organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1121

N,N′-[(1S,2S)-Cyclo­hexane-1,2-di­yl]bis­­(4-methyl­benzene­sulfonamide)

aCollege of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, People's Republic of China
*Correspondence e-mail: shenchem@hotmail.com

(Received 17 March 2011; accepted 3 April 2011; online 13 April 2011)

In the title compound, C20H26N2O4S2, the cyclo­hexane ring has a chair conformation. The two chiral C atoms are in S configurations. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains propagating in [001]. Weak inter­molecular C—H⋯O hydrogen bonds further stabilize the crystal packing.

Related literature

For the preparation of the title compound, see: Guo et al. (1997[Guo, C., Qiu, J. & Zhang, X. (1997). Tetrahedron, 53, 4145-4158.]). For asymmetric catalysis, see: Ackermann et al. (2003[Ackermann, L., Bergman, R. G. & Loy, R. N. (2003). J. Am. Chem. Soc. 125, 11956-15963.]); Bisai et al. (2005[Bisai, A., Prasad, B. A. B. & Singh, V. K. (2005). Tetrahedron Lett. 46, 7935-7939.]); Costa et al. (2005[Costa, A. M., Garcia, C., Carroll, P. J. & Walsh, P. J. (2005). Tetrahedron, 61, 6442-6446.]); Schwarz et al. (2010[Schwarz, A. D., Chu, Z. & Mountford, P. (2010). Organometallics, 29, 1246-1260.]). For the crystal structures of racemates of the title compound, see: Nieger et al. (2004[Nieger, M., Josten, W. & Vogtle, F. (2004). Private communication (CCDC deposition No. 235640). CCDC, Union Road, Cambridge, England.]); Pritchett et al. (1999[Pritchett, S., Gantzel, P. & Walsh, P. J. (1999). Organometallics, 18, 823-831.]); Tasker et al. (2005[Tasker, P., Squires, C., Parsons, S. & Messenger, D. (2005). Private communication (CCDC deposition No. 276825). CCDC, Union Road, Cambridge, England.]).

[Scheme 1]

Experimental

Crystal data
  • C20H26N2O4S2

  • Mr = 422.55

  • Orthorhombic, P 21 21 21

  • a = 11.5704 (14) Å

  • b = 12.2585 (15) Å

  • c = 15.3757 (19) Å

  • V = 2180.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 296 K

  • 0.75 × 0.65 × 0.32 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.822, Tmax = 0.918

  • 9486 measured reflections

  • 4196 independent reflections

  • 3748 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.094

  • S = 1.00

  • 4196 reflections

  • 256 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1706 Friedel pairs

  • Flack parameter: 0.07 (7)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H101⋯O3i 0.96 2.02 2.971 (3) 171
N2—H102⋯O1ii 0.93 2.07 2.982 (3) 167
C11—H11⋯O4iii 0.93 2.55 3.214 (3) 129
C9—H9⋯O1iv 0.93 2.54 3.452 (3) 169
Symmetry codes: (i) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+1, z-{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia,1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Chiral bis(sulfonamide)-based ligands have been successfully used in a variety of catalytic asymmetric transformations, such as asymmetric Diels-Alder cycloaddition, [2 + 2]cycloaddition, Claisen rearrangement, enolization-amination reactions, the cyclopropanation of allylic alcohols and the addition of alkyl groups to aldehydes. Among the above-mentioned reactions, the asymmetric addition of alkyl groups to aldehydes is one of the most efficient and highly enantioselective carbon-carbon bond forming processes (Ackermann et al., 2003; Costa et al., 2005). Bis(sulfonamide)-based ligands exhibit efficiency and enantioselectivity in the field of asymmetric synthesis, due to the robust nature of this linkage and bind well to some metals (Bisai et al., 2005; Schwarz et al., 2010). However, little was known about the structure of chiral bis(sulfonamide) ligands and, therefore, about the structure-catalytic activity relationships. Herein, we report the synthesis and crystal structure of the title compound (I) - a chiral bis(sulfonamide)-based ligand.

In (I) (Fig. 1), the C—C sigma single bond lengths in cyclohexane ring fall in the 1.478 (7) to 1.530 (3)Å range. The C1—C6 distance is 1.530 (3) Å, which is slightly longer than the corresponding distances of C1—C2 (1.508 (3) Å) and C5—C6 (1.524 (5) Å) resulting from the possible electron-withdrawing nature of the sulfonamide groups. The S1—O1 bond lengths of 1.4401 (16)Å is longer than other S1—O2 distances(1.4212 (17) Å), and S2—O3 distance (1.4376 Å) is also longer than S2—O4 bond lengths(1.4212 (19) Å). The disparity is a result of the forming of the hydrogen bonds involving O1 atom and O3. The bond lengths of S1—N1, S2—N2, S1—C7 and S2—C14 are 1.616 (19), 1.597 (2), 1.751 (3) and 1.769 (2) Å, which are comparable with these in racemic N,N'-cyclohexane-1,2-diylbis(4-methylbenzenesulfonamide) (Pritchett et al., 1999; Nieger et al., 2004; Tasker et al., 2005). The bond angles involving the O atoms involved in hydrogen-bonding, N1—S1—O1 and N2—S2—O3 are 104.81 (10) and 105.48 (11)°, respectively, while N1—S1—O2 and N2—S2—O4 are 108.82 (11) and 108.47 (12)°, respectively. The C—C—C bond angles within the cyclohexane rings are in the range 109.9 (3)–112.3 (3)°.

In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into chains propagated in [001]. Weak intermolecular C—H···O hydrogen bonds (Table 1) stabilize further the crystal packing.

Related literature top

For the preparation of the title compound, see: Guo et al. (1997). For asymmetric catalysis, see: Ackermann et al. (2003); Bisai et al. (2005); Costa et al. (2005); Schwarz et al. (2010). For the crystal structures of racemates of the title compound, see: Nieger et al. (2004); Pritchett et al. (1999); Tasker et al. (2005).

Experimental top

N,N'-(1S,2S)-Cyclohexane-1,2-diylbis(4- methylbenzenesulfonamide) was prepared according to literature method (Guo et al., 1997). To a stirred solution of (1S,2S)-1,2-diaminocyclohexane(1.2950 g, 11.36 mmol) in THF(100 mL) was added triethylamine(4.7 mL, 34 mmol) and the mixture was cooled to 0¯C and a solution of p-toluene sulfonyl chloride(4.3815 g, 22.72 mmol) in THF(10 mL) was added dropwise over 0.5–1 h. After the addition was complete, the mixture was allowed to warm to room temperature and stirred for 12 h. Then, the solvent removed under reduced pressure to obtain crude product. The crude product resolved in dichloromethane(10 mL), and washed with saturated sodium carbonate (13.5 mL). The aqueous solution was then extracted with dichloromethane(30 mL). The dichloromethane layers were combined, dried over anhydrous Na2SO4, filtered, and obtained title compound. The compound was characterized by elemental analysis, IR, 1H-NMR and MS. Yellow crystals suitable for X-ray diffraction were grown from hexane/ethyl acetate as a solvent.

Refinement top

The amino H atoms were located in a difference Fourier map and refined as riding, with Uiso(H) = 1.2Ueq(N). The remaining H atoms were placed in a calculated positions with C—H = 0.93–0.98Å and were included in the final cycle of refinement in riding mode with Uiso(H) = 1.2 or 1.5Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia,1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing 40% probability displacement ellipsoids.
N,N'-[(1S,2S)-Cyclohexane-1,2-diyl]bis(4- methylbenzenesulfonamide) top
Crystal data top
C20H26N2O4S2F(000) = 896
Mr = 422.55Dx = 1.287 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 5610 reflections
a = 11.5704 (14) Åθ = 2.2–27.4°
b = 12.2585 (15) ŵ = 0.27 mm1
c = 15.3757 (19) ÅT = 296 K
V = 2180.8 (5) Å3Chunk, yellow
Z = 40.75 × 0.65 × 0.32 mm
Data collection top
Bruker SMART CCD
diffractometer
4196 independent reflections
Radiation source: fine-focus sealed tube3748 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.822, Tmax = 0.918k = 157
9486 measured reflectionsl = 1817
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0445P)2 + 0.4906P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.094(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.18 e Å3
4196 reflectionsΔρmin = 0.24 e Å3
256 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0129 (10)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1706 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.07 (7)
Crystal data top
C20H26N2O4S2V = 2180.8 (5) Å3
Mr = 422.55Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 11.5704 (14) ŵ = 0.27 mm1
b = 12.2585 (15) ÅT = 296 K
c = 15.3757 (19) Å0.75 × 0.65 × 0.32 mm
Data collection top
Bruker SMART CCD
diffractometer
4196 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3748 reflections with I > 2σ(I)
Tmin = 0.822, Tmax = 0.918Rint = 0.021
9486 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.094Δρmax = 0.18 e Å3
S = 1.00Δρmin = 0.24 e Å3
4196 reflectionsAbsolute structure: Flack (1983), 1706 Friedel pairs
256 parametersAbsolute structure parameter: 0.07 (7)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S20.67936 (6)0.34616 (4)0.33373 (4)0.05778 (17)
S10.62809 (5)0.40875 (4)0.66645 (3)0.05630 (16)
C140.54709 (19)0.41739 (18)0.34420 (13)0.0522 (5)
O10.66322 (17)0.40834 (14)0.75630 (9)0.0696 (5)
O40.6663 (2)0.24457 (14)0.37717 (13)0.0815 (6)
C70.4973 (2)0.48007 (17)0.65910 (13)0.0546 (5)
O30.70891 (17)0.34735 (14)0.24292 (10)0.0691 (5)
N20.77908 (17)0.41378 (18)0.38123 (10)0.0600 (5)
H1020.80170.47550.35000.090*
N10.72602 (17)0.47945 (16)0.61697 (10)0.0553 (5)
H1010.74690.54060.65260.083*
O20.61429 (19)0.30761 (13)0.62249 (11)0.0717 (5)
C10.71703 (19)0.49569 (17)0.52189 (12)0.0486 (5)
H10.63730.48120.50380.058*
C100.2880 (2)0.5933 (2)0.65482 (15)0.0641 (6)
C130.1751 (3)0.6529 (3)0.6547 (2)0.0824 (8)
H13A0.11540.60580.67640.124*
H13B0.15650.67490.59640.124*
H13C0.18080.71630.69110.124*
C190.5374 (2)0.5203 (2)0.30984 (16)0.0624 (6)
H190.60040.55270.28250.075*
C110.2962 (2)0.4872 (2)0.62491 (19)0.0752 (7)
H110.23060.45290.60300.090*
C80.4911 (2)0.5865 (2)0.68795 (18)0.0765 (7)
H80.55670.62120.70930.092*
C20.7466 (3)0.6124 (2)0.50033 (16)0.0815 (9)
H2A0.69800.66070.53450.098*
H2B0.73010.62580.43940.098*
C60.7972 (2)0.4147 (2)0.47615 (13)0.0631 (6)
H60.78200.34140.49890.076*
C180.4338 (2)0.5754 (2)0.31602 (18)0.0728 (7)
H180.42790.64550.29330.087*
C120.3992 (3)0.4310 (2)0.62680 (17)0.0719 (7)
H120.40250.35970.60620.086*
C170.3394 (2)0.5287 (2)0.35501 (17)0.0723 (7)
C150.4543 (3)0.3685 (2)0.38376 (17)0.0733 (7)
H150.46050.29850.40670.088*
C200.2257 (3)0.5907 (3)0.3615 (2)0.1059 (11)
H20A0.21080.60880.42120.159*
H20B0.16410.54600.33960.159*
H20C0.23050.65640.32770.159*
C90.3878 (3)0.6408 (2)0.6850 (2)0.0810 (8)
H90.38500.71280.70410.097*
C160.3510 (3)0.4257 (3)0.38880 (19)0.0850 (8)
H160.28780.39330.41590.102*
C50.9229 (3)0.4441 (5)0.4944 (2)0.1246 (19)
H5A0.93940.43110.55540.149*
H5B0.97270.39680.46040.149*
C40.9504 (3)0.5625 (6)0.4727 (2)0.156 (3)
H4A1.02950.57820.48920.187*
H4B0.94350.57330.41040.187*
C30.8719 (4)0.6387 (4)0.5182 (2)0.1297 (18)
H3A0.88810.71260.49920.156*
H3B0.88610.63480.58030.156*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S20.0767 (4)0.0523 (3)0.0444 (3)0.0109 (3)0.0052 (3)0.0021 (2)
S10.0786 (4)0.0508 (3)0.0395 (2)0.0039 (3)0.0075 (3)0.0023 (2)
C140.0620 (13)0.0541 (11)0.0406 (10)0.0011 (10)0.0020 (9)0.0021 (10)
O10.0994 (13)0.0680 (9)0.0414 (8)0.0018 (10)0.0051 (8)0.0113 (7)
O40.1114 (16)0.0534 (9)0.0798 (12)0.0169 (10)0.0114 (11)0.0073 (8)
C70.0707 (14)0.0495 (10)0.0437 (11)0.0136 (10)0.0092 (11)0.0052 (9)
O30.0919 (13)0.0705 (10)0.0449 (8)0.0055 (10)0.0063 (8)0.0122 (7)
N20.0655 (12)0.0763 (12)0.0382 (9)0.0112 (11)0.0029 (8)0.0005 (9)
N10.0646 (11)0.0676 (11)0.0337 (8)0.0030 (9)0.0017 (8)0.0045 (8)
O20.0989 (14)0.0533 (8)0.0631 (10)0.0004 (9)0.0087 (10)0.0038 (8)
C10.0517 (11)0.0612 (11)0.0330 (9)0.0032 (9)0.0022 (8)0.0039 (9)
C100.0732 (15)0.0639 (13)0.0551 (13)0.0078 (12)0.0077 (11)0.0031 (11)
C130.0744 (17)0.0878 (18)0.085 (2)0.0004 (15)0.0022 (15)0.0123 (16)
C190.0597 (13)0.0589 (13)0.0687 (15)0.0012 (11)0.0004 (11)0.0099 (11)
C110.0691 (17)0.0690 (15)0.0875 (18)0.0214 (14)0.0050 (15)0.0062 (14)
C80.0723 (17)0.0602 (14)0.097 (2)0.0060 (13)0.0110 (15)0.0275 (14)
C20.130 (3)0.0718 (16)0.0428 (12)0.0146 (16)0.0041 (14)0.0086 (11)
C60.0666 (14)0.0855 (15)0.0373 (10)0.0252 (13)0.0002 (9)0.0033 (11)
C180.0702 (16)0.0680 (15)0.0803 (18)0.0080 (13)0.0010 (13)0.0064 (13)
C120.0838 (18)0.0548 (13)0.0771 (16)0.0185 (13)0.0036 (14)0.0131 (12)
C170.0653 (15)0.0912 (18)0.0604 (15)0.0078 (14)0.0004 (12)0.0065 (13)
C150.0838 (19)0.0674 (15)0.0688 (16)0.0057 (14)0.0116 (14)0.0111 (12)
C200.0752 (19)0.132 (3)0.110 (2)0.024 (2)0.0081 (19)0.007 (2)
C90.0863 (19)0.0603 (14)0.096 (2)0.0028 (14)0.0098 (16)0.0269 (14)
C160.0695 (18)0.110 (2)0.0755 (18)0.0133 (17)0.0182 (14)0.0057 (17)
C50.063 (2)0.257 (6)0.0537 (16)0.050 (3)0.0093 (14)0.016 (3)
C40.079 (2)0.334 (8)0.0541 (17)0.088 (4)0.0068 (16)0.014 (3)
C30.168 (4)0.169 (4)0.0517 (16)0.107 (3)0.013 (2)0.004 (2)
Geometric parameters (Å, º) top
S2—O41.4212 (19)C11—H110.9300
S2—O31.4376 (16)C8—C91.369 (4)
S2—N21.597 (2)C8—H80.9300
S2—C141.769 (2)C2—C31.511 (6)
S1—O21.4212 (17)C2—H2A0.9700
S1—O11.4401 (16)C2—H2B0.9700
S1—N11.6166 (19)C6—C51.524 (5)
S1—C71.751 (3)C6—H60.9800
C14—C151.372 (3)C18—C171.371 (4)
C14—C191.372 (3)C18—H180.9300
C7—C121.377 (3)C12—H120.9300
C7—C81.380 (3)C17—C161.371 (4)
N2—C61.475 (3)C17—C201.523 (4)
N2—H1020.9334C15—C161.389 (4)
N1—C11.479 (2)C15—H150.9300
N1—H1010.9589C20—H20A0.9600
C1—C21.508 (3)C20—H20B0.9600
C1—C61.530 (3)C20—H20C0.9600
C1—H10.9800C9—H90.9300
C10—C91.373 (4)C16—H160.9300
C10—C111.384 (4)C5—C41.523 (7)
C10—C131.497 (4)C5—H5A0.9700
C13—H13A0.9600C5—H5B0.9700
C13—H13B0.9600C4—C31.478 (7)
C13—H13C0.9600C4—H4A0.9700
C19—C181.379 (3)C4—H4B0.9700
C19—H190.9300C3—H3A0.9700
C11—C121.376 (4)C3—H3B0.9700
O4—S2—O3119.38 (11)C1—C2—H2B109.1
O4—S2—N2108.47 (12)C3—C2—H2B109.1
O3—S2—N2105.48 (11)H2A—C2—H2B107.9
O4—S2—C14107.31 (12)N2—C6—C5108.6 (2)
O3—S2—C14106.81 (10)N2—C6—C1111.93 (17)
N2—S2—C14109.09 (10)C5—C6—C1109.9 (3)
O2—S1—O1119.01 (10)N2—C6—H6108.8
O2—S1—N1108.82 (11)C5—C6—H6108.8
O1—S1—N1104.81 (10)C1—C6—H6108.8
O2—S1—C7107.92 (12)C17—C18—C19121.2 (3)
O1—S1—C7107.91 (11)C17—C18—H18119.4
N1—S1—C7107.92 (10)C19—C18—H18119.4
C15—C14—C19120.6 (2)C11—C12—C7120.2 (2)
C15—C14—S2120.10 (18)C11—C12—H12119.9
C19—C14—S2119.28 (18)C7—C12—H12119.9
C12—C7—C8119.1 (2)C16—C17—C18118.2 (3)
C12—C7—S1121.16 (18)C16—C17—C20121.3 (3)
C8—C7—S1119.76 (19)C18—C17—C20120.6 (3)
C6—N2—S2124.00 (18)C14—C15—C16118.5 (2)
C6—N2—H102117.6C14—C15—H15120.7
S2—N2—H102112.8C16—C15—H15120.7
C1—N1—S1119.21 (15)C17—C20—H20A109.5
C1—N1—H101118.5C17—C20—H20B109.5
S1—N1—H101109.1H20A—C20—H20B109.5
N1—C1—C2109.21 (18)C17—C20—H20C109.5
N1—C1—C6108.92 (17)H20A—C20—H20C109.5
C2—C1—C6112.2 (2)H20B—C20—H20C109.5
N1—C1—H1108.8C8—C9—C10122.6 (2)
C2—C1—H1108.8C8—C9—H9118.7
C6—C1—H1108.8C10—C9—H9118.7
C9—C10—C11117.0 (3)C17—C16—C15121.9 (3)
C9—C10—C13121.8 (2)C17—C16—H16119.1
C11—C10—C13121.2 (3)C15—C16—H16119.1
C10—C13—H13A109.5C4—C5—C6112.6 (3)
C10—C13—H13B109.5C4—C5—H5A109.1
H13A—C13—H13B109.5C6—C5—H5A109.1
C10—C13—H13C109.5C4—C5—H5B109.1
H13A—C13—H13C109.5C6—C5—H5B109.1
H13B—C13—H13C109.5H5A—C5—H5B107.8
C14—C19—C18119.6 (2)C3—C4—C5111.8 (3)
C14—C19—H19120.2C3—C4—H4A109.3
C18—C19—H19120.2C5—C4—H4A109.3
C12—C11—C10121.5 (2)C3—C4—H4B109.3
C12—C11—H11119.2C5—C4—H4B109.3
C10—C11—H11119.2H4A—C4—H4B107.9
C9—C8—C7119.6 (2)C4—C3—C2111.6 (3)
C9—C8—H8120.2C4—C3—H3A109.3
C7—C8—H8120.2C2—C3—H3A109.3
C1—C2—C3112.3 (3)C4—C3—H3B109.3
C1—C2—H2A109.1C2—C3—H3B109.3
C3—C2—H2A109.1H3A—C3—H3B108.0
O4—S2—C14—C154.0 (2)C6—C1—C2—C354.0 (3)
O3—S2—C14—C15125.1 (2)S2—N2—C6—C5155.9 (3)
N2—S2—C14—C15121.3 (2)S2—N2—C6—C182.5 (3)
O4—S2—C14—C19178.14 (19)N1—C1—C6—N2170.8 (2)
O3—S2—C14—C1952.7 (2)C2—C1—C6—N268.2 (3)
N2—S2—C14—C1960.8 (2)N1—C1—C6—C568.4 (3)
O2—S1—C7—C128.9 (2)C2—C1—C6—C552.6 (3)
O1—S1—C7—C12120.9 (2)C14—C19—C18—C170.9 (4)
N1—S1—C7—C12126.37 (19)C10—C11—C12—C70.1 (4)
O2—S1—C7—C8172.6 (2)C8—C7—C12—C111.1 (4)
O1—S1—C7—C857.6 (2)S1—C7—C12—C11177.3 (2)
N1—S1—C7—C855.2 (2)C19—C18—C17—C160.8 (4)
O4—S2—N2—C637.9 (2)C19—C18—C17—C20179.9 (3)
O3—S2—N2—C6166.88 (18)C19—C14—C15—C160.5 (4)
C14—S2—N2—C678.7 (2)S2—C14—C15—C16178.3 (2)
O2—S1—N1—C151.2 (2)C7—C8—C9—C100.6 (5)
O1—S1—N1—C1179.49 (16)C11—C10—C9—C81.6 (4)
C7—S1—N1—C165.69 (18)C13—C10—C9—C8178.0 (3)
S1—N1—C1—C2137.8 (2)C18—C17—C16—C150.5 (4)
S1—N1—C1—C699.4 (2)C20—C17—C16—C15179.7 (3)
C15—C14—C19—C180.7 (4)C14—C15—C16—C170.4 (4)
S2—C14—C19—C18178.6 (2)N2—C6—C5—C469.8 (3)
C9—C10—C11—C121.2 (4)C1—C6—C5—C453.0 (3)
C13—C10—C11—C12178.4 (3)C6—C5—C4—C355.0 (4)
C12—C7—C8—C90.8 (4)C5—C4—C3—C254.5 (4)
S1—C7—C8—C9177.7 (2)C1—C2—C3—C454.7 (4)
N1—C1—C2—C366.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H101···O3i0.962.022.971 (3)171
N2—H102···O1ii0.932.072.982 (3)167
C11—H11···O4iii0.932.553.214 (3)129
C9—H9···O1iv0.932.543.452 (3)169
Symmetry codes: (i) x+3/2, y+1, z+1/2; (ii) x+3/2, y+1, z1/2; (iii) x1/2, y+1/2, z+1; (iv) x+1, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC20H26N2O4S2
Mr422.55
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)11.5704 (14), 12.2585 (15), 15.3757 (19)
V3)2180.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.75 × 0.65 × 0.32
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.822, 0.918
No. of measured, independent and
observed [I > 2σ(I)] reflections
9486, 4196, 3748
Rint0.021
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.094, 1.00
No. of reflections4196
No. of parameters256
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.24
Absolute structureFlack (1983), 1706 Friedel pairs
Absolute structure parameter0.07 (7)

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia,1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H101···O3i0.962.022.971 (3)171
N2—H102···O1ii0.932.072.982 (3)167
C11—H11···O4iii0.932.553.214 (3)129
C9—H9···O1iv0.932.543.452 (3)169
Symmetry codes: (i) x+3/2, y+1, z+1/2; (ii) x+3/2, y+1, z1/2; (iii) x1/2, y+1/2, z+1; (iv) x+1, y+1/2, z+3/2.
 

Acknowledgements

We express our gratitude to the Zhejiang Provincial Natural Science Foundation of China for financial support through Project No. Y4090056.

References

First citationAckermann, L., Bergman, R. G. & Loy, R. N. (2003). J. Am. Chem. Soc. 125, 11956–15963.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBisai, A., Prasad, B. A. B. & Singh, V. K. (2005). Tetrahedron Lett. 46, 7935–7939.  CrossRef CAS Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosta, A. M., Garcia, C., Carroll, P. J. & Walsh, P. J. (2005). Tetrahedron, 61, 6442–6446.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGuo, C., Qiu, J. & Zhang, X. (1997). Tetrahedron, 53, 4145–4158.  CAS Google Scholar
First citationNieger, M., Josten, W. & Vogtle, F. (2004). Private communication (CCDC deposition No. 235640). CCDC, Union Road, Cambridge, England.  Google Scholar
First citationPritchett, S., Gantzel, P. & Walsh, P. J. (1999). Organometallics, 18, 823–831.  CrossRef CAS Google Scholar
First citationSchwarz, A. D., Chu, Z. & Mountford, P. (2010). Organometallics, 29, 1246–1260.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTasker, P., Squires, C., Parsons, S. & Messenger, D. (2005). Private communication (CCDC deposition No. 276825). CCDC, Union Road, Cambridge, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1121
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds