co—N2177.67 (7)C2—C3—C4126.1 (2)
N1—Co—N3176.48 (8)N1—C4—C3122.9 (2)
N1—Co—N486.83 (8)
Selected geometric parameters (Å, º) for (II) top
Co—O11.880 (3)Co—N31.968 (3)
Co—N11.901 (3)N1—C41.294 (5)
Co—N41.953 (3)O1—C21.293 (4)
Co—N21.956 (3)C2—C31.362 (6)
Co—N51.965 (3)C3—C41.423 (6)
O1—Co—N196.35 (12)N1—Co—N3179.06 (14)
N1—Co—N491.19 (13)O1—C2—C3126.1 (3)
O1—Co—N2176.28 (13)C2—C3—C4126.1 (4)
O1—Co—N588.30 (13)N1—C4—C3122.6 (3)
N4—Co—N5176.66 (13)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N2—H1N···O4i0.84 (4)2.15 (4)2.966 (4)164.13(3.59)
Symmetry code: (i) x, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds