organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-Cyclo­hexyl­idenebenzohydrazide

aDongchang College, Liaocheng University, Liaocheng 250059, People's Republic of China
*Correspondence e-mail: konglingqian08@163.com

(Received 20 November 2009; accepted 3 December 2009; online 9 December 2009)

In the title compound, C13H16N2O, the cyclo­hexane ring adopts a chair conformation. In the crystal structure, inter­molecular N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into chains propagating in [001].

Related literature

For related structures, see: Fun et al. (2008[Fun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594-o1595.]); Nie (2008[Nie, Y. (2008). Acta Cryst. E64, o471.]); Kong et al. (2009[Kong, L.-Q., Ju, X.-P. & Li, D.-C. (2009). Acta Cryst. E65, m1251.]); Fan & Song (2009[Fan, C.-G. & Song, M.-Z. (2009). Acta Cryst. E65, o2679.]).

[Scheme 1]

Experimental

Crystal data
  • C13H16N2O

  • Mr = 216.28

  • Tetragonal, P 43

  • a = 9.4691 (11) Å

  • c = 13.8514 (15) Å

  • V = 1242.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 K

  • 0.44 × 0.41 × 0.28 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.968, Tmax = 0.980

  • 6248 measured reflections

  • 1145 independent reflections

  • 860 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.114

  • S = 1.08

  • 1145 reflections

  • 145 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.13 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.28 3.133 (4) 172
C13—H13B⋯O1i 0.97 2.41 3.264 (5) 147
C7—H7⋯O1i 0.93 2.35 3.137 (5) 142
Symmetry code: (i) [y, -x, z+{\script{1\over 4}}].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In continuation of our structural study of benzohydrazide derivatives (Kong et al., 2009; Fan & Song, 2009), we present here the title compound, (I).

In (I) (Fig. 1), the bond lengths and angles are normal and comparable to those observed in the analogue compounds (Nie, 2008; Fun et al., 2008). The C8=N2 bond length is 1.283 (4) ° showing the double-bond character. The dihedral angle between the benzene ring C2—C7 and the plane C1/N1/N2 is 19.0 (3) °

In the crystal structure, intermolecular N—H···O and C—H..O hydrogen bonds (Table 1) link the molecules into chains propagated in direction [001].

Related literature top

For related structures, see: Fun et al. (2008); Nie (2008); Kong et al. (2009); Fan & Song (2009).

Experimental top

Cyclohexanone (5 mmol), benzohydrazide (5 mmol) and 10 ml of methanol were mixed in 50 ml flask. After stirring for 30 min at 373 K, the resulting mixture was recrystallized from methanol, affording the title compound as colourless crystalline solid. Elemental analysis: calculated for C13H16N2O: C 72.19, H 7.46, N 12.95%; found: C 72.18, H 7.25, N 12.78%.

Refinement top

All H atoms were placed in geometrically idealized positions (N—H 0.86 Å, C—H 0.93–0.97 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2 Ueq(C, N). In the absence of any significant anomalous scatterers in the molecule, the 1021 Friedel pairs were merged before the final refinement.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of (I) showing the atomic numbering scheme and 30% probability displacement ellipsoids,
(I) top
Crystal data top
C13H16N2ODx = 1.157 Mg m3
Mr = 216.28Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P43Cell parameters from 1861 reflections
a = 9.4691 (11) Åθ = 2.6–21.7°
c = 13.8514 (15) ŵ = 0.07 mm1
V = 1242.0 (2) Å3T = 298 K
Z = 4Block, colourless
F(000) = 4640.44 × 0.41 × 0.28 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1145 independent reflections
Radiation source: fine-focus sealed tube860 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
phi and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 911
Tmin = 0.968, Tmax = 0.980k = 911
6248 measured reflectionsl = 1615
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0557P)2 + 0.1344P]
where P = (Fo2 + 2Fc2)/3
1145 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.12 e Å3
1 restraintΔρmin = 0.13 e Å3
Crystal data top
C13H16N2OZ = 4
Mr = 216.28Mo Kα radiation
Tetragonal, P43µ = 0.07 mm1
a = 9.4691 (11) ÅT = 298 K
c = 13.8514 (15) Å0.44 × 0.41 × 0.28 mm
V = 1242.0 (2) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1145 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
860 reflections with I > 2σ(I)
Tmin = 0.968, Tmax = 0.980Rint = 0.039
6248 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0381 restraint
wR(F2) = 0.114H-atom parameters constrained
S = 1.08Δρmax = 0.12 e Å3
1145 reflectionsΔρmin = 0.13 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1658 (3)0.0240 (3)0.0959 (2)0.0539 (7)
H10.19390.02920.14230.065*
N20.0942 (3)0.0310 (3)0.0148 (2)0.0591 (8)
O10.1613 (3)0.2405 (2)0.02619 (18)0.0664 (7)
C10.1877 (3)0.1650 (3)0.0965 (2)0.0469 (7)
C20.2512 (3)0.2288 (3)0.1861 (2)0.0476 (8)
C30.2322 (4)0.3730 (4)0.1997 (3)0.0691 (10)
H30.17850.42440.15580.083*
C40.2925 (5)0.4407 (5)0.2780 (4)0.0879 (14)
H40.28000.53740.28600.106*
C50.3704 (5)0.3662 (5)0.3435 (3)0.0850 (13)
H50.40900.41200.39670.102*
C60.3921 (5)0.2236 (5)0.3311 (3)0.0837 (13)
H60.44680.17330.37510.100*
C70.3317 (4)0.1553 (4)0.2525 (3)0.0660 (10)
H70.34560.05880.24440.079*
C80.0953 (3)0.1653 (4)0.0023 (3)0.0571 (9)
C90.0175 (4)0.2201 (4)0.0853 (3)0.0760 (12)
H9A0.05810.28230.06480.091*
H9B0.02420.14150.12000.091*
C100.1162 (5)0.2993 (5)0.1514 (4)0.0919 (14)
H10A0.18280.23360.18000.110*
H10B0.06220.34210.20320.110*
C110.1973 (5)0.4143 (5)0.0971 (4)0.0898 (14)
H11A0.13200.48730.07670.108*
H11B0.26590.45700.14010.108*
C120.2727 (5)0.3556 (4)0.0097 (3)0.0824 (13)
H12A0.34730.29270.03100.099*
H12B0.31620.43270.02550.099*
C130.1736 (5)0.2748 (4)0.0584 (3)0.0719 (11)
H13A0.10730.33970.08800.086*
H13B0.22800.23010.10930.086*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0677 (17)0.0506 (16)0.0435 (16)0.0033 (12)0.0078 (14)0.0016 (13)
N20.0676 (18)0.0586 (17)0.0510 (18)0.0012 (14)0.0130 (14)0.0043 (15)
O10.0879 (17)0.0622 (14)0.0491 (16)0.0017 (12)0.0084 (13)0.0105 (13)
C10.0479 (17)0.0524 (19)0.040 (2)0.0022 (14)0.0066 (15)0.0005 (16)
C20.0538 (18)0.0502 (18)0.0389 (19)0.0028 (15)0.0075 (15)0.0034 (15)
C30.084 (3)0.059 (2)0.065 (3)0.0076 (18)0.001 (2)0.0094 (19)
C40.106 (3)0.066 (3)0.092 (4)0.001 (2)0.005 (3)0.029 (3)
C50.102 (3)0.097 (3)0.056 (3)0.016 (3)0.003 (3)0.024 (3)
C60.102 (3)0.087 (3)0.061 (3)0.008 (2)0.023 (2)0.006 (2)
C70.077 (2)0.063 (2)0.058 (2)0.0037 (19)0.011 (2)0.0024 (19)
C80.063 (2)0.055 (2)0.053 (2)0.0060 (16)0.0021 (17)0.0048 (17)
C90.083 (3)0.069 (2)0.076 (3)0.009 (2)0.020 (2)0.013 (2)
C100.123 (4)0.090 (3)0.062 (3)0.016 (3)0.009 (3)0.022 (3)
C110.103 (3)0.079 (3)0.088 (4)0.005 (2)0.020 (3)0.024 (3)
C120.089 (3)0.072 (2)0.086 (3)0.009 (2)0.005 (3)0.006 (2)
C130.097 (3)0.064 (2)0.055 (2)0.006 (2)0.000 (2)0.0009 (19)
Geometric parameters (Å, º) top
N1—C11.350 (4)C8—C131.493 (5)
N1—N21.412 (4)C8—C91.511 (5)
N1—H10.8600C9—C101.508 (6)
N2—C81.283 (4)C9—H9A0.9700
O1—C11.234 (4)C9—H9B0.9700
C1—C21.506 (4)C10—C111.530 (7)
C2—C71.382 (5)C10—H10A0.9700
C2—C31.390 (4)C10—H10B0.9700
C3—C41.383 (6)C11—C121.511 (6)
C3—H30.9300C11—H11A0.9700
C4—C51.366 (7)C11—H11B0.9700
C4—H40.9300C12—C131.535 (5)
C5—C61.377 (6)C12—H12A0.9700
C5—H50.9300C12—H12B0.9700
C6—C71.390 (5)C13—H13A0.9700
C6—H60.9300C13—H13B0.9700
C7—H70.9300
C1—N1—N2116.3 (3)C10—C9—H9A109.5
C1—N1—H1121.8C8—C9—H9A109.5
N2—N1—H1121.8C10—C9—H9B109.5
C8—N2—N1118.0 (3)C8—C9—H9B109.5
O1—C1—N1122.5 (3)H9A—C9—H9B108.0
O1—C1—C2119.9 (3)C9—C10—C11111.5 (4)
N1—C1—C2117.6 (3)C9—C10—H10A109.3
C7—C2—C3118.4 (3)C11—C10—H10A109.3
C7—C2—C1124.5 (3)C9—C10—H10B109.3
C3—C2—C1117.0 (3)C11—C10—H10B109.3
C4—C3—C2120.5 (4)H10A—C10—H10B108.0
C4—C3—H3119.7C12—C11—C10111.7 (4)
C2—C3—H3119.7C12—C11—H11A109.3
C5—C4—C3120.3 (4)C10—C11—H11A109.3
C5—C4—H4119.9C12—C11—H11B109.3
C3—C4—H4119.9C10—C11—H11B109.3
C4—C5—C6120.3 (4)H11A—C11—H11B107.9
C4—C5—H5119.8C11—C12—C13112.8 (3)
C6—C5—H5119.8C11—C12—H12A109.0
C5—C6—C7119.5 (4)C13—C12—H12A109.0
C5—C6—H6120.3C11—C12—H12B109.0
C7—C6—H6120.3C13—C12—H12B109.0
C2—C7—C6120.9 (4)H12A—C12—H12B107.8
C2—C7—H7119.5C8—C13—C12109.2 (3)
C6—C7—H7119.5C8—C13—H13A109.8
N2—C8—C13128.4 (3)C12—C13—H13A109.8
N2—C8—C9116.4 (3)C8—C13—H13B109.8
C13—C8—C9114.9 (3)C12—C13—H13B109.8
C10—C9—C8110.9 (3)H13A—C13—H13B108.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.283.133 (4)172
C13—H13B···O1i0.972.413.264 (5)147
C7—H7···O1i0.932.353.137 (5)142
Symmetry code: (i) y, x, z+1/4.

Experimental details

Crystal data
Chemical formulaC13H16N2O
Mr216.28
Crystal system, space groupTetragonal, P43
Temperature (K)298
a, c (Å)9.4691 (11), 13.8514 (15)
V3)1242.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.44 × 0.41 × 0.28
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.968, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
6248, 1145, 860
Rint0.039
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.114, 1.08
No. of reflections1145
No. of parameters145
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.13

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.283.133 (4)172.1
C13—H13B···O1i0.972.413.264 (5)147.4
C7—H7···O1i0.932.353.137 (5)142.0
Symmetry code: (i) y, x, z+1/4.
 

Acknowledgements

This project was supported by the Foundation of Dongchang College, Liaocheng University (grant No. LG0801).

References

First citationFan, C.-G. & Song, M.-Z. (2009). Acta Cryst. E65, o2679.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFun, H.-K., Patil, P. S., Jebas, S. R., Sujith, K. V. & Kalluraya, B. (2008). Acta Cryst. E64, o1594–o1595.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKong, L.-Q., Ju, X.-P. & Li, D.-C. (2009). Acta Cryst. E65, m1251.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNie, Y. (2008). Acta Cryst. E64, o471.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems, Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds