research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Polymeric coordination complex of lithium(I) with aqua and cyanurate ligands

crossmark logo

aDepartment of Physics, Government Arts College for Men (Autonomous), University of Madras, Nandanam, Chennai 600 035, India, bDepartment of Chemistry, Dr. M.G.R. Educational and Research Institute, Chennai 600 095, India, and cDepartment of Physics, Dr. M.G.R. Educational and Research Institute, Chennai 600 095, India
*Correspondence e-mail: c.karnan@yahoo.com

Edited by A. M. Chippindale, University of Reading, England (Received 23 June 2021; accepted 7 September 2021; online 14 September 2021)

The polymeric title complex, poly[hexa-μ-aqua-diaquatetra-μ-cyanurato-tetralithium] [Li4(C3H2N3O3)4(H2O)7]n, synthesized at room temperature from an aqueous solution of lithium hydroxide and cyanuric chloride, crystallizes in the triclinic space group P[\overline{1}]. There are two distinct Li+ cations in the asymmetric unit, one of which, Li1, has distorted trigonal–bipyramidal geometry and is coordinated via oxygen to two cyanurate anions occupying equatorial positions, and three water mol­ecules, two in the axial positions and the third in an equatorial position. One of the axial water ligands and the equatorial water ligand are involved in bridging to a crystallographically equivalent Li1 cation. A centre of inversion lies between the two Li1 cations and the Li1⋯Li1 distance is 3.037 (5) Å. The remaining axial water ligand bridges to the second Li cation, Li2, which is disordered over two crystallographic sites with approximately equal occupancy, and has an Li1⋯Li2 distance of 3.438 (7) Å. The terminal Li2 cation is coordinated to three water mol­ecules and an oxygen atom from a cyanuric anion and has a distorted tetra­hedral geometry. A three-dimensional network of inter­molecular hydrogen bonds involving N—H⋯O, O—H⋯O and O—H⋯N inter­actions serves to hold the structure together. The title compound was further characterized using IR and UV–vis spectroscopy and TG–DTA analysis.

1. Chemical context

A number of physical and structural properties, including mol­ecular geometry, metal–ligand bonding and directional supra­molecular architecture, control and influence the applications of hybrid metallo-organic coordination compounds (Coubrough et al., 2019[Coubrough, H. M., van der Lubbe, S. C. C., Hetherington, K., Minard, A., Pask, C., Howard, M. J., Fonseca Guerra, C. & Wilson, A. J. (2019). Chem. Eur. J. 25, 785-795.]). Such compounds find potential applications in catalysis, gas storage, ion exchange, magnetic materials, sensors, optics and batteries (Qu et al., 2016[Qu, X. L., Zheng, X. L. & Li, X. (2016). RSC Adv. 6, 69007-69015.]). The various possible metal and linker combinations are endless and have led to the synthesis of thousands of new materials with different metal geometries and functionalities (Chatenever et al., 2019[Chatenever, A. R. K., Warne, L. R., Matsuoka, J. E., Wang, S. J., Reinheimer, E. W., LeMagueres, P., Fei, H., Song, X. & Oliver, S. R. J. (2019). Cryst. Growth Des. 19, 4854-4859.]). Among the metals investigated, lithium-based complexes have unique advantages, exploiting properties of the lithium cation such as small ionic radius, high polarizing power, aqueous solubility and low economic cost (Ge et al., 2018[Ge, Z. Y., Zhu, Z. B., Deng, Z. P., Huo, L. H. & Gao, S. (2018). CrystEngComm, 20, 2968-2979.]; Wan et al., 2012[Wan, W., Zhu, Z.-B., Huo, L.-H., Deng, Z.-P., Zhao, H. & Gao, S. (2012). CrystEngComm, 14, 5274-5284.]). In solution, the lithium cation is of great importance because it can bind with selective organic ligands, leading to uses in many areas, including as active cellular components in ion-selective electrodes (ISE) in medicine, in nuclear power and in batteries (Ivanova et al., 2019[Ivanova, I. S., Ilyukhin, A. B., Tsebrikova, G. S., Polyakova, I. N., Pyatova, E. N., Solov'ev, V. P., Baulin, V. E. & Yu. Tsivadze, A. (2019). Inorg. Chim. Acta, 497, 119095.]).

Cyanuric acid (1,3,5-triazine-2,4,6-triol) is an industrially important compound used to make pesticides, dyes, and disinfectants (Cho et al., 2014[Cho, S., Shi, K., Seffernick, J. L., Dodge, A. G., Wackett, L. P. & Aihara, H. (2014). PLoS One, 9, https://doi.org/10.1371/journal.pone.0099349.]). The acid is used as a chlorine stabilizer for outdoor swimming pools and sizeable industrial water systems. It is non-toxic to human and aqua­tic animals. It also has the remarkable property of biodegradability by soil bacteria (Prabhaharan et al., 2015[Prabhaharan, M., Prabakaran, A. R., Srinivasan, S. & Gunasekaran, S. (2015). Spectrochim. Acta, A138, 711-722.]) and was recently found to be an effective nucleating agent during kinetic studies of biodegradable poly(L-lactide) and poly(3-hy­droxy­lbutyrate) co-polyesters (Pan et al., 2013[Pan, P., Shan, G., Bao, Y. & Weng, Z. (2013). J. Appl. Polym. Sci. 129, 1374-1382.]; Weng & Qiu, 2014[Weng, M. & Qiu, Z. (2014). Thermochim. Acta, 577, 41-45.]).

With regard to metallo-organic chemistry, cyanuric acid is an important ligand due to its structural symmetry based on a planar six-membered ring, the existence of canonical structures and the presence of multiple hydrogen-bond-donor centres (Divya et al., 2017[Divya, R., Nair, L. P., Bijini, B. R., Nair, C. M. K., Gopakumar, N. & Babu, K. R. (2017). Physica B, 526, 37-44.]). In its neutral, undissociated form, cyanuric acid shows tautomerism and can exist in the keto (I)[link] or enol (II) forms (Fig. 1[link]) (Abu-Salem et al., 2017[Abu-Salem, Q., Harb, M. K., Maichle-Mössmer, C., Steimann, M. & Voelter, W. (2017). Arab. J. Chem. 10, S3883-S3888.]). In basic solution, it forms an anion with resonance between the (III), (IV) and (V) forms (Fig. 1[link]).

[Scheme 1]
[Figure 1]
Figure 1
Tautomerism of cyanuric acid showing the trione (I)[link] and triol (II) forms together with the resonance structures of the cyanurate anion [(III), (IV) and (V)].

As cyanuric acid has three hydrogen-bonding-donor amine sites and three hydrogen-bonding-acceptor keto sites, it has been the subject of several structural and crystal-design studies (Shemchuk et al., 2017[Shemchuk, O., Braga, D., Maini, L. & Grepioni, F. (2017). CrystEngComm, 19, 1366-1369.]). In the present work, we report the synthesis of a new lithium complex of cyanuric acid, [Li4(C3H2N3O3)4(H2O)7]n. The complex has been characterized by single-crystal X-ray diffraction, FTIR and UV–Vis spectroscopy, and TG–DTA analysis.

2. Structural commentary

The title compound crystallizes in the triclinic space group Pī. The asymmetric unit comprises two lithium ions, two cyan­urate ligands and three and a half coordinated water mol­ecules. An inversion centre lies between the related Li+ cations, Li1 and Li1i, generating a mol­ecular unit of formula [Li4(C3H2N3O3)4(H2O)7] (Fig. 2[link]).

[Figure 2]
Figure 2
Coordination environments of the Li+ ions in the title compound with the displacement ellipsoids shown at the 50% probability level. Li2 is disordered over two sites, Li2A and Li2B, of approximately equal occupancy. [Symmetry codes: (i) −x + 2, −y + 1, −z + 1; (ii) −x, y + 1, z.]

The two crystallographically distinct cyanurate ligands exist in resonance form (IV) (Fig. 1[link]), in which the negative charge is located on a nitro­gen atom. Inter­estingly, for both ligands, coordination to lithium does not involve the deprotonated N2 and N5 atoms, but occurs via the keto oxygen atoms opposite (O1 and O4). This coordination preference may be due to the hard acid, Li+, preferring to bond to the harder base i.e. oxygen.

The C=O groups involved in coordination to Li1, namely C1=O1 and C4=O4 have bond lengths of 1.2207 (19) and 1.2242 (19) Å, respectively (Fig. 3[link]), which are similar values to those found in related complexes (Divya et al., 2020[Divya, R., Vineeth, V. T., Bijini, B. R., Nair, C. M. K. & RajendraBabu, K. (2020). J. Mol. Struct. 1200, 127031.]). The remaining two C=O groups in each ligand are involved in resonance and inter­molecular hydrogen bonding (and, in the cases of C2=O3 and C3=O2, in bonding to Li2A and Li2B) and have slightly longer bond lengths: C2—O3, 1.2439 (18) Å; C3—O2, 1.2436 (19) Å; C5—O5, 1.2442 (18) Å and C6—O6, 1.2430 (18) Å. The delocalization of the negative charge on the deprotonated nitro­gen atoms (N2 and N5) over the adjacent keto groups is shown as dashed lines in Fig. 2[link].

[Figure 3]
Figure 3
Observed bond lengths in the cyanurate anions found in the title compound. The delocalization of the negative charge on the deprotonated nitro­gen atoms (N2 and N5) over the adjacent keto groups is shown as dashed lines.

There are two distinct Li+ cations in the asymmetric unit (Fig. 3[link]). Li1 has a distorted trigonal–bipyramidal geometry and is coordinated via O1 and O4 to the two cyanurate anions, which occupy equatorial positions, and three water mol­ecules, two (H2O7 and H2O8i) in the axial positions and the third (H2O8) in an equatorial position. The Li1—O bond lengths lie in the range 2.012 (3)– 2.201 (3) Å and the bond angles of O4—Li1—O1 = 118.40 (13)°, O4—Li1—O8 = 120.78 (14)°, O1—Li1—O8 = 120.74 (14)° and O8i—Li1—O7 = 178.56 (15)° confirm the trigonal–bipyramidal Li1 coordination geometry. One of the axial water ligands, H2O8i, and the equatorial water ligand, H2O7, bridge to a crystallographically equivalent Li1 cation. The Li1⋯Li1i distance is 3.037 (5) Å, which is larger than the Li—Li bond distance found in lithium metal. The Li1—O—Li1i bridge angle is 95.00 (11)°. The Li1—O8 and Li1—O8i bond lengths are 2.032 (3) and 2.086 (3) Å, respectively.

The remaining axial water ligand, H2O7, bridges to the second Li+ cation, Li2, which is disordered over two sites, Li2A and Li2B, which have approximately equal occupancies. The Li1⋯Li2A and Li1⋯Li2B distances are 3.438 (7) and 3.439 (7) Å, respectively. Li2 is coordinated to two more water mol­ecules, H2O9, H2O10 and an oxygen atom from a cyanurate ligand (either O3ii for Li2A or O2iii for Li2B) to complete its distorted tetra­hedral coordination geometry. The Li2—O bond lengths lie in the range 1.931 (7)–2.057 (7) Å and the O—Li2—O angles in the range 97.9 (3)–125.3 (3)°

3. Supra­molecular features

Strong inter­molecular hydrogen-bonding inter­actions (Table 1[link]) link the individual [Li4(C3H2N3O3)4(H2O)7] units into a three-dimensional network (Fig. 4[link]). These involve inter­actions between water mol­ecule H2O8 and the adjacent cyanurate anions [O8⋯O6iv, O8⋯O5ii at 2.7412 (16) and 2.7443 (16) Å, respectively].

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.86 1.95 2.8054 (17) 175
N3—H3⋯O5ii 0.86 1.94 2.7964 (16) 173
N4—H4⋯O2iii 0.86 1.95 2.8033 (17) 175
N6—H6⋯O6iv 0.86 1.95 2.8002 (17) 172
O8—H8A⋯O6iv 0.86 (2) 1.92 (2) 2.7412 (16) 159 (2)
O8—H8B⋯O5ii 0.86 (2) 1.92 (2) 2.7443 (16) 160 (2)
O10—H10A⋯N5v 0.87 (2) 2.16 (2) 3.0311 (19) 177 (3)
O10—H10B⋯N5vi 0.86 (2) 2.18 (2) 3.0342 (19) 174 (3)
O7—H7A⋯N2vii 0.88 (3) 2.09 (3) 2.908 (2) 154 (2)
O7—H7B⋯N2viii 0.88 (2) 2.09 (2) 2.905 (2) 153 (2)
Symmetry codes: (i) [-x+1, -y, -z+2]; (ii) [x+1, y-1, z]; (iii) [x-1, y+1, z]; (iv) [-x+2, -y+2, -z+1]; (v) [-x+1, -y+2, -z+2]; (vi) [x, y-1, z+1]; (vii) x, y+1, z; (viii) [-x+2, -y, -z+2].
[Figure 4]
Figure 4
View of the crystal packing of the title compound along the a axis. Hydrogen-bonding inter­actions are indicated by green dashed lines.

In addition, each cyanurate moiety forms two strong hydrogen bonds between the N—H groups and oxygen atoms of adjacent mol­ecules with N⋯O distances in the range 2.7964 (16)–2.8054 (17) Å (N1—H1⋯O3i, N3—H3⋯O5ii, N4—H4⋯O6iii and N6—H6⋯O6iv). Weaker hydrogen-bonding inter­actions, with N⋯O distances in the range 2.905 (2)–3.0342 (19) Å are also observed between the unprotonated N atoms of the cyanurate ions and nearby water mol­ecules (O7⋯N2vii, O7⋯N2viii and O10⋯N5v, O10⋯N5vi).

Overall a supra­molecular hydrogen-bonded assembly is formed, as seen previously in other systems (Suguna et al., 2014[Suguna, S., Anbuselvi, D., Jayaraman, D., Nagaraja, K. S. & Jeyaraj, B. (2014). Spectrochim. Acta, A132, 330-338.]; Jeseentharani et al., 2010[Jeseentharani, V., Selvakumar, J., Dayalan, A., Varghese, B. & Nagaraja, K. S. (2010). J. Mol. Struct. 966, 122-128.]).

4. Database survey

A survey of the Cambridge Structural Database (CSD version 5.42, May 2021 update; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) revealed three polymeric metal complexes containing ligands related to the cyanurate ligand. These are (μ2-4,4′-bi­pyridine)­bis­[4,6-dihy­droxy-1,3,5-triazin-2(1H)-olato]dicopper(I) (WICCIV; Yue et al., 2006[Yue, Q., Yang, J., Yuan, H. M. & Chen, J. S. (2006). Chin. J. Chem. 24, 1045-1049.]) and catena-[bis­(μ-4,6-dioxo-1,4,5,6-tetra­hydro-1,3,5-triazin-2-olato)tetra­aqua­strontium(II)] (QEHKOG; Divya et al., 2017[Divya, R., Nair, L. P., Bijini, B. R., Nair, C. M. K., Gopakumar, N. & Babu, K. R. (2017). Physica B, 526, 37-44.]), both of which crystallize in the monoclinic crystal system, together with catena-[tetra­kis­(μ-2,4,6-trioxo-1,3,5-triazinan-1-ide)bis­(μ-aqua)­tetra­aqua­copper(II)disodium(I)] (KUXFAK02; Divya et al., 2020[Divya, R., Vineeth, V. T., Bijini, B. R., Nair, C. M. K. & RajendraBabu, K. (2020). J. Mol. Struct. 1200, 127031.]), which, like the title compound, crystallizes in the triclinic space group Pī.

5. Fourier transform infrared spectroscopy

The FTIR spectrum of the title compound was measured using a Perkin Elmer Spectrum One instrument over a 450–4000 cm−1 scan range at 1.0 cm−1 resolution (Fig. 5[link]). The bands at 3400 (sh, m) and 3389 cm−1 (br) correspond to ν(O—H) (Prabhaharan et al., 2015[Prabhaharan, M., Prabakaran, A. R., Srinivasan, S. & Gunasekaran, S. (2015). Spectrochim. Acta, A138, 711-722.]; Bourzami et al., 2018[Bourzami, R., AitYoucef, H. C., Hamdouni, N. & Sebais, M. (2018). Chem. Phys. Lett. 711, 220-226.]) and those at 3165, 3102 and 2831 cm−1 to ν(N—H) (Divya et al., 2020[Divya, R., Vineeth, V. T., Bijini, B. R., Nair, C. M. K. & RajendraBabu, K. (2020). J. Mol. Struct. 1200, 127031.]; Surinwong et al., 2014[Surinwong, S., Prior, T. J. & Rujiwatra, A. (2014). J. Sci. 41, 414-423.]). The bands at 1718 and 1675 cm−1 correspond to ν(C=O) (Divya et al., 2020[Divya, R., Vineeth, V. T., Bijini, B. R., Nair, C. M. K. & RajendraBabu, K. (2020). J. Mol. Struct. 1200, 127031.]; Vu et al., 2019[Vu, N. N., Nguyen, C. C., Kaliaguine, S. & Do, T. O. (2019). ChemSusChem, 12, 291-302.]) and those at 1578 and 1478 cm−1 to νsym(C—N) (Surinwong et al., 2014[Surinwong, S., Prior, T. J. & Rujiwatra, A. (2014). J. Sci. 41, 414-423.]). The wavenumbers of the vibrations involving the N—H, C=N and C=O groups are affected by the partial delocal­ization of electron charge density on one part of the ring, as shown in Fig. 2[link], and by the to coordination of C=O oxygen to Li+. Finally the bands at 870, 784 and 559 cm−1 are attributed to the characteristic vibrations of the 1,3,5-triazine ring (Bourzami et al., 2018[Bourzami, R., AitYoucef, H. C., Hamdouni, N. & Sebais, M. (2018). Chem. Phys. Lett. 711, 220-226.]; Bellardita et al., 2018[Bellardita, M., García-López, E. I., Marcì, G., Krivtsov, I., García, J. R. & Palmisano, L. (2018). Appl. Catal. Environ. 220, 222-233.]).

[Figure 5]
Figure 5
The infrared spectrum of the title compound.

6. Absorption spectroscopy

The UV–Vis NIR absorption spectrum was measured using a Perkin Elmer lambda 950 UV–Vis–NIR spectrophotometer (Fig. 6[link]). The peaks observed at 290 and 228 nm are due to ππ* and n–π* transitions, respectively (Qiu & Gao, 2005[Qiu, Y. & Gao, L. (2005). Mater. Res. Bull. 40, 794-799.]; Moreno-Guerra et al., 2019[Moreno-Guerra, J. A., Oliva, J., Vallejo, M. A., Bernal-Alvarado, J., Sosa, M., Villasenor-Mora, C., Ceron, P. & Gomez-Solis, C. (2019). J. Lumin. 215, 116673.]). The band gap, Eg, can be estimated from the maximum absorption at 228 nm using the following equations. The optical absorption coefficient, α, is related to the absorbance, A, by the relations: α = 2.303 A/t and α = A(hν - Eg)1/2/hν, where t is the thickness of the crystal (1 mm) and hν is the photon energy. A plot of (αhν)2 versus hν is shown as the inset in Fig. 7[link], from which the band gap (Eg) is estimated to be 5.22 eV.

[Figure 6]
Figure 6
The absorption spectrum of the title compound. The direct bandgap, Eg, is estimated from the plot in the inset to be 5.22 eV.
[Figure 7]
Figure 7
TG–DTA of the title compound measured under an N2 atmosphere using a heating rate of 10°C min−1.

7. Thermogravimetric and differential thermal analysis

Simultaneous TG–DTA measurements and analysis of weight change and heat flow were performed using a Perkin Elmer STA 6000 instrument operating at a scanning rate of 10°C min−1 with a resolution of 1 µg under a dry N2 atmosphere. The thermogram (Fig. 7[link]) shows four stages of decomposition. The first stage starts at 92°C and ends at 172°C with a deriv­ative peak at 146.26°C and a measured weight loss of 20.13%, which is in reasonable agreement with the loss of the seven coordinated water mol­ecules (calculated weight loss 18.91%). The second and third stages of decomposition, occurring from 298 to 550°C, correspond to the decomposition of the cyanurate ligands with a measured total weight loss of 52.80%, leading to the formation of LiNO3 (calculated weight loss 51.07%) (Divya et al., 2020[Divya, R., Vineeth, V. T., Bijini, B. R., Nair, C. M. K. & RajendraBabu, K. (2020). J. Mol. Struct. 1200, 127031.]). In the fourth decomposition stage, occurring from 550 to 662°C, LiNO3 decomposes with a measured weight loss of 20.39% to produce Li2O as the final solid residue (calculated weight loss 21.67%).

8. Synthesis and crystallization

Lithium hydroxide (1.25 g, 0.052 mol; LOBA) and cyanuric chloride (1.84 g, 0.01 mol; Sigma–Aldrich) were dissolved in water (100 ml). The resulting solution was stirred for 5 h at ambient temperature (300-301 K) and filtered twice using Whatman filter paper. The solvent was allowed to evaporate in a dust-free environment. After 22 days, good quality colourless crystals were harvested.

9. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Li2 was found to be disordered over two positions, Li2A and Li2B, which were resolved using the PART command (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]) with an occupancy ratio of 0.501 (6):0.499 (6). The N-bound H atoms were placed geometrically and refined using a riding model with respect to their parent atoms using AFIX 43 with N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N). The hydrogen atoms on the water mol­ecules were located in difference-Fourier maps and each Uiso(H) parameter was freely refined with the O—H distance restrained to 0.85 (2) Å using DFIX. The H—O—H angle distances were restrained using DFIX to a target value of 1.39 (2) Å [or 1.41 (2) Å for H9A—O9—H9B] in order to keep the water mol­ecules close to their standard geometries.

Table 2
Experimental details

Crystal data
Chemical formula [Li4(C3H2N3O3)4(H2O)7]
Mr 666.17
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 296
a, b, c (Å) 8.8530 (5), 9.0592 (6), 9.6621 (6)
α, β, γ (°) 67.806 (2), 62.887 (2), 68.580 (2)
V3) 620.89 (7)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.16
Crystal size (mm) 0.15 × 0.15 × 0.10
 
Data collection
Diffractometer Bruker Kappa APEX3 CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.707, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 17961, 2181, 1917
Rint 0.027
(sin θ/λ)max−1) 0.594
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.115, 1.14
No. of reflections 2181
No. of parameters 250
No. of restraints 12
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.38, −0.32
Computer programs: APEX3, SAINT/XPREP (Bruker, 2016[Bruker (2016). APEX3, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT2014/5 (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. C71, 3-8.]), SHELXL2018/3 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. A71, 3-8.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2020[Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226-235.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: APEX3/SAINT (Bruker, 2016); data reduction: SAINT/XPREP (Bruker, 2016); program(s) used to solve structure: SHELXT2014/5 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018/3 (Sheldrick, 2015b); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018/3 (Sheldrick, 2015b).

Poly[µ3-aqua-hexa-µ2-aqua-tetra-µ-cyanurato-tetralithium] top
Crystal data top
[Li4(C3H2N3O3)4(H2O)7]Z = 1
Mr = 666.17F(000) = 342
Triclinic, P1Dx = 1.782 Mg m3
a = 8.8530 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.0592 (6) ÅCell parameters from 9866 reflections
c = 9.6621 (6) Åθ = 3.2–30.5°
α = 67.806 (2)°µ = 0.16 mm1
β = 62.887 (2)°T = 296 K
γ = 68.580 (2)°Block, colourless
V = 620.89 (7) Å30.15 × 0.15 × 0.10 mm
Data collection top
Bruker Kappa APEX3 CMOS
diffractometer
2181 independent reflections
Radiation source: fine-focus sealed tube1917 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and φ scanθmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
h = 1010
Tmin = 0.707, Tmax = 0.746k = 1010
17961 measured reflectionsl = 1111
Refinement top
Refinement on F212 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0656P)2 + 0.1885P]
where P = (Fo2 + 2Fc2)/3
S = 1.14(Δ/σ)max < 0.001
2181 reflectionsΔρmax = 0.38 e Å3
250 parametersΔρmin = 0.31 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Li10.8785 (3)0.4997 (3)0.6728 (3)0.0273 (6)
Li2A0.6581 (8)0.5613 (9)1.0527 (8)0.0372 (10)0.501 (6)
Li2B0.6884 (8)0.4388 (9)1.0835 (8)0.0372 (10)0.499 (6)
C10.84110 (19)0.13728 (18)0.83772 (17)0.0162 (3)
C20.75963 (19)0.12382 (18)0.95319 (17)0.0167 (3)
C31.05252 (19)0.12405 (18)0.85818 (17)0.0172 (3)
C40.65967 (18)0.86155 (18)0.65700 (17)0.0159 (3)
C50.44821 (19)1.12286 (18)0.64435 (17)0.0165 (3)
C60.74036 (19)1.12290 (18)0.54318 (17)0.0167 (3)
N10.71916 (16)0.04611 (15)0.91183 (15)0.0186 (3)
H10.6110460.0969420.9341610.022*
N20.92688 (16)0.20772 (15)0.92701 (15)0.0196 (3)
N31.00835 (16)0.04588 (16)0.81138 (15)0.0190 (3)
H31.0912040.0966620.7629060.023*
N40.49252 (16)0.95287 (15)0.68709 (15)0.0186 (3)
H40.4096230.9021560.7354020.022*
N50.57311 (16)1.20723 (15)0.57313 (15)0.0187 (3)
N60.78129 (15)0.95284 (15)0.58268 (15)0.0186 (3)
H60.8895440.9021880.5589180.022*
O10.80308 (14)0.28696 (13)0.79896 (13)0.0236 (3)
O21.20853 (13)0.19384 (13)0.83558 (14)0.0255 (3)
O30.63820 (13)0.19370 (13)1.01218 (14)0.0250 (3)
O40.69679 (14)0.71143 (13)0.69329 (13)0.0232 (3)
O50.29078 (13)1.19154 (13)0.67448 (14)0.0247 (3)
O60.86314 (13)1.19169 (13)0.48001 (14)0.0254 (3)
O70.89868 (15)0.49969 (14)0.89151 (14)0.0262 (3)
O81.13401 (15)0.50005 (14)0.53775 (14)0.0247 (3)
O90.5000000.5000001.0000000.0469 (6)
O100.5956 (2)0.50030 (18)1.28285 (17)0.0489 (4)
H7A0.939 (3)0.582 (2)0.877 (3)0.064 (8)*
H7B0.981 (3)0.415 (2)0.915 (3)0.059 (7)*
H8A1.158 (3)0.5834 (19)0.538 (3)0.039 (6)*
H8B1.201 (3)0.415 (2)0.577 (3)0.047 (6)*
H9A0.433 (6)0.584 (4)1.047 (5)0.057 (15)*0.5
H9B0.472 (6)0.418 (4)1.089 (4)0.043 (13)*0.5
H10A0.543 (4)0.585 (2)1.323 (3)0.069 (8)*
H10B0.581 (3)0.418 (2)1.365 (2)0.062 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Li10.0251 (13)0.0217 (14)0.0277 (13)0.0063 (11)0.0042 (11)0.0048 (11)
Li2A0.033 (2)0.039 (2)0.035 (2)0.010 (2)0.0070 (18)0.010 (2)
Li2B0.033 (2)0.039 (2)0.035 (2)0.010 (2)0.0070 (18)0.010 (2)
C10.0177 (7)0.0159 (8)0.0150 (7)0.0045 (6)0.0050 (6)0.0045 (6)
C20.0165 (7)0.0161 (8)0.0172 (7)0.0049 (6)0.0052 (6)0.0043 (6)
C30.0157 (7)0.0173 (8)0.0169 (7)0.0037 (6)0.0048 (6)0.0042 (6)
C40.0168 (7)0.0145 (8)0.0154 (7)0.0020 (6)0.0064 (6)0.0039 (6)
C50.0162 (7)0.0156 (8)0.0165 (7)0.0026 (6)0.0065 (6)0.0034 (6)
C60.0160 (7)0.0164 (8)0.0174 (7)0.0041 (6)0.0051 (6)0.0052 (6)
N10.0122 (6)0.0141 (7)0.0268 (7)0.0016 (5)0.0059 (5)0.0056 (5)
N20.0157 (7)0.0144 (7)0.0263 (7)0.0036 (5)0.0071 (5)0.0033 (5)
N30.0143 (6)0.0152 (7)0.0246 (7)0.0068 (5)0.0047 (5)0.0020 (5)
N40.0134 (6)0.0140 (7)0.0248 (7)0.0050 (5)0.0054 (5)0.0017 (5)
N50.0163 (7)0.0135 (7)0.0249 (7)0.0035 (5)0.0078 (5)0.0034 (5)
N60.0112 (6)0.0143 (7)0.0266 (7)0.0010 (5)0.0052 (5)0.0054 (5)
O10.0246 (6)0.0127 (6)0.0303 (6)0.0043 (5)0.0097 (5)0.0029 (5)
O20.0128 (5)0.0211 (6)0.0370 (7)0.0023 (4)0.0075 (5)0.0054 (5)
O30.0156 (6)0.0189 (6)0.0372 (7)0.0076 (5)0.0064 (5)0.0047 (5)
O40.0219 (6)0.0127 (6)0.0307 (6)0.0019 (5)0.0089 (5)0.0041 (5)
O50.0129 (5)0.0177 (6)0.0370 (7)0.0014 (4)0.0082 (5)0.0038 (5)
O60.0156 (6)0.0189 (6)0.0393 (7)0.0066 (5)0.0070 (5)0.0064 (5)
O70.0294 (6)0.0196 (6)0.0330 (7)0.0040 (5)0.0164 (5)0.0056 (5)
O80.0237 (6)0.0185 (6)0.0313 (6)0.0047 (5)0.0108 (5)0.0049 (5)
O90.0230 (10)0.0917 (18)0.0275 (10)0.0221 (11)0.0023 (8)0.0229 (12)
O100.0759 (11)0.0278 (8)0.0380 (8)0.0076 (7)0.0217 (8)0.0066 (6)
Geometric parameters (Å, º) top
Li1—O42.012 (3)C3—N31.387 (2)
Li1—O12.017 (3)C4—O41.2242 (19)
Li1—O82.032 (3)C4—N41.362 (2)
Li1—O8i2.086 (3)C4—N61.362 (2)
Li1—O72.201 (3)C5—O51.2442 (18)
Li1—Li1i3.037 (5)C5—N51.344 (2)
Li1—Li2A3.438 (7)C5—N41.386 (2)
Li1—Li2B3.439 (7)C6—O61.2430 (18)
Li2A—O101.931 (7)C6—N51.345 (2)
Li2A—O91.989 (6)C6—N61.387 (2)
Li2A—O72.010 (6)N1—H10.8600
Li2A—O3ii2.057 (7)N3—H30.8600
Li2B—O101.931 (7)N4—H40.8600
Li2B—O91.988 (7)N6—H60.8600
Li2B—O72.010 (6)O7—H7A0.880 (16)
Li2B—O2iii2.056 (7)O7—H7B0.883 (16)
C1—O11.2207 (19)O8—H8A0.857 (15)
C1—N11.364 (2)O8—H8B0.862 (15)
C1—N31.365 (2)O9—H9A0.905 (19)
C2—O31.2439 (18)O9—H9B0.898 (19)
C2—N21.348 (2)O9—H9Aiv0.905 (19)
C2—N11.386 (2)O9—H9Biv0.898 (19)
C3—O21.2436 (19)O10—H10A0.872 (16)
C3—N21.347 (2)O10—H10B0.859 (16)
O4—Li1—O1118.40 (13)O4—C4—N6123.28 (13)
O4—Li1—O8120.78 (14)N4—C4—N6113.72 (13)
O1—Li1—O8120.74 (14)O5—C5—N5122.46 (14)
O4—Li1—O8i93.98 (13)O5—C5—N4117.42 (13)
O1—Li1—O8i94.00 (13)N5—C5—N4120.13 (13)
O8—Li1—O8i85.00 (11)O6—C6—N5122.42 (14)
O4—Li1—O786.70 (11)O6—C6—N6117.45 (13)
O1—Li1—O786.78 (11)N5—C6—N6120.13 (13)
O8—Li1—O793.57 (12)C1—N1—C2123.71 (13)
O8i—Li1—O7178.56 (15)C1—N1—H1118.1
O10—Li2A—O9109.9 (3)C2—N1—H1118.1
O10—Li2A—O7125.3 (3)C3—N2—C2119.06 (13)
O9—Li2A—O7105.8 (3)C1—N3—C3123.85 (12)
O10—Li2A—O3ii97.9 (3)C1—N3—H3118.1
O9—Li2A—O3ii118.3 (3)C3—N3—H3118.1
O7—Li2A—O3ii100.0 (3)C4—N4—C5123.81 (12)
O10—Li2B—O9109.9 (3)C4—N4—H4118.1
O10—Li2B—O7125.3 (3)C5—N4—H4118.1
O9—Li2B—O7105.9 (3)C5—N5—C6118.47 (13)
O10—Li2B—O2iii98.3 (3)C4—N6—C6123.70 (12)
O9—Li2B—O2iii118.3 (3)C4—N6—H6118.2
O7—Li2B—O2iii99.6 (3)C6—N6—H6118.2
O1—C1—N1122.71 (13)C1—O1—Li1149.18 (13)
O1—C1—N3123.42 (13)C3—O2—Li2Biii127.6 (2)
N1—C1—N3113.86 (13)C2—O3—Li2Av127.3 (2)
O3—C2—N2122.20 (14)C4—O4—Li1149.09 (13)
O3—C2—N1117.99 (13)Li2A—O7—Li1109.4 (2)
N2—C2—N1119.80 (13)Li2B—O7—Li1109.4 (2)
O2—C3—N2122.28 (14)Li1—O8—Li1i95.00 (11)
O2—C3—N3118.11 (13)H8A—O8—H8B106.4 (17)
N2—C3—N3119.61 (13)Li2Aiv—O9—Li2A180.0
O4—C4—N4123.00 (13)H10A—O10—H10B104.5 (19)
O1—C1—N1—C2178.28 (13)O5—C5—N5—C6179.15 (14)
N3—C1—N1—C21.8 (2)N4—C5—N5—C60.8 (2)
O3—C2—N1—C1176.02 (13)O6—C6—N5—C5178.87 (13)
N2—C2—N1—C13.1 (2)N6—C6—N5—C51.2 (2)
O2—C3—N2—C2177.57 (14)O4—C4—N6—C6179.04 (13)
N3—C3—N2—C21.9 (2)N4—C4—N6—C61.1 (2)
O3—C2—N2—C3177.99 (13)O6—C6—N6—C4177.82 (13)
N1—C2—N2—C31.1 (2)N5—C6—N6—C42.3 (2)
O1—C1—N3—C3178.49 (13)N1—C1—O1—Li1166.0 (2)
N1—C1—N3—C31.5 (2)N3—C1—O1—Li114.1 (3)
O2—C3—N3—C1176.14 (13)N2—C3—O2—Li2Biii8.1 (3)
N2—C3—N3—C13.4 (2)N3—C3—O2—Li2Biii171.4 (2)
O4—C4—N4—C5178.82 (13)N2—C2—O3—Li2Av9.5 (3)
N6—C4—N4—C51.1 (2)N1—C2—O3—Li2Av169.6 (2)
O5—C5—N4—C4177.88 (13)N4—C4—O4—Li1166.5 (2)
N5—C5—N4—C42.1 (2)N6—C4—O4—Li113.4 (3)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y+1, z; (iii) x+2, y, z+2; (iv) x+1, y+1, z+2; (v) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O3vi0.861.952.8054 (17)175
N3—H3···O5vii0.861.942.7964 (16)173
N4—H4···O2viii0.861.952.8033 (17)175
N6—H6···O6ix0.861.952.8002 (17)172
O8—H8A···O6ix0.86 (2)1.92 (2)2.7412 (16)159 (2)
O8—H8B···O5vii0.86 (2)1.92 (2)2.7443 (16)160 (2)
O10—H10A···N5x0.87 (2)2.16 (2)3.0311 (19)177 (3)
O10—H10B···N5xi0.86 (2)2.18 (2)3.0342 (19)174 (3)
O7—H7A···N2ii0.88 (3)2.09 (3)2.908 (2)154 (2)
O7—H7B···N2iii0.88 (2)2.09 (2)2.905 (2)153 (2)
Symmetry codes: (ii) x, y+1, z; (iii) x+2, y, z+2; (vi) x+1, y, z+2; (vii) x+1, y1, z; (viii) x1, y+1, z; (ix) x+2, y+2, z+1; (x) x+1, y+2, z+2; (xi) x, y1, z+1.
 

Acknowledgements

We acknowledge the support and encouragement of Dr S. Manivannan, Dean Phase II and Er. A. C. S. Arunkumar, President of Dr. M·G.R. Educational and Research Institute, Chennai, India.

References

First citationAbu-Salem, Q., Harb, M. K., Maichle-Mössmer, C., Steimann, M. & Voelter, W. (2017). Arab. J. Chem. 10, S3883–S3888.  CAS Google Scholar
First citationBellardita, M., García-López, E. I., Marcì, G., Krivtsov, I., García, J. R. & Palmisano, L. (2018). Appl. Catal. Environ. 220, 222–233.  Web of Science CrossRef CAS Google Scholar
First citationBourzami, R., AitYoucef, H. C., Hamdouni, N. & Sebais, M. (2018). Chem. Phys. Lett. 711, 220–226.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2016). APEX3, SADABS, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChatenever, A. R. K., Warne, L. R., Matsuoka, J. E., Wang, S. J., Reinheimer, E. W., LeMagueres, P., Fei, H., Song, X. & Oliver, S. R. J. (2019). Cryst. Growth Des. 19, 4854–4859.  Web of Science CSD CrossRef CAS Google Scholar
First citationCho, S., Shi, K., Seffernick, J. L., Dodge, A. G., Wackett, L. P. & Aihara, H. (2014). PLoS One, 9, https://doi.org/10.1371/journal.pone.0099349.  Google Scholar
First citationCoubrough, H. M., van der Lubbe, S. C. C., Hetherington, K., Minard, A., Pask, C., Howard, M. J., Fonseca Guerra, C. & Wilson, A. J. (2019). Chem. Eur. J. 25, 785–795.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationDivya, R., Nair, L. P., Bijini, B. R., Nair, C. M. K., Gopakumar, N. & Babu, K. R. (2017). Physica B, 526, 37–44.  Web of Science CSD CrossRef CAS Google Scholar
First citationDivya, R., Vineeth, V. T., Bijini, B. R., Nair, C. M. K. & RajendraBabu, K. (2020). J. Mol. Struct. 1200, 127031.  Web of Science CSD CrossRef Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGe, Z. Y., Zhu, Z. B., Deng, Z. P., Huo, L. H. & Gao, S. (2018). CrystEngComm, 20, 2968–2979.  Web of Science CSD CrossRef CAS Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationIvanova, I. S., Ilyukhin, A. B., Tsebrikova, G. S., Polyakova, I. N., Pyatova, E. N., Solov'ev, V. P., Baulin, V. E. & Yu. Tsivadze, A. (2019). Inorg. Chim. Acta, 497, 119095.  Google Scholar
First citationJeseentharani, V., Selvakumar, J., Dayalan, A., Varghese, B. & Nagaraja, K. S. (2010). J. Mol. Struct. 966, 122–128.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoreno-Guerra, J. A., Oliva, J., Vallejo, M. A., Bernal-Alvarado, J., Sosa, M., Villasenor-Mora, C., Ceron, P. & Gomez-Solis, C. (2019). J. Lumin. 215, 116673.  Google Scholar
First citationPan, P., Shan, G., Bao, Y. & Weng, Z. (2013). J. Appl. Polym. Sci. 129, 1374–1382.  Web of Science CrossRef CAS Google Scholar
First citationPrabhaharan, M., Prabakaran, A. R., Srinivasan, S. & Gunasekaran, S. (2015). Spectrochim. Acta, A138, 711–722.  Web of Science CrossRef Google Scholar
First citationQiu, Y. & Gao, L. (2005). Mater. Res. Bull. 40, 794–799.  Web of Science CrossRef CAS Google Scholar
First citationQu, X. L., Zheng, X. L. & Li, X. (2016). RSC Adv. 6, 69007–69015.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationShemchuk, O., Braga, D., Maini, L. & Grepioni, F. (2017). CrystEngComm, 19, 1366–1369.  Web of Science CSD CrossRef CAS Google Scholar
First citationSuguna, S., Anbuselvi, D., Jayaraman, D., Nagaraja, K. S. & Jeyaraj, B. (2014). Spectrochim. Acta, A132, 330–338.  Web of Science CSD CrossRef Google Scholar
First citationSurinwong, S., Prior, T. J. & Rujiwatra, A. (2014). J. Sci. 41, 414–423.  CAS Google Scholar
First citationVu, N. N., Nguyen, C. C., Kaliaguine, S. & Do, T. O. (2019). ChemSusChem, 12, 291–302.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWan, W., Zhu, Z.-B., Huo, L.-H., Deng, Z.-P., Zhao, H. & Gao, S. (2012). CrystEngComm, 14, 5274–5284.  Web of Science CSD CrossRef CAS Google Scholar
First citationWeng, M. & Qiu, Z. (2014). Thermochim. Acta, 577, 41–45.  Web of Science CrossRef CAS Google Scholar
First citationYue, Q., Yang, J., Yuan, H. M. & Chen, J. S. (2006). Chin. J. Chem. 24, 1045–1049.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds