organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o159-o160

6,11-Di­hydro­dibenz[b,e]oxepin-11-one

aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, cDepartment of Chemistry, Howard University, 525 College Street NW, Washington DC 20059, USA, and dDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 5 December 2009; accepted 11 December 2009; online 16 December 2009)

In the title compound, C14H10O2, the seven-membered oxepine ring adopts a twist-boat conformation with a dihedral angle between the mean planes of the two fused benzene rings of 42.0 (1)°. In the crystal, mol­ecules are linked into chains propagating along the c axis by inter­molecular C—H⋯O hydrogen bonds and the chains are arranged in layers parallel to (100).

Related literature

The dibenz[b,e]oxepin nucleus constitutes the fundamental structure of many products with biological activity, see: Kumazawa et al. (1994[Kumazawa, T., Yanase, M., Harakawa, H., Obase, H., Skirakura, S., Ohishi, E., Oda, S., Kubo, K. & Yamada, K. (1994). J. Med. Chem. 37, 804-810.]). For dibenzo[c,e]thiepine derivatives and their chiroptical properties, see: Truce et al. (1956[Truce, W. E. & Emrick, D. D. (1956). J. Am. Chem. Soc. 78, 6130-6137.]); Tomascovic et al. (2000[Tomascovic, L. L., Arneri, R. S., Brundic, A. H., Nagl, A., Mintas, M. & Sandtrom, J. (2000). Helv. Chim. Acta, 83, 479-493.]). For comparative NMR and IR spectral, X-ray structural and theoretical studies of eight related 6-aryl­idenedibenzo[b,e]thiepin-11-one-5,5-dioxides, see: Kolehmainen et al. (2007[Kolehmainen, E., Laihia, K., Valkonen, A., Sievänen, E., Nissinen, M., Rudorf, W.-D., Loos, D., Perjessy, A., Samalikova, M., Sustekova, Z., Florea, S. & Wybraziec, J. (2007). J. Mol. Struct. 839, 94-98.]). For related structures, see: Bandoli & Nicolini (1982[Bandoli, G. & Nicolini, M. (1982). J. Chem. Crystallogr. 12, 425-447.]); Blaton et al. (1995[Blaton, N. M., Peeters, O. M. & De Ranter, C. J. (1995). Acta Cryst. C51, 777-780.]); Ieawsuwan et al. (2006[Ieawsuwan, W., Bru Roig, M. & Bolte, M. (2006). Acta Cryst. E62, o1478-o1479.]); Linden et al. (2004[Linden, A., Furegati, M. & Rippert, A. J. (2004). Acta Cryst. C60, o223-o225.]); Roszak et al. (1996[Roszak, A. W., Williams, V. E. & Lemieux, R. P. (1996). Acta Cryst. C52, 3190-3193.]); Yoshinari & Konno (2009[Yoshinari, N. & Konno, T. (2009). Acta Cryst. E65, o774.]); Zhang et al. (2008[Zhang, H.-Q., Bao-Li,, Yang, G.-D. & Ma, Y.-G. (2008). Acta Cryst. E64, o1027.],2008a[Zhang, H.-Q., Bao-Li,, Yang, G.-D. & Ma, Y.-G. (2008a). Acta Cryst. E64, o1304.]). For DFT calculations, see: Hehre et al. (1986[Hehre, W. J., Random, L., Schleyer, P. V. R. & Pople, J. A. (1986). In Ab Initio Molecular Orbital Theory. New York: Wiley.]); Schmidt & Polik (2007[Schmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO, LLC: Holland, MI, USA: available from http://www.webmo.net.]). For the GAUSSIAN03 program package, see: Frisch et al. (2004[Frisch, M. J., et al. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT, USA.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10O2

  • Mr = 210.22

  • Monoclinic, C c

  • a = 16.5065 (18) Å

  • b = 4.0806 (7) Å

  • c = 15.0392 (17) Å

  • β = 93.654 (10)°

  • V = 1010.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 110 K

  • 0.53 × 0.27 × 0.23 mm

Data collection
  • Oxford Diffraction Gemini R CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO) and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.864, Tmax = 1.000

  • 1472 measured reflections

  • 968 independent reflections

  • 953 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.108

  • S = 1.06

  • 968 reflections

  • 145 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10A⋯O1i 0.95 2.57 3.380 (3) 143
Symmetry code: (i) [x, -y+1, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis PRO) and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is used as an intermediate for the synthesis of doxepin, which is a psychotropic agent with tricyclic antidepressant and anxiolytic properties. Doxepin is a tricyclic compound and displays a range of pharmacological actions including maintaining adrenergic innervation. Its mechanism of action is not fully understood, but it appears to block re-uptake of monoaminergic neurotransmitters into presynaptic terminals. It also possesses anticholinergic activity and modulates antagonism of histamine H(1)- and H(2)-receptors. The dibenz[b,e]oxepin nucleus constitutes the fundamental structure of many products with biological activity (Kumazawa et al., 1994). The dibenzo[c,e]thiepine derivatives (Truce et al., 1956) exhibit remarkable chiroptical properties (Tomascovic et al., 2000). The comparative NMR and IR spectral, X-ray structural and theoretical studies of eight related 6-arylidenedibenzo[b,e]thiepin-11-one-5,5-dioxides have been reported (Kolehmainen et al., 2007). In view of the importance of oxepines, this paper reports the crystal structure of the title compound.

The seven-membered oxepin ring adopts a twist-boat conformation with the dihedral angle between the mean planes of the two fused benzene rings measuring 42.0 (1)° (Fig. 1). This conformation is assisted by sp3 hybridization of atoms C8 and O2 within the ring. The ketone oxygen atom (O1) lies in an equatorial position from the ring on opposite sides of the C8 and O2 atoms (C3—C2—C1—O1 = -19.1 (4)° and C13—C14—C1—O1 = 35.3 (4)°). Bond lengths and angles are all within expected ranges (Allen, 2002). The molecules are linked into chains propagating along the c-axis by C10–H10A···O1 intermolecular hydrogen bonds and the chains are arranged in layers parallel to the (100) (Fig. 2).

After a density functional theory (DFT) computational calculation at the 6–31-G(d) level (Hehre et al., 1986; Schmidt & Polik, 2007) with the GAUSSIAN03 program package (Frisch et al., 2004), the angle between the mean planes of the two benzene rings becomes 34.8 (2)°, a decrease of 7.2 (2)°. The C3—C2—C1—O1 and C13—C14—C1—O1 torsion angles become -8.7 (5)°) and 26.1 (5)°, a decrease of 10.3 (5)° and 9.1 (8)°, respectively. This suggests that the crystal packing is influenced by the weak C—H···O intermolecular hydrogen bonding interactions.

Related literature top

The dibenz[b,e]oxepin nucleus constitutes the fundamental structure of many products with biological activity, see: Kumazawa et al. (1994). For dibenzo[c,e]thiepine derivatives and their chiroptical properties, see: Truce et al. (1956); Tomascovic et al. (2000). For comparative NMR and IR spectral, X-ray structural and theoretical studies of eight related 6-arylidenedibenzo[b,e]thiepin-11-one-5,5-dioxides, see: Kolehmainen et al. (2007). For related structures, see: Bandoli & Nicolini (1982); Blaton et al. (1995); Ieawsuwan et al. (2006); Linden et al. (2004); Roszak et al. (1996); Yoshinari & Konno (2009); Zhang et al. (2008,2008a). For DFT calculations, see: Hehre et al. (1986); Schmidt & Polik (2007). For the GAUSSIAN03 program package, see: Frisch et al. (2004). For a description of the Cambridge Structural Database, see: Allen (2002).

Experimental top

The title compound was obtained as a gift sample from R. L. Fine Chem, Bangalore, India. The compound was used without further purification. X-ray quality crystals (m.p. 327–329 K) were obtained by slow evaporation from a methanol solution.

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with C-H = 0.95–0.99 Å, and with Uiso(H) = 1.18–1.21Ueq(C).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing atom-labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing diagram of the title compound, viewed down the a axis. Dashed lines indicate weak intermolecular C—H···O hydrogen bonds.
6,11-Dihydrodibenz[b,e]oxepin-11-one top
Crystal data top
C14H10O2F(000) = 440
Mr = 210.22Dx = 1.381 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 1157 reflections
a = 16.5065 (18) Åθ = 6.0–73.7°
b = 4.0806 (7) ŵ = 0.09 mm1
c = 15.0392 (17) ÅT = 110 K
β = 93.654 (10)°Thick needle, colorless
V = 1010.9 (2) Å30.53 × 0.27 × 0.23 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
968 independent reflections
Radiation source: fine-focus sealed tube953 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 10.5081 pixels mm-1θmax = 26.3°, θmin = 3.8°
ϕ and ω scansh = 1520
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 42
Tmin = 0.864, Tmax = 1.000l = 1817
1472 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0835P)2 + 0.4174P]
where P = (Fo2 + 2Fc2)/3
968 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.24 e Å3
2 restraintsΔρmin = 0.24 e Å3
Crystal data top
C14H10O2V = 1010.9 (2) Å3
Mr = 210.22Z = 4
Monoclinic, CcMo Kα radiation
a = 16.5065 (18) ŵ = 0.09 mm1
b = 4.0806 (7) ÅT = 110 K
c = 15.0392 (17) Å0.53 × 0.27 × 0.23 mm
β = 93.654 (10)°
Data collection top
Oxford Diffraction Gemini R CCD
diffractometer
968 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
953 reflections with I > 2σ(I)
Tmin = 0.864, Tmax = 1.000Rint = 0.019
1472 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0402 restraints
wR(F2) = 0.108H-atom parameters constrained
S = 1.06Δρmax = 0.24 e Å3
968 reflectionsΔρmin = 0.24 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.45613 (12)0.6693 (6)0.53696 (13)0.0390 (6)
O20.63969 (10)0.7966 (4)0.34730 (11)0.0255 (4)
C10.49884 (15)0.7517 (7)0.47743 (17)0.0252 (5)
C20.58727 (16)0.8141 (6)0.49769 (17)0.0239 (5)
C30.61004 (16)0.8726 (7)0.58847 (17)0.0293 (6)
H3A0.57070.84000.63110.035*
C40.68631 (18)0.9743 (8)0.61780 (19)0.0343 (7)
H4A0.69971.00740.67950.041*
C50.74432 (17)1.0287 (7)0.5551 (2)0.0333 (6)
H5A0.79701.10560.57400.040*
C60.72459 (16)0.9703 (7)0.46615 (19)0.0285 (6)
H6A0.76401.00790.42400.034*
C70.64779 (15)0.8571 (6)0.43686 (17)0.0236 (5)
C80.57772 (16)0.5685 (7)0.31616 (18)0.0275 (6)
H8A0.57740.38030.35770.033*
H8B0.59060.48410.25700.033*
C90.49518 (16)0.7233 (6)0.30917 (17)0.0236 (5)
C100.45306 (17)0.7704 (7)0.22715 (18)0.0280 (6)
H10A0.47680.70450.17410.034*
C110.37673 (18)0.9126 (8)0.22225 (18)0.0312 (6)
H11A0.34830.94310.16590.037*
C120.34162 (17)1.0107 (8)0.29936 (19)0.0311 (6)
H12A0.28981.11290.29580.037*
C130.38244 (15)0.9588 (7)0.38147 (18)0.0275 (6)
H13A0.35791.02050.43440.033*
C140.45922 (15)0.8167 (6)0.38669 (17)0.0227 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0282 (10)0.0601 (15)0.0289 (10)0.0057 (10)0.0042 (8)0.0139 (10)
O20.0203 (9)0.0282 (9)0.0285 (10)0.0004 (8)0.0056 (7)0.0020 (8)
C10.0239 (12)0.0259 (12)0.0261 (12)0.0002 (10)0.0039 (10)0.0027 (10)
C20.0239 (12)0.0197 (12)0.0280 (13)0.0021 (9)0.0012 (9)0.0032 (9)
C30.0316 (14)0.0302 (14)0.0261 (12)0.0035 (11)0.0027 (10)0.0044 (11)
C40.0386 (15)0.0351 (16)0.0282 (14)0.0019 (12)0.0067 (12)0.0022 (12)
C50.0247 (12)0.0277 (14)0.0463 (17)0.0002 (11)0.0073 (11)0.0028 (12)
C60.0226 (11)0.0231 (13)0.0401 (14)0.0010 (9)0.0035 (10)0.0004 (11)
C70.0215 (11)0.0182 (12)0.0309 (13)0.0038 (9)0.0005 (9)0.0028 (10)
C80.0278 (13)0.0252 (14)0.0295 (12)0.0026 (10)0.0010 (10)0.0054 (10)
C90.0240 (11)0.0181 (12)0.0288 (13)0.0041 (9)0.0018 (9)0.0004 (9)
C100.0314 (13)0.0245 (13)0.0277 (12)0.0052 (10)0.0015 (10)0.0019 (10)
C110.0331 (13)0.0310 (15)0.0285 (13)0.0042 (11)0.0066 (10)0.0034 (11)
C120.0218 (11)0.0300 (14)0.0410 (15)0.0013 (9)0.0034 (10)0.0061 (11)
C130.0237 (12)0.0290 (14)0.0300 (12)0.0013 (10)0.0042 (9)0.0015 (10)
C140.0215 (10)0.0178 (13)0.0286 (13)0.0028 (9)0.0003 (9)0.0037 (9)
Geometric parameters (Å, º) top
O1—C11.221 (3)C6—H6A0.95
O2—C71.367 (3)C8—C91.499 (3)
O2—C81.439 (3)C8—H8A0.99
C1—C21.494 (3)C8—H8B0.99
C1—C141.499 (3)C9—C101.390 (4)
C2—C71.408 (3)C9—C141.395 (4)
C2—C31.413 (4)C10—C111.385 (4)
C3—C41.372 (4)C10—H10A0.95
C3—H3A0.95C11—C121.388 (4)
C4—C51.403 (4)C11—H11A0.95
C4—H4A0.95C12—C131.385 (4)
C5—C61.378 (4)C12—H12A0.95
C5—H5A0.95C13—C141.391 (4)
C6—C71.394 (3)C13—H13A0.95
C7—O2—C8117.40 (19)O2—C8—H8A109.2
O1—C1—C2120.0 (2)C9—C8—H8A109.2
O1—C1—C14118.5 (2)O2—C8—H8B109.2
C2—C1—C14121.3 (2)C9—C8—H8B109.2
C7—C2—C3116.8 (2)H8A—C8—H8B107.9
C7—C2—C1127.8 (2)C10—C9—C14119.2 (3)
C3—C2—C1115.0 (2)C10—C9—C8121.4 (2)
C4—C3—C2123.0 (3)C14—C9—C8119.3 (2)
C4—C3—H3A118.5C11—C10—C9120.5 (3)
C2—C3—H3A118.5C11—C10—H10A119.8
C3—C4—C5118.9 (3)C9—C10—H10A119.8
C3—C4—H4A120.5C10—C11—C12120.2 (2)
C5—C4—H4A120.5C10—C11—H11A119.9
C6—C5—C4119.7 (3)C12—C11—H11A119.9
C6—C5—H5A120.1C13—C12—C11119.7 (3)
C4—C5—H5A120.1C13—C12—H12A120.1
C5—C6—C7121.2 (3)C11—C12—H12A120.1
C5—C6—H6A119.4C12—C13—C14120.2 (2)
C7—C6—H6A119.4C12—C13—H13A119.9
O2—C7—C6113.6 (2)C14—C13—H13A119.9
O2—C7—C2126.1 (2)C9—C14—C13120.1 (2)
C6—C7—C2120.3 (2)C9—C14—C1121.9 (2)
O2—C8—C9112.0 (2)C13—C14—C1117.9 (2)
O1—C1—C2—C7168.6 (3)O2—C8—C9—C10113.0 (3)
C14—C1—C2—C716.9 (4)O2—C8—C9—C1468.2 (3)
O1—C1—C2—C319.1 (4)C14—C9—C10—C110.9 (4)
C14—C1—C2—C3155.4 (2)C8—C9—C10—C11179.7 (3)
C7—C2—C3—C41.6 (4)C9—C10—C11—C120.2 (4)
C1—C2—C3—C4171.6 (3)C10—C11—C12—C131.5 (4)
C2—C3—C4—C51.1 (5)C11—C12—C13—C141.6 (4)
C3—C4—C5—C61.9 (4)C10—C9—C14—C130.8 (4)
C4—C5—C6—C70.1 (4)C8—C9—C14—C13179.6 (2)
C8—O2—C7—C6156.5 (2)C10—C9—C14—C1175.7 (2)
C8—O2—C7—C223.3 (3)C8—C9—C14—C13.1 (4)
C5—C6—C7—O2176.9 (2)C12—C13—C14—C90.5 (4)
C5—C6—C7—C22.9 (4)C12—C13—C14—C1177.1 (2)
C3—C2—C7—O2176.3 (2)O1—C1—C14—C9141.2 (3)
C1—C2—C7—O211.6 (4)C2—C1—C14—C944.2 (4)
C3—C2—C7—C63.5 (4)O1—C1—C14—C1335.3 (4)
C1—C2—C7—C6168.6 (3)C2—C1—C14—C13139.2 (3)
C7—O2—C8—C979.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O1i0.952.573.380 (3)143
Symmetry code: (i) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formulaC14H10O2
Mr210.22
Crystal system, space groupMonoclinic, Cc
Temperature (K)110
a, b, c (Å)16.5065 (18), 4.0806 (7), 15.0392 (17)
β (°) 93.654 (10)
V3)1010.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.53 × 0.27 × 0.23
Data collection
DiffractometerOxford Diffraction Gemini R CCD
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.864, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
1472, 968, 953
Rint0.019
(sin θ/λ)max1)0.623
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.108, 1.06
No. of reflections968
No. of parameters145
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.24

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C10—H10A···O1i0.952.573.380 (3)143
Symmetry code: (i) x, y+1, z1/2.
 

Acknowledgements

QNMHA thanks the University of Mysore for use of its research facilities. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBandoli, G. & Nicolini, M. (1982). J. Chem. Crystallogr. 12, 425–447.  CAS Google Scholar
First citationBlaton, N. M., Peeters, O. M. & De Ranter, C. J. (1995). Acta Cryst. C51, 777–780.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFrisch, M. J., et al. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT, USA.  Google Scholar
First citationHehre, W. J., Random, L., Schleyer, P. V. R. & Pople, J. A. (1986). In Ab Initio Molecular Orbital Theory. New York: Wiley.  Google Scholar
First citationIeawsuwan, W., Bru Roig, M. & Bolte, M. (2006). Acta Cryst. E62, o1478–o1479.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKolehmainen, E., Laihia, K., Valkonen, A., Sievänen, E., Nissinen, M., Rudorf, W.-D., Loos, D., Perjessy, A., Samalikova, M., Sustekova, Z., Florea, S. & Wybraziec, J. (2007). J. Mol. Struct. 839, 94–98.  Web of Science CSD CrossRef CAS Google Scholar
First citationKumazawa, T., Yanase, M., Harakawa, H., Obase, H., Skirakura, S., Ohishi, E., Oda, S., Kubo, K. & Yamada, K. (1994). J. Med. Chem. 37, 804–810.  CrossRef CAS PubMed Web of Science Google Scholar
First citationLinden, A., Furegati, M. & Rippert, A. J. (2004). Acta Cryst. C60, o223–o225.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2007). CrysAlis PRO) and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRoszak, A. W., Williams, V. E. & Lemieux, R. P. (1996). Acta Cryst. C52, 3190–3193.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSchmidt, J. R. & Polik, W. F. (2007). WebMO Pro. WebMO, LLC: Holland, MI, USA: available from http://www.webmo.net.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomascovic, L. L., Arneri, R. S., Brundic, A. H., Nagl, A., Mintas, M. & Sandtrom, J. (2000). Helv. Chim. Acta, 83, 479–493.  Google Scholar
First citationTruce, W. E. & Emrick, D. D. (1956). J. Am. Chem. Soc. 78, 6130–6137.  CrossRef CAS Web of Science Google Scholar
First citationYoshinari, N. & Konno, T. (2009). Acta Cryst. E65, o774.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, H.-Q., Bao-Li,, Yang, G.-D. & Ma, Y.-G. (2008a). Acta Cryst. E64, o1304.  Google Scholar
First citationZhang, H.-Q., Bao-Li,, Yang, G.-D. & Ma, Y.-G. (2008). Acta Cryst. E64, o1027.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 66| Part 1| January 2010| Pages o159-o160
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds