Download citation
Download citation
link to html
6-Vinyl-1-oxa-4-thia­spiro­[4.5]­dec-6-ene has been reacted with dienophiles, such as N-phenyl­male­imide (NPM), N-methyl­triazoline-2,5-dione (MTAD) and di­methyl­acetyl­ene di­carboxyl­ate (DMAD), to assess the 1,3-diastereofacial selection caused by the acetal function. In each case, a mixture of two diastereoisomers was produced. The crystal structures of the products of the addition of NPM and MTAD syn to the acetal oxy­gen, 2-phenyl-2,3,3a,4,5,5a,6,7,8,9,9a,9b-dodeca­hydro-1H-benz­[e]­iso­indole-6-spiro-2'-[1',3']­oxa­thiol­ane-1,3-dione, C20H21NO3S, (IIa), and 2-methyl-5,7,8,9,10,10a-hexa­hydro-1H-1,2,4-triazolo­[1,2-a]­cinnoline-7-spiro-2'-[1',3']­oxa­thiol­ane-1,3-dione, C13H17N3O3S, (IIIa), respectively, and the product of the addition of DMAD syn to the acetal sulfur, di­methyl 1,2,3,4,4a,7-hexa­hydro­naphthalene-1-spiro-2'-[1',3']­oxa­thiol­ane-5,6-di­carboxyl­ate, C16H20O5S, (IVb), have been determined. All three structures are composed of independent mol­ecules separated by normal van der Waals distances. The 1-oxa-4-thia heterocyclic ring has an envelope conformation in the three structures and the S-Csp3 bond distances differ significantly from each other, as observed in comparable structures; the remaining molecular dimensions are as expected.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100013597/da1148sup1.cif
Contains datablocks global, IIa, IIIa, IVb

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100013597/da1148IIasup2.hkl
Contains datablock IIa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100013597/da1148IIIasup3.hkl
Contains datablock IIIa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100013597/da1148IVbsup4.hkl
Contains datablock IVb

CCDC references: 158261; 158262; 158263

Comment top

We have reacted 6-vinyl-1-oxa-4-thiaspiro[4.5]dec-6-ene, (I), with dienophiles such as N-phenylmaleimide (NPM), N-methyltriazoline-2,5-dione (MTAD) and dimethylacetylene dicarboxylate (DMAD), to study 1,3-diastereofacial selection caused by the acetyl function. In each case, a mixture of two adducts was obtained (see Scheme); the additions have been examined under a variety of conditions, including the use of selected Lewis acids, to achieve different product distributions and the results of this study will be reported elsewhere (Yadav et al., 2000). \sch

The products (IIa)-(IVa) were formed from addition syn to the acetyl sulfur. The compounds (IIa) and (IIb) were separated by radial chromatography and (IIa) was recrystallized from toluene to furnish a single diastereoisomer (m.p. 397 K). The products (IIIa) and (IIIb) were inseparable by routine chromatographic means; the major product (IIIa), however, recrystallized from methanol-dichloromethane as a diastereoisomeric mixture (m.p. 431 K). The products (IVa) and (IVb) were separated and the less polar, (IVb), recrystallized from ethyl acetate-petroleum ether (m.p. 357 K). The ratios of the adducts formed were determined from the relative integrals of the vinylic H atoms. The diastereodetermination was achieved from single-crystal X-ray crystallography of one of the two adducts formed. In this paper, we describe the crystal structures of (IIa), (IIIa) and (IVb)

The structure of (IIa) (Fig. 1) is composed of independent molecules which are separated by normal van der Waals distances. The heterocyclic ring S1/C1/C2/O1/C3 adopts a C2-envelope conformation, with C2 0.598 (6) Å out of the plane formed by the rest of the atoms of the ring; the maximum deviation of any atom from this plane is 0.061 (2) Å. The heterocyclic ring N1/C13/C12/C11/C14 also adopts an envelope conformation, with C11 0.483 (4) Å out the plane of the rest of the ring atoms. The six-membered ring C3—C8 adopts a chair conformation, with puckering parameters (Cremer & Pople, 1975) Q = 0.561 (4) Å, and θ = 5.3 (4) and ϕ = 195 (4)°. The six-membered ring C7—C12 adopts a sofa conformation, with C11 0.402 (4) Å from the remaining atoms of the ring [maximum deviation 0.071 (2) Å] and the phenyl ring C15—C20 is essentially planar [maximum deviation 0.011 (3) Å].

The structure of (IIIa) (Fig. 2) is similarly composed of independent molecules which are separated by normal van der Waals distances. The heterocyclic ring S1/C1/C2/O1/C3 also adopts a C2-envelope conformation, with C2 0.566 (5) Å out of the plane formed by the rest of the atoms of the ring; the maximum deviation of any atom from this plane is 0.061 (2) Å. The heterocyclic ring N1/N2/C12/N3/C11 is planar to within 0.082 (2) Å. The six-membered ring C3—C8 adopts a chair conformation, with puckering parameters Q = 0.569 (4) Å, and θ = 179.5 (4) and ϕ = 271 (17)°. The six-membered ring N1/N2/C7/C8/C9/C10 adopts a sofa conformation, with N1 0.540 (4) Å from the remaining atoms of the ring [maximum deviation 0.071 (2) Å].

Unlike the heterocyclic rings S1/C1/C2/O1/C3 in (IIa) and (IIIa), the corresponding ring in the structure of (IVb) (Fig. 3) adopts an O1-envelope conformation, with O1 0.564 (3) Å out of the plane formed by the rest of the atoms of the ring; the maximum deviation of any atom from this plane is 0.024 (2) Å. The six-membered ring C3—C8 adopts a chair conformation, with puckering parameters Q = 0.571 (3) Å, and θ = 6.4 (3) and ϕ = 212 (2)°. The six-membered ring C7—C12 is essentially planar [maximum deviation 0.055 (2) Å], with the carboxylate groups O2/C13/O3/C14 and O4/C15/O5/C16 inclined to this ring at angles of 10.7 (2) and 84.53 (11)°, respectively. The structure is composed of independent molecules which are separated by normal van der Waals distances.

The S-Csp3 bond distances, although significantly different in all three structures [1.860 (3) and 1.802 (6) in (IIa), 1.872 (3) and 1.805 (4) in (IIIa), and 1.848 (3) and 1.793 (4) Å in (IVb)], are in excellent agreement with the corresponding bond distances reported in the crystal structures of cyclohexanespiro-2'-(1',3'-oxathiolan-5'-one 3'-oxide) (Frechina et al., 1992), (+)-(3S,4R)-6-phenyl-1-oxa-4-thiaspiro[4.5]decan-8-one (Sonoda et al., 1992), two derivatives of an oxa-thia-spiro-decene (Parvez et al., 1997) and 2-(7-ethylidene-6-methyl-1-oxa-4-thiaspiro[4.5]dec-7-yl)ethanol (Parvez et al., 1998). The remaining bond distances and angles in the three structures are normal and agree well with the corresponding values reported for similar compounds contained in the Cambridge Structural Database (Allen & Kennard, 1993).

Experimental top

Cyclohexanone was hydroxymethylated following the Baylis-Hillman reaction (Rezgui & Gaied, 1998) to furnish 2-hydroxymethyl-2-cyclohexenone which, when condensed with mercaptoethanol in the presence of 2 mol% pyridinium p-toluenesulfonate in benzene under azeotropic removal of water, produced an acetal. Finally, Wittig olefination of the aldehyde that was formed from the oxidation of the acetal with pyridinium dichromate generated the desired diene, 6-vinyl-1-oxa-4-thia-spiro[4.5]dec-6-ene, (I).

Refinement top

For compounds (IIa) and (IIIa), the space groups P21 and P21/c, respectively, were determined from the systematic absences, packing considerations, statistical analyses of intensity distribution and the successful solution and refinement of the structures. The number of equivalent reflections measured for (IIa) was not sufficient to establish an absolute structure. However, based on the final Flack parameter (Flack, 1983) of 0.04 (3), compared with the value of 0.15 (3) obtained from the inverted structure, the absolute structure presented in this paper appears to be correct. For compound (IVb), the space group P1 was determined from the packing considerations, a statistical analysis of intensity distribution and the successful solution and refinement of the structure. In all three structures, most of the H atoms were located from difference maps and all H atoms were placed at geometrically idealized positions (C—H 0.93–1.00 Å) utilizing riding models, and torsional parameters were refined for each methyl group in (IIIa) and (IVb).

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989) for (IIa), (IVb); MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988) for (IIIa). Cell refinement: CAD-4 Software for (IIa), (IVb); MSC/AFC Diffractometer Control Software for (IIIa). For all compounds, data reduction: TEXSAN (Molecular Structure Corporation, 1994); program(s) used to solve structure: SAPI91 (Fan, 1991); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: TEXSAN; software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The ORTEPII (Johnson, 1976) drawing of (IIa) with 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The ORTEPII (Johnson, 1976) drawing of (IIIa) with 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. The ORTEPII (Johnson, 1976) drawing of (IVb) with 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms are shown as small spheres of arbitrary radii.
(IIa) 2-phenyl-2,3,3a,4,5,5a,6,7,8,9,9a,9 b-dodecahydro-1H-benz[e]isoindole-6-spiro- 2'-[1,3]oxathiolane-1,3-dione top
Crystal data top
C20H21NO3SF(000) = 376
Mr = 355.44Dx = 1.363 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
a = 12.047 (2) ÅCell parameters from 25 reflections
b = 7.808 (2) Åθ = 12.5–20.0°
c = 9.718 (1) ŵ = 1.82 mm1
β = 108.71 (1)°T = 293 K
V = 865.8 (3) Å3Prismatic, colourless
Z = 20.6 × 0.4 × 0.2 mm
Data collection top
Enraf-Nonius CAD4
diffractometer
1653 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.014
Graphite monochromatorθmax = 68°, θmin = 5°
ω/2θ scansh = 014
Absorption correction: empirical (using intensity measurements)
via ψ-scan (3 reflections) (North et al., 1968)
k = 09
Tmin = 0.41, Tmax = 0.71l = 1111
1788 measured reflections3 standard reflections every 200 reflections
1705 independent reflections intensity decay: <0.1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.092P)2 + 0.087P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.01
1705 reflectionsΔρmax = 0.64 e Å3
226 parametersΔρmin = 0.29 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (3)
Crystal data top
C20H21NO3SV = 865.8 (3) Å3
Mr = 355.44Z = 2
Monoclinic, P21Cu Kα radiation
a = 12.047 (2) ŵ = 1.82 mm1
b = 7.808 (2) ÅT = 293 K
c = 9.718 (1) Å0.6 × 0.4 × 0.2 mm
β = 108.71 (1)°
Data collection top
Enraf-Nonius CAD4
diffractometer
1653 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
via ψ-scan (3 reflections) (North et al., 1968)
Rint = 0.014
Tmin = 0.41, Tmax = 0.713 standard reflections every 200 reflections
1788 measured reflections intensity decay: <0.1%
1705 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.125Δρmax = 0.64 e Å3
S = 1.15Δρmin = 0.29 e Å3
1705 reflectionsAbsolute structure: Flack (1983)
226 parametersAbsolute structure parameter: 0.04 (3)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.88594 (8)0.63046 (18)0.52902 (8)0.0682 (3)
O10.8664 (2)0.8123 (4)0.7480 (3)0.0604 (7)
O21.3804 (2)0.3284 (3)0.8778 (2)0.0550 (6)
O31.3394 (2)0.7431 (3)1.1878 (3)0.0586 (6)
N11.3778 (2)0.5111 (3)1.0629 (3)0.0400 (5)
C10.7687 (4)0.7831 (7)0.5018 (5)0.0769 (13)
H1A0.75060.83820.40770.092*
H1B0.69840.72850.50910.092*
C20.8161 (4)0.9078 (7)0.6210 (5)0.0778 (13)
H2A0.87470.97980.60100.093*
H2B0.75390.98020.63140.093*
C30.9339 (2)0.6699 (5)0.7283 (3)0.0446 (7)
C40.9050 (3)0.5202 (6)0.8093 (4)0.0553 (9)
H4A0.91460.55510.90820.066*
H4B0.82350.48880.76360.066*
C50.9810 (3)0.3659 (5)0.8124 (5)0.0643 (10)
H5A0.96390.32120.71470.077*
H5B0.96290.27730.87190.077*
C61.1110 (3)0.4108 (5)0.8733 (5)0.0568 (9)
H6A1.15780.31040.87090.068*
H6B1.12980.44730.97360.068*
C71.1403 (2)0.5549 (4)0.7830 (3)0.0390 (6)
H71.11700.51360.68250.047*
C81.0646 (2)0.7073 (4)0.7834 (3)0.0378 (6)
C91.1027 (3)0.8609 (4)0.8343 (4)0.0450 (7)
H91.04720.94480.83100.054*
C101.2294 (3)0.9087 (4)0.8969 (4)0.0527 (8)
H10A1.24100.97030.98710.063*
H10B1.24950.98530.83000.063*
C111.3107 (3)0.7573 (4)0.9261 (4)0.0433 (7)
H111.38450.79840.91560.052*
C121.2742 (2)0.6018 (4)0.8264 (3)0.0401 (6)
H121.29590.61950.73850.048*
C131.3494 (2)0.4627 (4)0.9178 (3)0.0405 (6)
C141.3413 (2)0.6802 (4)1.0756 (3)0.0415 (7)
C151.4371 (2)0.4058 (4)1.1842 (3)0.0391 (6)
C161.3981 (3)0.2408 (5)1.1927 (4)0.0522 (8)
H161.33330.19861.11980.063*
C171.4555 (3)0.1393 (6)1.3096 (4)0.0609 (9)
H171.43040.02751.31470.073*
C181.5498 (3)0.2027 (5)1.4189 (4)0.0562 (8)
H181.58700.13511.49930.067*
C191.5890 (3)0.3653 (6)1.4092 (4)0.0555 (8)
H191.65360.40701.48280.067*
C201.5342 (3)0.4677 (5)1.2921 (3)0.0480 (7)
H201.56200.57741.28540.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0563 (5)0.1032 (8)0.0379 (4)0.0106 (5)0.0050 (3)0.0046 (5)
O10.0424 (11)0.0773 (17)0.0578 (13)0.0145 (12)0.0108 (10)0.0061 (13)
O20.0534 (12)0.0608 (15)0.0478 (12)0.0161 (12)0.0122 (10)0.0144 (11)
O30.0657 (14)0.0569 (15)0.0506 (13)0.0056 (12)0.0152 (11)0.0162 (12)
N10.0374 (11)0.0413 (13)0.0400 (12)0.0002 (11)0.0105 (9)0.0071 (11)
C10.061 (2)0.092 (3)0.060 (2)0.009 (2)0.0052 (17)0.028 (2)
C20.062 (2)0.075 (3)0.083 (3)0.007 (2)0.005 (2)0.024 (3)
C30.0350 (13)0.0599 (19)0.0358 (13)0.0026 (13)0.0069 (11)0.0028 (13)
C40.0355 (14)0.074 (2)0.0553 (19)0.0083 (16)0.0126 (13)0.0092 (18)
C50.0459 (17)0.052 (2)0.092 (3)0.0125 (16)0.0184 (17)0.013 (2)
C60.0419 (17)0.0465 (19)0.079 (2)0.0030 (14)0.0152 (16)0.0129 (18)
C70.0362 (13)0.0430 (16)0.0367 (13)0.0019 (12)0.0101 (11)0.0060 (11)
C80.0342 (13)0.0472 (15)0.0310 (12)0.0010 (12)0.0089 (10)0.0039 (12)
C90.0410 (15)0.0459 (16)0.0452 (15)0.0053 (13)0.0098 (12)0.0034 (13)
C100.0453 (17)0.0394 (16)0.069 (2)0.0032 (13)0.0117 (15)0.0027 (15)
C110.0346 (14)0.0426 (16)0.0527 (17)0.0048 (12)0.0140 (12)0.0033 (14)
C120.0368 (13)0.0473 (16)0.0388 (13)0.0025 (12)0.0159 (11)0.0029 (13)
C130.0321 (12)0.0491 (16)0.0410 (14)0.0003 (12)0.0129 (11)0.0056 (13)
C140.0358 (13)0.0427 (15)0.0443 (15)0.0061 (12)0.0104 (11)0.0103 (13)
C150.0344 (13)0.0458 (15)0.0376 (13)0.0024 (12)0.0123 (11)0.0078 (12)
C160.0457 (17)0.054 (2)0.0528 (18)0.0124 (15)0.0095 (14)0.0027 (15)
C170.0583 (19)0.056 (2)0.068 (2)0.0037 (18)0.0194 (16)0.0097 (19)
C180.0530 (17)0.066 (2)0.0499 (17)0.0122 (17)0.0163 (14)0.0059 (16)
C190.0458 (16)0.066 (2)0.0484 (17)0.0001 (17)0.0063 (13)0.0097 (17)
C200.0423 (14)0.0501 (17)0.0469 (16)0.0036 (14)0.0075 (12)0.0112 (14)
Geometric parameters (Å, º) top
S1—C11.802 (6)C7—C81.500 (4)
S1—C31.860 (3)C7—C121.574 (4)
O1—C21.403 (5)C7—H70.9800
O1—C31.427 (4)C8—C91.322 (5)
O2—C131.218 (4)C9—C101.497 (4)
O3—C141.203 (4)C9—H90.9300
N1—C131.392 (4)C10—C111.503 (5)
N1—C141.409 (4)C10—H10A0.9700
N1—C151.427 (4)C10—H10B0.9700
C1—C21.480 (7)C11—C141.506 (4)
C1—H1A0.9700C11—C121.528 (4)
C1—H1B0.9700C11—H110.9800
C2—H2A0.9700C12—C131.508 (4)
C2—H2B0.9700C12—H120.9800
C3—C41.511 (5)C15—C201.383 (4)
C3—C81.519 (4)C15—C161.383 (5)
C4—C51.508 (6)C16—C171.375 (5)
C4—H4A0.9700C16—H160.9300
C4—H4B0.9700C17—C181.375 (6)
C5—C61.527 (5)C17—H170.9300
C5—H5A0.9700C18—C191.368 (6)
C5—H5B0.9700C18—H180.9300
C6—C71.536 (4)C19—C201.375 (5)
C6—H6A0.9700C19—H190.9300
C6—H6B0.9700C20—H200.9300
C1—S1—C390.60 (18)C9—C8—C3120.2 (3)
C2—O1—C3113.5 (3)C7—C8—C3114.1 (3)
C13—N1—C14111.2 (3)C8—C9—C10124.4 (3)
C13—N1—C15125.2 (3)C8—C9—H9117.8
C14—N1—C15123.7 (2)C10—C9—H9117.8
C2—C1—S1103.4 (3)C9—C10—C11113.5 (3)
C2—C1—H1A111.1C9—C10—H10A108.9
S1—C1—H1A111.1C11—C10—H10A108.9
C2—C1—H1B111.1C9—C10—H10B108.9
S1—C1—H1B111.1C11—C10—H10B108.9
H1A—C1—H1B109.0H10A—C10—H10B107.7
O1—C2—C1106.8 (4)C10—C11—C14116.1 (3)
O1—C2—H2A110.4C10—C11—C12117.9 (3)
C1—C2—H2A110.4C14—C11—C12103.1 (2)
O1—C2—H2B110.4C10—C11—H11106.3
C1—C2—H2B110.4C14—C11—H11106.3
H2A—C2—H2B108.6C12—C11—H11106.3
O1—C3—C4107.2 (3)C13—C12—C11101.7 (2)
O1—C3—C8111.9 (3)C13—C12—C7111.2 (2)
C4—C3—C8110.5 (2)C11—C12—C7114.7 (2)
O1—C3—S1105.6 (2)C13—C12—H12109.7
C4—C3—S1111.6 (2)C11—C12—H12109.7
C8—C3—S1109.88 (19)C7—C12—H12109.7
C5—C4—C3112.9 (3)O2—C13—N1123.8 (3)
C5—C4—H4A109.0O2—C13—C12128.3 (3)
C3—C4—H4A109.0N1—C13—C12107.9 (2)
C5—C4—H4B109.0O3—C14—N1124.0 (3)
C3—C4—H4B109.0O3—C14—C11129.9 (3)
H4A—C4—H4B107.8N1—C14—C11106.0 (2)
C4—C5—C6111.4 (3)C20—C15—C16120.1 (3)
C4—C5—H5A109.3C20—C15—N1120.2 (3)
C6—C5—H5A109.3C16—C15—N1119.8 (3)
C4—C5—H5B109.3C17—C16—C15119.7 (3)
C6—C5—H5B109.3C17—C16—H16120.1
H5A—C5—H5B108.0C15—C16—H16120.1
C5—C6—C7110.0 (3)C18—C17—C16120.2 (4)
C5—C6—H6A109.7C18—C17—H17119.9
C7—C6—H6A109.7C16—C17—H17119.9
C5—C6—H6B109.7C19—C18—C17119.9 (4)
C7—C6—H6B109.7C19—C18—H18120.0
H6A—C6—H6B108.2C17—C18—H18120.0
C8—C7—C6109.2 (2)C18—C19—C20120.8 (3)
C8—C7—C12112.7 (2)C18—C19—H19119.6
C6—C7—C12114.9 (3)C20—C19—H19119.6
C8—C7—H7106.5C19—C20—C15119.3 (3)
C6—C7—H7106.5C19—C20—H20120.4
C12—C7—H7106.5C15—C20—H20120.4
C9—C8—C7125.6 (2)
C3—S1—C1—C230.4 (3)C14—C11—C12—C788.9 (3)
C3—O1—C2—C143.2 (4)C8—C7—C12—C13142.4 (2)
S1—C1—C2—O146.2 (4)C6—C7—C12—C1316.5 (3)
C2—O1—C3—C4137.4 (3)C8—C7—C12—C1127.8 (3)
C2—O1—C3—C8101.2 (3)C6—C7—C12—C1198.1 (3)
C2—O1—C3—S118.3 (3)C14—N1—C13—O2173.4 (3)
C1—S1—C3—O18.4 (3)C15—N1—C13—O25.9 (4)
C1—S1—C3—C4107.7 (3)C14—N1—C13—C127.9 (3)
C1—S1—C3—C8129.3 (3)C15—N1—C13—C12172.8 (2)
O1—C3—C4—C5173.2 (3)C11—C12—C13—O2156.7 (3)
C8—C3—C4—C551.0 (4)C7—C12—C13—O280.8 (4)
S1—C3—C4—C571.6 (3)C11—C12—C13—N124.6 (3)
C3—C4—C5—C654.6 (5)C7—C12—C13—N197.8 (3)
C4—C5—C6—C757.3 (4)C13—N1—C14—O3168.3 (3)
C5—C6—C7—C857.4 (4)C15—N1—C14—O312.3 (4)
C5—C6—C7—C12174.8 (3)C13—N1—C14—C1112.9 (3)
C6—C7—C8—C9119.3 (3)C15—N1—C14—C11166.4 (2)
C12—C7—C8—C99.7 (4)C10—C11—C14—O323.2 (5)
C6—C7—C8—C356.6 (3)C12—C11—C14—O3153.6 (3)
C12—C7—C8—C3174.5 (2)C10—C11—C14—N1158.1 (2)
O1—C3—C8—C93.6 (4)C12—C11—C14—N127.8 (3)
C4—C3—C8—C9123.0 (3)C13—N1—C15—C20129.1 (3)
S1—C3—C8—C9113.4 (3)C14—N1—C15—C2050.1 (4)
O1—C3—C8—C7172.5 (2)C13—N1—C15—C1650.1 (4)
C4—C3—C8—C753.1 (3)C14—N1—C15—C16130.7 (3)
S1—C3—C8—C770.5 (3)C20—C15—C16—C170.7 (5)
C7—C8—C9—C101.7 (5)N1—C15—C16—C17179.9 (3)
C3—C8—C9—C10177.3 (3)C15—C16—C17—C181.3 (6)
C8—C9—C10—C1112.1 (5)C16—C17—C18—C192.0 (6)
C9—C10—C11—C1491.3 (3)C17—C18—C19—C200.9 (5)
C9—C10—C11—C1231.5 (4)C18—C19—C20—C151.0 (5)
C10—C11—C12—C13160.3 (3)C16—C15—C20—C191.8 (5)
C14—C11—C12—C1331.1 (3)N1—C15—C20—C19179.0 (3)
C10—C11—C12—C740.3 (4)
(IIIa) 2-methyl-5,7,8,9,10,10a-hexahydro-1H-1,2,4-triazolo[1,2-a]cinnoline-7-spiro- 2'-[1,3]oxathiolane-1,3-dione top
Crystal data top
C13H17N3O3SF(000) = 624
Mr = 295.36Dx = 1.458 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
a = 13.258 (2) ÅCell parameters from 12 reflections
b = 7.3897 (17) Åθ = 10–15°
c = 14.2874 (13) ŵ = 0.25 mm1
β = 105.944 (9)°T = 170 K
V = 1345.9 (4) Å3Block, colourless
Z = 40.42 × 0.35 × 0.31 mm
Data collection top
Rigaku AFC-6S
diffractometer
1337 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.047
Graphite monochromatorθmax = 25.0°, θmin = 2.5°
ω/2θ scansh = 015
Absorption correction: empirical (using intensity measurements)
via ψ-scan (3 reflections) (North et al., 1968)
k = 08
Tmin = 0.90, Tmax = 0.93l = 1716
2487 measured reflections3 standard reflections every 200 reflections
2380 independent reflections intensity decay: <0.1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.058P)2 + 0.264P]
where P = (Fo2 + 2Fc2)/3
2380 reflections(Δ/σ)max < 0.01
182 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C13H17N3O3SV = 1345.9 (4) Å3
Mr = 295.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.258 (2) ŵ = 0.25 mm1
b = 7.3897 (17) ÅT = 170 K
c = 14.2874 (13) Å0.42 × 0.35 × 0.31 mm
β = 105.944 (9)°
Data collection top
Rigaku AFC-6S
diffractometer
1337 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
via ψ-scan (3 reflections) (North et al., 1968)
Rint = 0.047
Tmin = 0.90, Tmax = 0.933 standard reflections every 200 reflections
2487 measured reflections intensity decay: <0.1%
2380 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.00Δρmax = 0.24 e Å3
2380 reflectionsΔρmin = 0.27 e Å3
182 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.51331 (7)0.27399 (13)0.57718 (7)0.0331 (3)
O10.65908 (18)0.0560 (3)0.68045 (17)0.0357 (6)
O21.00119 (18)0.2512 (4)0.39467 (19)0.0434 (7)
O30.75030 (18)0.6868 (3)0.37666 (17)0.0344 (6)
N10.8668 (2)0.2852 (4)0.4679 (2)0.0273 (6)
N20.7777 (2)0.4016 (4)0.4459 (2)0.0266 (7)
N30.8899 (2)0.5003 (4)0.3698 (2)0.0304 (7)
C10.4744 (3)0.0719 (5)0.6291 (3)0.0409 (9)
H1A0.41220.09530.65300.049*
H1B0.45770.02690.58050.049*
C20.5683 (3)0.0240 (5)0.7120 (3)0.0412 (10)
H2A0.56980.09960.76960.049*
H2B0.56500.10470.73010.049*
C30.6551 (2)0.2299 (5)0.6385 (2)0.0275 (8)
C40.6972 (3)0.3752 (5)0.7150 (2)0.0344 (9)
H4A0.65360.37840.76120.041*
H4B0.76970.34370.75210.041*
C50.6970 (3)0.5610 (5)0.6699 (3)0.0347 (9)
H5A0.72680.65040.72160.042*
H5B0.62390.59730.63720.042*
C60.7610 (3)0.5610 (5)0.5960 (3)0.0343 (9)
H6A0.83570.53780.62960.041*
H6B0.75580.68100.56420.041*
C70.7199 (2)0.4148 (4)0.5191 (2)0.0245 (8)
H70.64580.44670.48440.029*
C80.7180 (2)0.2321 (4)0.5654 (2)0.0227 (7)
C90.7730 (2)0.0919 (4)0.5494 (3)0.0272 (8)
H90.76630.01910.58060.033*
C100.8447 (3)0.0973 (4)0.4854 (3)0.0280 (8)
H10A0.91080.03320.51710.034*
H10B0.81140.03630.42280.034*
C110.9287 (3)0.3358 (5)0.4090 (2)0.0291 (8)
C120.7997 (3)0.5467 (5)0.3956 (2)0.0273 (8)
C130.9333 (3)0.6084 (6)0.3050 (3)0.0440 (10)
H13A0.98880.68690.34370.066*
H13B0.87770.68290.26320.066*
H13C0.96260.52820.26450.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0256 (4)0.0355 (5)0.0385 (5)0.0031 (4)0.0093 (4)0.0053 (4)
O10.0337 (13)0.0351 (15)0.0430 (15)0.0110 (11)0.0186 (12)0.0174 (12)
O20.0310 (13)0.0533 (18)0.0529 (17)0.0117 (13)0.0233 (12)0.0096 (14)
O30.0368 (14)0.0299 (14)0.0380 (15)0.0067 (12)0.0130 (12)0.0087 (11)
N10.0261 (14)0.0264 (15)0.0317 (15)0.0055 (13)0.0119 (12)0.0033 (13)
N20.0273 (15)0.0248 (16)0.0306 (16)0.0062 (12)0.0131 (13)0.0043 (12)
N30.0266 (15)0.0349 (18)0.0310 (16)0.0011 (13)0.0098 (13)0.0092 (14)
C10.040 (2)0.037 (2)0.050 (2)0.0026 (18)0.0207 (19)0.0030 (19)
C20.043 (2)0.041 (2)0.047 (2)0.0020 (18)0.0246 (19)0.0129 (19)
C30.0265 (17)0.0273 (19)0.0288 (18)0.0059 (15)0.0079 (14)0.0053 (15)
C40.0337 (19)0.047 (2)0.0238 (19)0.0022 (18)0.0103 (16)0.0031 (17)
C50.038 (2)0.033 (2)0.037 (2)0.0049 (17)0.0168 (17)0.0175 (18)
C60.039 (2)0.0253 (19)0.040 (2)0.0040 (16)0.0133 (17)0.0049 (17)
C70.0216 (17)0.0222 (18)0.0307 (19)0.0050 (14)0.0090 (15)0.0006 (15)
C80.0187 (15)0.0267 (18)0.0209 (16)0.0020 (14)0.0021 (12)0.0005 (14)
C90.0270 (17)0.0213 (18)0.0352 (19)0.0002 (15)0.0117 (15)0.0001 (15)
C100.0306 (18)0.0214 (18)0.0329 (19)0.0059 (15)0.0103 (15)0.0016 (15)
C110.0220 (17)0.035 (2)0.0308 (19)0.0011 (15)0.0078 (15)0.0005 (16)
C120.0300 (19)0.0264 (19)0.0257 (18)0.0006 (16)0.0080 (15)0.0004 (15)
C130.031 (2)0.056 (3)0.048 (2)0.0047 (19)0.0155 (18)0.019 (2)
Geometric parameters (Å, º) top
S1—C11.805 (4)C3—C41.524 (5)
S1—C31.872 (3)C4—C51.516 (5)
O1—C31.413 (4)C4—H4A0.9900
O1—C21.417 (4)C4—H4B0.9900
O2—C111.210 (4)C5—C61.525 (5)
O3—C121.215 (4)C5—H5A0.9900
N1—C111.379 (4)C5—H5B0.9900
N1—N21.425 (4)C6—C71.530 (5)
N1—C101.455 (4)C6—H6A0.9900
N2—C121.366 (4)C6—H6B0.9900
N2—C71.460 (4)C7—C81.506 (4)
N3—C111.378 (4)C7—H71.0000
N3—C121.388 (4)C8—C91.322 (4)
N3—C131.454 (4)C9—C101.490 (5)
C1—C21.506 (5)C9—H90.9500
C1—H1A0.9900C10—H10A0.9900
C1—H1B0.9900C10—H10B0.9900
C2—H2A0.9900C13—H13A0.9800
C2—H2B0.9900C13—H13B0.9800
C3—C81.506 (4)C13—H13C0.9800
C1—S1—C391.56 (17)C6—C5—H5B109.4
C3—O1—C2110.5 (3)H5A—C5—H5B108.0
C11—N1—N2107.3 (3)C5—C6—C7109.9 (3)
C11—N1—C10123.0 (3)C5—C6—H6A109.7
N2—N1—C10114.8 (2)C7—C6—H6A109.7
C12—N2—N1107.8 (2)C5—C6—H6B109.7
C12—N2—C7123.7 (3)C7—C6—H6B109.7
N1—N2—C7116.7 (2)H6A—C6—H6B108.2
C11—N3—C12111.3 (3)N2—C7—C8109.2 (3)
C11—N3—C13125.0 (3)N2—C7—C6114.1 (3)
C12—N3—C13123.6 (3)C8—C7—C6111.4 (3)
C2—C1—S1104.5 (3)N2—C7—H7107.3
C2—C1—H1A110.9C8—C7—H7107.3
S1—C1—H1A110.9C6—C7—H7107.3
C2—C1—H1B110.9C9—C8—C3123.3 (3)
S1—C1—H1B110.9C9—C8—C7123.4 (3)
H1A—C1—H1B108.9C3—C8—C7113.1 (3)
O1—C2—C1107.5 (3)C8—C9—C10124.1 (3)
O1—C2—H2A110.2C8—C9—H9118.0
C1—C2—H2A110.2C10—C9—H9118.0
O1—C2—H2B110.2N1—C10—C9108.9 (3)
C1—C2—H2B110.2N1—C10—H10A109.9
H2A—C2—H2B108.5C9—C10—H10A109.9
O1—C3—C8109.9 (3)N1—C10—H10B109.9
O1—C3—C4111.9 (3)C9—C10—H10B109.9
C8—C3—C4109.1 (3)H10A—C10—H10B108.3
O1—C3—S1105.8 (2)O2—C11—N3127.8 (3)
C8—C3—S1110.5 (2)O2—C11—N1126.6 (3)
C4—C3—S1109.6 (2)N3—C11—N1105.6 (3)
C5—C4—C3112.1 (3)O3—C12—N2127.3 (3)
C5—C4—H4A109.2O3—C12—N3127.0 (3)
C3—C4—H4A109.2N2—C12—N3105.7 (3)
C5—C4—H4B109.2N3—C13—H13A109.5
C3—C4—H4B109.2N3—C13—H13B109.5
H4A—C4—H4B107.9H13A—C13—H13B109.5
C4—C5—C6111.0 (3)N3—C13—H13C109.5
C4—C5—H5A109.4H13A—C13—H13C109.5
C6—C5—H5A109.4H13B—C13—H13C109.5
C4—C5—H5B109.4
C11—N1—N2—C1215.9 (3)C4—C3—C8—C755.5 (3)
C10—N1—N2—C12156.6 (3)S1—C3—C8—C765.1 (3)
C11—N1—N2—C7160.3 (3)N2—C7—C8—C98.3 (4)
C10—N1—N2—C759.0 (4)C6—C7—C8—C9118.6 (3)
C3—S1—C1—C217.6 (3)N2—C7—C8—C3177.0 (3)
C3—O1—C2—C149.5 (4)C6—C7—C8—C356.1 (3)
S1—C1—C2—O139.9 (4)C3—C8—C9—C10173.1 (3)
C2—O1—C3—C8153.0 (3)C7—C8—C9—C101.1 (5)
C2—O1—C3—C485.7 (3)C11—N1—C10—C9178.1 (3)
C2—O1—C3—S133.7 (3)N2—N1—C10—C944.3 (4)
C1—S1—C3—O17.8 (2)C8—C9—C10—N116.2 (5)
C1—S1—C3—C8126.7 (3)C12—N3—C11—O2174.0 (4)
C1—S1—C3—C4113.1 (3)C13—N3—C11—O22.7 (6)
O1—C3—C4—C5177.8 (3)C12—N3—C11—N15.3 (4)
C8—C3—C4—C555.9 (4)C13—N3—C11—N1178.0 (3)
S1—C3—C4—C565.1 (3)N2—N1—C11—O2166.7 (3)
C3—C4—C5—C657.4 (4)C10—N1—C11—O230.0 (5)
C4—C5—C6—C755.5 (4)N2—N1—C11—N312.7 (3)
C12—N2—C7—C8175.3 (3)C10—N1—C11—N3149.4 (3)
N1—N2—C7—C837.1 (4)N1—N2—C12—O3168.2 (3)
C12—N2—C7—C650.0 (4)C7—N2—C12—O326.9 (5)
N1—N2—C7—C688.2 (3)N1—N2—C12—N312.2 (3)
C5—C6—C7—N2178.8 (3)C7—N2—C12—N3153.5 (3)
C5—C6—C7—C854.6 (4)C11—N3—C12—O3176.0 (3)
O1—C3—C8—C93.8 (4)C13—N3—C12—O37.3 (5)
C4—C3—C8—C9119.2 (3)C11—N3—C12—N24.5 (4)
S1—C3—C8—C9120.2 (3)C13—N3—C12—N2172.3 (3)
O1—C3—C8—C7178.5 (2)
(IVb) dimethyl 1,2,3,4,4a,7-hexahydronaphthalene-1-spiro-2'-[1,3]oxathiolane-5,6-dicarboxylate top
Crystal data top
C16H20O5SZ = 2
Mr = 324.38F(000) = 344
Triclinic, P1Dx = 1.375 Mg m3
a = 6.812 (3) ÅCu Kα radiation, λ = 1.54178 Å
b = 10.494 (7) ÅCell parameters from 25 reflections
c = 11.023 (5) Åθ = 20–25°
α = 96.014 (7)°µ = 2.03 mm1
β = 90.97 (1)°T = 293 K
γ = 90.21 (2)°Prismatic, colourless
V = 783.5 (7) Å30.38 × 0.25 × 0.09 mm
Data collection top
Enraf-Nonius CAD4
diffractometer
2323 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.012
Graphite monochromatorθmax = 68°, θmin = 5°
ω/2θ scansh = 08
Absorption correction: empirical (using intensity measurements)
via ψ-scan (3 reflections) (North et al., 1968)
k = 1212
Tmin = 0.51, Tmax = 0.84l = 1313
3104 measured reflections3 standard reflections every 200 reflections
2843 independent reflections intensity decay: <0.1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.112P)2 + 0.183P]
where P = (Fo2 + 2Fc2)/3
2843 reflections(Δ/σ)max < 0.01
201 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C16H20O5Sγ = 90.21 (2)°
Mr = 324.38V = 783.5 (7) Å3
Triclinic, P1Z = 2
a = 6.812 (3) ÅCu Kα radiation
b = 10.494 (7) ŵ = 2.03 mm1
c = 11.023 (5) ÅT = 293 K
α = 96.014 (7)°0.38 × 0.25 × 0.09 mm
β = 90.97 (1)°
Data collection top
Enraf-Nonius CAD4
diffractometer
2323 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
via ψ-scan (3 reflections) (North et al., 1968)
Rint = 0.012
Tmin = 0.51, Tmax = 0.843 standard reflections every 200 reflections
3104 measured reflections intensity decay: <0.1%
2843 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 1.06Δρmax = 0.42 e Å3
2843 reflectionsΔρmin = 0.30 e Å3
201 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.58348 (12)0.36498 (7)0.79550 (6)0.0543 (3)
O10.5846 (3)0.13171 (17)0.85698 (15)0.0438 (4)
O20.9950 (4)0.2531 (2)1.4438 (2)0.0755 (7)
O31.1218 (3)0.42361 (19)1.37020 (18)0.0507 (5)
O40.5814 (4)0.1546 (2)1.4135 (2)0.0679 (7)
O50.7944 (3)0.02521 (17)1.31110 (16)0.0454 (5)
C10.7488 (6)0.2533 (4)0.7173 (3)0.0723 (10)
H1A0.69880.22520.63600.087*
H1B0.87690.29250.71050.087*
C20.7632 (5)0.1410 (3)0.7933 (3)0.0574 (8)
H2A0.78520.06250.74080.069*
H2B0.87250.15390.85080.069*
C30.5345 (4)0.2558 (2)0.9127 (2)0.0381 (5)
C40.3158 (4)0.2557 (3)0.9388 (2)0.0461 (6)
H4A0.24430.22370.86490.055*
H4B0.27400.34310.96160.055*
C50.2638 (4)0.1740 (3)1.0403 (2)0.0439 (6)
H5A0.12550.18381.05830.053*
H5B0.28700.08451.01290.053*
C60.3844 (4)0.2121 (2)1.1549 (2)0.0392 (5)
H6A0.35140.15701.21700.047*
H6B0.35490.29971.18590.047*
C70.6036 (3)0.2002 (2)1.1267 (2)0.0322 (5)
H70.62620.11181.09160.039*
C80.6537 (3)0.2871 (2)1.0300 (2)0.0330 (5)
C90.7826 (4)0.3808 (2)1.0498 (2)0.0371 (5)
H90.80440.43110.98670.045*
C100.8971 (4)0.4126 (2)1.1659 (2)0.0396 (6)
H10A0.85840.49671.20240.047*
H10B1.03550.41661.14740.047*
C110.8676 (3)0.3169 (2)1.2569 (2)0.0353 (5)
C120.7337 (3)0.2242 (2)1.2391 (2)0.0336 (5)
C130.9976 (4)0.3249 (3)1.3666 (2)0.0430 (6)
C141.2666 (5)0.4324 (4)1.4673 (3)0.0673 (9)
H14A1.20290.42741.54370.101*
H14B1.33560.51261.46950.101*
H14C1.35790.36311.45350.101*
C150.6962 (4)0.1334 (2)1.3337 (2)0.0385 (6)
C160.7653 (6)0.0685 (3)1.3968 (3)0.0635 (9)
H16A0.78950.02921.47830.095*
H16B0.85430.13841.37930.095*
H16C0.63260.10001.38950.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0683 (5)0.0610 (5)0.0367 (4)0.0008 (3)0.0040 (3)0.0205 (3)
O10.0503 (10)0.0443 (10)0.0361 (9)0.0014 (8)0.0063 (8)0.0005 (7)
O20.1008 (19)0.0750 (15)0.0545 (13)0.0214 (13)0.0312 (13)0.0311 (12)
O30.0441 (10)0.0581 (12)0.0499 (11)0.0072 (9)0.0091 (8)0.0071 (9)
O40.0743 (14)0.0831 (16)0.0530 (12)0.0224 (12)0.0307 (11)0.0336 (11)
O50.0574 (11)0.0410 (10)0.0407 (10)0.0040 (8)0.0054 (8)0.0175 (8)
C10.087 (2)0.083 (2)0.0489 (17)0.0094 (19)0.0238 (17)0.0109 (16)
C20.0552 (17)0.0675 (19)0.0491 (16)0.0039 (14)0.0159 (13)0.0014 (14)
C30.0453 (13)0.0379 (12)0.0315 (12)0.0011 (10)0.0002 (10)0.0060 (10)
C40.0402 (13)0.0535 (15)0.0451 (14)0.0080 (11)0.0025 (11)0.0069 (12)
C50.0364 (13)0.0443 (14)0.0507 (15)0.0005 (11)0.0038 (11)0.0027 (11)
C60.0387 (12)0.0421 (13)0.0373 (13)0.0004 (10)0.0057 (10)0.0067 (10)
C70.0370 (11)0.0287 (11)0.0316 (11)0.0022 (9)0.0055 (9)0.0060 (9)
C80.0378 (12)0.0365 (12)0.0255 (11)0.0047 (9)0.0043 (9)0.0072 (9)
C90.0451 (13)0.0339 (12)0.0345 (12)0.0007 (10)0.0036 (10)0.0129 (9)
C100.0447 (13)0.0377 (13)0.0378 (13)0.0025 (10)0.0001 (10)0.0114 (10)
C110.0410 (12)0.0363 (12)0.0298 (11)0.0021 (10)0.0019 (9)0.0084 (9)
C120.0375 (12)0.0344 (12)0.0305 (11)0.0055 (9)0.0061 (9)0.0102 (9)
C130.0469 (14)0.0452 (14)0.0372 (13)0.0044 (11)0.0008 (11)0.0058 (11)
C140.0517 (17)0.080 (2)0.066 (2)0.0020 (16)0.0219 (15)0.0051 (17)
C150.0403 (12)0.0452 (14)0.0322 (12)0.0008 (10)0.0035 (10)0.0146 (10)
C160.090 (2)0.0492 (17)0.0558 (18)0.0012 (16)0.0003 (16)0.0298 (14)
Geometric parameters (Å, º) top
S1—C11.793 (4)C5—H5B0.9700
S1—C31.848 (3)C6—C71.533 (3)
O1—C21.423 (3)C6—H6A0.9700
O1—C31.425 (3)C6—H6B0.9700
O2—C131.195 (3)C7—C121.510 (3)
O3—C131.332 (3)C7—C81.516 (3)
O3—C141.439 (3)C7—H70.9800
O4—C151.191 (3)C8—C91.314 (4)
O5—C151.323 (3)C9—C101.494 (3)
O5—C161.448 (3)C9—H90.9300
C1—C21.518 (5)C10—C111.507 (3)
C1—H1A0.9700C10—H10A0.9700
C1—H1B0.9700C10—H10B0.9700
C2—H2A0.9700C11—C121.329 (4)
C2—H2B0.9700C11—C131.482 (3)
C3—C81.521 (3)C12—C151.509 (3)
C3—C41.522 (4)C14—H14A0.9600
C4—C51.524 (4)C14—H14B0.9600
C4—H4A0.9700C14—H14C0.9600
C4—H4B0.9700C16—H16A0.9600
C5—C61.512 (4)C16—H16B0.9600
C5—H5A0.9700C16—H16C0.9600
C1—S1—C392.04 (14)C12—C7—C6112.97 (19)
C2—O1—C3108.8 (2)C8—C7—C6109.26 (18)
C13—O3—C14115.9 (2)C12—C7—H7107.3
C15—O5—C16115.5 (2)C8—C7—H7107.3
C2—C1—S1106.1 (2)C6—C7—H7107.3
C2—C1—H1A110.5C9—C8—C7122.2 (2)
S1—C1—H1A110.5C9—C8—C3125.2 (2)
C2—C1—H1B110.5C7—C8—C3112.5 (2)
S1—C1—H1B110.5C8—C9—C10125.1 (2)
H1A—C1—H1B108.7C8—C9—H9117.5
O1—C2—C1108.7 (3)C10—C9—H9117.5
O1—C2—H2A110.0C9—C10—C11113.1 (2)
C1—C2—H2A110.0C9—C10—H10A109.0
O1—C2—H2B110.0C11—C10—H10A109.0
C1—C2—H2B110.0C9—C10—H10B109.0
H2A—C2—H2B108.3C11—C10—H10B109.0
O1—C3—C8110.03 (19)H10A—C10—H10B107.8
O1—C3—C4108.0 (2)C12—C11—C13119.8 (2)
C8—C3—C4110.6 (2)C12—C11—C10121.8 (2)
O1—C3—S1104.88 (16)C13—C11—C10118.4 (2)
C8—C3—S1113.62 (17)C11—C12—C15121.7 (2)
C4—C3—S1109.38 (17)C11—C12—C7124.6 (2)
C3—C4—C5112.9 (2)C15—C12—C7113.7 (2)
C3—C4—H4A109.0O2—C13—O3122.8 (3)
C5—C4—H4A109.0O2—C13—C11125.5 (3)
C3—C4—H4B109.0O3—C13—C11111.8 (2)
C5—C4—H4B109.0O3—C14—H14A109.5
H4A—C4—H4B107.8O3—C14—H14B109.5
C6—C5—C4111.4 (2)H14A—C14—H14B109.5
C6—C5—H5A109.3O3—C14—H14C109.5
C4—C5—H5A109.3H14A—C14—H14C109.5
C6—C5—H5B109.3H14B—C14—H14C109.5
C4—C5—H5B109.3O4—C15—O5124.9 (2)
H5A—C5—H5B108.0O4—C15—C12123.2 (2)
C5—C6—C7109.8 (2)O5—C15—C12111.7 (2)
C5—C6—H6A109.7O5—C16—H16A109.5
C7—C6—H6A109.7O5—C16—H16B109.5
C5—C6—H6B109.7H16A—C16—H16B109.5
C7—C6—H6B109.7O5—C16—H16C109.5
H6A—C6—H6B108.2H16A—C16—H16C109.5
C12—C7—C8112.41 (19)H16B—C16—H16C109.5
C3—S1—C1—C23.3 (3)C7—C8—C9—C101.0 (4)
C3—O1—C2—C147.4 (3)C3—C8—C9—C10178.9 (2)
S1—C1—C2—O128.2 (3)C8—C9—C10—C116.3 (4)
C2—O1—C3—C879.8 (2)C9—C10—C11—C128.0 (3)
C2—O1—C3—C4159.4 (2)C9—C10—C11—C13169.8 (2)
C2—O1—C3—S142.8 (2)C13—C11—C12—C156.0 (3)
C1—S1—C3—O121.7 (2)C10—C11—C12—C15176.2 (2)
C1—S1—C3—C898.5 (2)C13—C11—C12—C7175.2 (2)
C1—S1—C3—C4137.3 (2)C10—C11—C12—C72.5 (4)
O1—C3—C4—C569.8 (3)C8—C7—C12—C114.8 (3)
C8—C3—C4—C550.6 (3)C6—C7—C12—C11119.4 (3)
S1—C3—C4—C5176.55 (18)C8—C7—C12—C15176.29 (18)
C3—C4—C5—C653.7 (3)C6—C7—C12—C1559.5 (3)
C4—C5—C6—C757.6 (3)C14—O3—C13—O25.6 (4)
C5—C6—C7—C12174.42 (19)C14—O3—C13—C11174.3 (2)
C5—C6—C7—C859.7 (3)C12—C11—C13—O20.4 (4)
C12—C7—C8—C96.6 (3)C10—C11—C13—O2177.5 (3)
C6—C7—C8—C9119.6 (3)C12—C11—C13—O3179.7 (2)
C12—C7—C8—C3175.22 (18)C10—C11—C13—O32.5 (3)
C6—C7—C8—C358.5 (2)C16—O5—C15—O44.2 (4)
O1—C3—C8—C9116.4 (3)C16—O5—C15—C12179.3 (2)
C4—C3—C8—C9124.3 (3)C11—C12—C15—O488.6 (3)
S1—C3—C8—C90.9 (3)C7—C12—C15—O490.3 (3)
O1—C3—C8—C765.5 (2)C11—C12—C15—O596.2 (3)
C4—C3—C8—C753.8 (3)C7—C12—C15—O584.9 (3)
S1—C3—C8—C7177.25 (15)

Experimental details

(IIa)(IIIa)(IVb)
Crystal data
Chemical formulaC20H21NO3SC13H17N3O3SC16H20O5S
Mr355.44295.36324.38
Crystal system, space groupMonoclinic, P21Monoclinic, P21/cTriclinic, P1
Temperature (K)293170293
a, b, c (Å)12.047 (2), 7.808 (2), 9.718 (1)13.258 (2), 7.3897 (17), 14.2874 (13)6.812 (3), 10.494 (7), 11.023 (5)
α, β, γ (°)90, 108.71 (1), 9090, 105.944 (9), 9096.014 (7), 90.97 (1), 90.21 (2)
V3)865.8 (3)1345.9 (4)783.5 (7)
Z242
Radiation typeCu KαMo KαCu Kα
µ (mm1)1.820.252.03
Crystal size (mm)0.6 × 0.4 × 0.20.42 × 0.35 × 0.310.38 × 0.25 × 0.09
Data collection
DiffractometerEnraf-Nonius CAD4
diffractometer
Rigaku AFC-6S
diffractometer
Enraf-Nonius CAD4
diffractometer
Absorption correctionEmpirical (using intensity measurements)
via ψ-scan (3 reflections) (North et al., 1968)
Empirical (using intensity measurements)
via ψ-scan (3 reflections) (North et al., 1968)
Empirical (using intensity measurements)
via ψ-scan (3 reflections) (North et al., 1968)
Tmin, Tmax0.41, 0.710.90, 0.930.51, 0.84
No. of measured, independent and
observed [I > 2σ(I)] reflections
1788, 1705, 1653 2487, 2380, 1337 3104, 2843, 2323
Rint0.0140.0470.012
(sin θ/λ)max1)0.6010.5950.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.125, 1.15 0.042, 0.130, 1.00 0.054, 0.170, 1.06
No. of reflections170523802843
No. of parameters226182201
No. of restraints100
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.64, 0.290.24, 0.270.42, 0.30
Absolute structureFlack (1983)??
Absolute structure parameter0.04 (3)??

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988), CAD-4 Software, MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation, 1994), SAPI91 (Fan, 1991), SHELXL97 (Sheldrick, 1997), TEXSAN, SHELXL97.

Selected geometric parameters (Å, º) for (IIa) top
S1—C11.802 (6)O3—C141.203 (4)
S1—C31.860 (3)N1—C131.392 (4)
O1—C21.403 (5)N1—C141.409 (4)
O1—C31.427 (4)N1—C151.427 (4)
O2—C131.218 (4)
C1—S1—C390.60 (18)C13—N1—C15125.2 (3)
C2—O1—C3113.5 (3)C14—N1—C15123.7 (2)
C13—N1—C14111.2 (3)
Selected geometric parameters (Å, º) for (IIIa) top
S1—C11.805 (4)N1—N21.425 (4)
S1—C31.872 (3)N1—C101.455 (4)
O1—C31.413 (4)N2—C121.366 (4)
O1—C21.417 (4)N2—C71.460 (4)
O2—C111.210 (4)N3—C111.378 (4)
O3—C121.215 (4)N3—C121.388 (4)
N1—C111.379 (4)N3—C131.454 (4)
C1—S1—C391.56 (17)C12—N2—C7123.7 (3)
C3—O1—C2110.5 (3)N1—N2—C7116.7 (2)
C11—N1—N2107.3 (3)C11—N3—C12111.3 (3)
C11—N1—C10123.0 (3)C11—N3—C13125.0 (3)
N2—N1—C10114.8 (2)C12—N3—C13123.6 (3)
C12—N2—N1107.8 (2)
Selected geometric parameters (Å, º) for (IVb) top
S1—C11.793 (4)O3—C131.332 (3)
S1—C31.848 (3)O3—C141.439 (3)
O1—C21.423 (3)O4—C151.191 (3)
O1—C31.425 (3)O5—C151.323 (3)
O2—C131.195 (3)O5—C161.448 (3)
C1—S1—C392.04 (14)C13—O3—C14115.9 (2)
C2—O1—C3108.8 (2)C15—O5—C16115.5 (2)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds