metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-phenyl-1H-imidazole-κN3)silver(I) nitrate

aCollege of Chemistry, Yuncheng University, Yuncheng 044000, People's Republic of China, and bState Key Laboratory of Integrated Optoelectronics, Jilin University, Changchun 130021, People's Republic of China
*Correspondence e-mail: hanshuang1957@yahoo.com.cn

(Received 22 November 2009; accepted 29 November 2009; online 4 December 2009)

The asymmetric unit of the title compound, [Ag(C9H8N2)2]NO3, contains one complete [Ag(C9H8N2)2]+ cation and two half-cations (with the other halves generated through inversion) and two NO3 anions. Each AgI ion shows a linear AgN2 coordination. The ions are linked by N—H⋯O hydrogen bonds.

Related literature

For general background to 2-phenyl­imidazole, see: Liu et al. (2008[Liu, Y.-Y., Ma, J.-F., Yang, J., Ma, J.-C. & Ping, G.-J. (2008). CrystEngComm, 10, 565-572.]); Yang et al. (2008[Yang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233-2235.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C9H8N2)2]NO3

  • Mr = 458.23

  • Triclinic, [P \overline 1]

  • a = 9.209 (5) Å

  • b = 9.274 (5) Å

  • c = 23.137 (5) Å

  • α = 88.307 (5)°

  • β = 80.976 (5)°

  • γ = 72.369 (5)°

  • V = 1859.5 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.11 mm−1

  • T = 293 K

  • 0.31 × 0.28 × 0.22 mm

Data collection
  • Oxford Diffraction Gemini R Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.62, Tmax = 0.86

  • 14127 measured reflections

  • 8475 independent reflections

  • 4372 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.079

  • S = 0.80

  • 8475 reflections

  • 490 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O6i 0.86 2.03 2.893 (3) 178
N3—H3⋯O5ii 0.86 1.95 2.812 (3) 178
N6—H6⋯O2iii 0.86 1.99 2.846 (3) 173
N7—H7⋯O1iv 0.86 1.95 2.812 (3) 177
Symmetry codes: (i) -x, -y, -z+2; (ii) -x+1, -y, -z+2; (iii) -x+1, -y+1, -z+1; (iv) -x, -y+1, -z+1.

Data collection: CrysAlis (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis; data reduction: CrysAlis; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2-Phenylimidazole, as an important N-containing ligand with excellent coordinating abilities and fruitful aromatic systems, have been extensively used to build supramolecular architectures (Liu et al., 2008; Yang et al., 2008). We report here the synthesis and structure of the title compound, namely, [Ag(C9H8N2)2].2NO3 (I)

The asymmetric unit contains one complete and two halves of centrosymmetric [Ag(C9H8N2)2]+ cations and two NO3- anions. Atoms Ag1 and Ag3 lie on inversion centres. Each AgI ion in the title salt shows a linear coordination. The N—Ag—N angle is exactly 180° (by virtue of the inversion symmetry) for two cations lying across inversion centres and 175.94 (11)° for the cation on general position.

In the crystal structure, the ionic units are linked through N—H···O hydrogen bonds (Table 1)

Related literature top

For general background to 2-Phenylimidazole, see: Liu et al. (2008); Yang et al. (2008).

Experimental top

Silver nitrate (0.5 mmol, 0.085 g) and 2-phenylimidazole (0.5 mmol, 0.041 g) in water (20 mmol) was heated at 435 K for 2 d. Then the mixture was slowly cooled to room temperature to obtain colourless single crystals of the title compound (yield: 39%).

Refinement top

H atoms were positioned geometrically (N–H = 0.86 Å and C–H = 0.93 Å) and refined as riding, with Uiso(H) = 1.2Ueq(carrier).

Computing details top

Data collection: CrysAlis (Oxford Diffraction, 2006); cell refinement: CrysAlis (Oxford Diffraction, 2006); data reduction: CrysAlis (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) -x, -y, 2 - z; (ii) 1 - x, 1 - y, 1 -z]
Bis(2-phenyl-1H-imidazole-κN3)silver(I) nitrate top
Crystal data top
[Ag(C9H8N2)2]NO3Z = 4
Mr = 458.23F(000) = 920
Triclinic, P1Dx = 1.637 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.209 (5) ÅCell parameters from 8475 reflections
b = 9.274 (5) Åθ = 3.0–29.1°
c = 23.137 (5) ŵ = 1.11 mm1
α = 88.307 (5)°T = 293 K
β = 80.976 (5)°Block, colourless
γ = 72.369 (5)°0.31 × 0.28 × 0.22 mm
V = 1859.5 (15) Å3
Data collection top
Oxford Diffraction Gemini R Ultra
diffractometer
8475 independent reflections
Radiation source: fine-focus sealed tube4372 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
Detector resolution: 10.0 pixels mm-1θmax = 29.1°, θmin = 1.8°
ω scanh = 1011
Absorption correction: multi-scan
(CrysAlis; Oxford Diffraction, 2006)
k = 911
Tmin = 0.62, Tmax = 0.86l = 2328
14127 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 0.80 w = 1/[σ2(Fo2) + (0.04P)2]
where P = (Fo2 + 2Fc2)/3
8475 reflections(Δ/σ)max = 0.002
490 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Ag(C9H8N2)2]NO3γ = 72.369 (5)°
Mr = 458.23V = 1859.5 (15) Å3
Triclinic, P1Z = 4
a = 9.209 (5) ÅMo Kα radiation
b = 9.274 (5) ŵ = 1.11 mm1
c = 23.137 (5) ÅT = 293 K
α = 88.307 (5)°0.31 × 0.28 × 0.22 mm
β = 80.976 (5)°
Data collection top
Oxford Diffraction Gemini R Ultra
diffractometer
8475 independent reflections
Absorption correction: multi-scan
(CrysAlis; Oxford Diffraction, 2006)
4372 reflections with I > 2σ(I)
Tmin = 0.62, Tmax = 0.86Rint = 0.029
14127 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 0.80Δρmax = 0.28 e Å3
8475 reflectionsΔρmin = 0.43 e Å3
490 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2039 (4)0.7556 (4)0.48467 (13)0.0638 (9)
H10.26110.81030.46220.077*
C20.0492 (4)0.7985 (3)0.49731 (12)0.0594 (8)
H2A0.01970.88560.48530.071*
C30.1453 (3)0.5807 (3)0.53886 (11)0.0468 (7)
C40.1492 (3)0.4477 (3)0.57426 (12)0.0519 (7)
C50.2697 (4)0.3145 (4)0.56355 (15)0.0728 (10)
H50.35130.30850.53350.087*
C60.2676 (6)0.1892 (4)0.5984 (2)0.1029 (15)
H6A0.34880.10000.59170.123*
C70.1483 (7)0.1965 (5)0.6419 (2)0.1033 (16)
H7A0.14770.11170.66430.124*
C80.0300 (5)0.3259 (5)0.65292 (16)0.0858 (12)
H80.05140.32980.68280.103*
C90.0301 (4)0.4525 (4)0.61976 (13)0.0642 (9)
H90.05040.54170.62810.077*
C100.5291 (4)0.3440 (4)0.68802 (15)0.0770 (10)
H100.58540.24730.69760.092*
C110.5840 (4)0.4361 (4)0.65051 (14)0.0703 (9)
H110.68330.41560.62970.084*
C120.3411 (3)0.5502 (4)0.68619 (11)0.0531 (8)
C130.1928 (3)0.6666 (4)0.69513 (12)0.0535 (8)
C140.0864 (4)0.6708 (4)0.74507 (13)0.0675 (9)
H140.11120.59990.77410.081*
C150.0549 (4)0.7784 (5)0.75202 (16)0.0831 (11)
H150.12550.77930.78560.100*
C160.0939 (4)0.8843 (5)0.71036 (19)0.0888 (11)
H160.19020.95700.71560.107*
C170.0100 (4)0.8830 (4)0.66062 (16)0.0768 (10)
H170.01620.95500.63210.092*
C180.1526 (4)0.7756 (4)0.65282 (13)0.0629 (8)
H180.22250.77560.61910.076*
C190.0449 (4)0.2333 (4)0.83247 (15)0.0759 (10)
H190.10310.33430.83140.091*
C200.0945 (4)0.1228 (4)0.86113 (13)0.0665 (9)
H200.19080.13360.88320.080*
C210.1440 (3)0.0264 (4)0.81694 (11)0.0513 (7)
C220.2921 (3)0.0865 (4)0.79868 (11)0.0513 (7)
C230.3918 (4)0.0679 (4)0.74913 (12)0.0705 (9)
H230.36140.01700.72630.085*
C240.5334 (4)0.1714 (5)0.73331 (16)0.0876 (12)
H240.59840.15610.70030.105*
C250.5795 (4)0.2975 (5)0.76602 (19)0.0915 (12)
H250.67580.36790.75520.110*
C260.4839 (4)0.3200 (4)0.81467 (17)0.0835 (11)
H260.51550.40610.83680.100*
C270.3413 (4)0.2161 (4)0.83117 (14)0.0657 (9)
H270.27720.23270.86430.079*
C280.3155 (4)0.3721 (4)0.88477 (16)0.0765 (10)
H280.30690.46700.86890.092*
C290.4421 (4)0.2525 (4)0.86556 (14)0.0686 (9)
H290.51990.26680.83720.082*
C300.4548 (3)0.1094 (3)0.88841 (12)0.0566 (8)
H300.54040.02780.87510.068*
C310.3391 (3)0.0887 (3)0.93131 (11)0.0431 (7)
C320.2134 (3)0.2126 (3)0.94971 (12)0.0564 (8)
H320.13490.20030.97820.068*
C330.2016 (4)0.3536 (4)0.92696 (15)0.0708 (9)
H330.11660.43580.94020.085*
C340.3518 (3)0.0615 (3)0.95527 (11)0.0417 (6)
C350.4571 (3)0.2971 (3)0.97852 (14)0.0644 (9)
H350.52940.38990.98310.077*
C360.3034 (3)0.2594 (3)0.99545 (13)0.0617 (8)
H360.25060.32341.01390.074*
O10.2835 (2)0.3113 (3)0.41706 (10)0.0778 (7)
O20.5143 (3)0.1699 (3)0.41170 (11)0.0944 (8)
O30.3276 (3)0.0750 (3)0.43228 (14)0.1103 (10)
O40.1720 (3)0.3963 (3)1.08721 (12)0.0926 (8)
O50.2200 (2)0.1559 (2)1.09430 (9)0.0675 (6)
O60.0137 (2)0.2969 (3)1.10375 (11)0.0854 (8)
Ag10.00000.00001.00000.05936 (11)
Ag20.23738 (3)0.30005 (3)0.759780 (12)0.08314 (12)
Ag30.50000.50000.50000.07317 (13)
N10.1033 (3)0.1731 (3)0.80549 (10)0.0642 (7)
N20.0241 (3)0.0054 (3)0.85106 (10)0.0574 (7)
H20.02390.09310.86410.069*
N30.4853 (2)0.1724 (2)0.95343 (9)0.0512 (6)
H30.57470.16560.93870.061*
N40.2370 (2)0.1122 (3)0.98131 (10)0.0518 (6)
N50.3783 (3)0.4142 (3)0.70973 (11)0.0650 (7)
N60.4661 (3)0.5638 (3)0.64922 (10)0.0579 (7)
H60.46930.64150.62840.069*
N70.0144 (3)0.6876 (3)0.53138 (10)0.0513 (6)
H70.07710.68630.54580.062*
N80.2649 (2)0.6190 (3)0.50983 (10)0.0574 (6)
N90.3743 (3)0.1830 (3)0.42040 (11)0.0659 (7)
N100.1257 (3)0.2861 (3)1.09532 (10)0.0595 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.058 (2)0.064 (2)0.069 (2)0.0259 (18)0.0022 (16)0.0091 (17)
C20.059 (2)0.045 (2)0.074 (2)0.0155 (16)0.0115 (15)0.0133 (16)
C30.0399 (17)0.0372 (18)0.0618 (17)0.0096 (14)0.0072 (13)0.0040 (14)
C40.0543 (19)0.040 (2)0.0655 (18)0.0133 (16)0.0252 (15)0.0029 (15)
C50.071 (2)0.052 (2)0.093 (2)0.004 (2)0.0319 (18)0.0003 (19)
C60.116 (4)0.042 (3)0.156 (4)0.002 (2)0.082 (3)0.006 (3)
C70.134 (4)0.079 (4)0.135 (4)0.059 (3)0.091 (3)0.049 (3)
C80.094 (3)0.088 (3)0.099 (3)0.050 (3)0.047 (2)0.043 (2)
C90.058 (2)0.057 (2)0.085 (2)0.0246 (17)0.0236 (17)0.0221 (17)
C100.071 (2)0.058 (2)0.097 (3)0.016 (2)0.011 (2)0.019 (2)
C110.056 (2)0.064 (3)0.088 (2)0.021 (2)0.0027 (17)0.0080 (19)
C120.059 (2)0.058 (2)0.0521 (17)0.0357 (17)0.0021 (14)0.0015 (15)
C130.056 (2)0.059 (2)0.0558 (18)0.0344 (17)0.0035 (14)0.0080 (15)
C140.064 (2)0.081 (3)0.065 (2)0.035 (2)0.0042 (16)0.0037 (17)
C150.060 (2)0.107 (3)0.083 (3)0.034 (2)0.0069 (19)0.016 (2)
C160.055 (2)0.086 (3)0.123 (3)0.018 (2)0.010 (2)0.016 (3)
C170.069 (3)0.072 (3)0.094 (3)0.025 (2)0.020 (2)0.008 (2)
C180.068 (2)0.064 (2)0.064 (2)0.0339 (19)0.0061 (16)0.0019 (17)
C190.066 (2)0.055 (2)0.101 (3)0.0134 (19)0.0087 (19)0.0177 (19)
C200.050 (2)0.062 (2)0.083 (2)0.0173 (18)0.0016 (16)0.0118 (18)
C210.057 (2)0.059 (2)0.0456 (16)0.0307 (17)0.0069 (13)0.0079 (14)
C220.0530 (19)0.058 (2)0.0516 (17)0.0299 (17)0.0055 (14)0.0022 (15)
C230.066 (2)0.095 (3)0.0609 (19)0.044 (2)0.0032 (16)0.0005 (18)
C240.065 (3)0.125 (4)0.078 (2)0.046 (3)0.0149 (19)0.022 (2)
C250.056 (2)0.107 (4)0.110 (3)0.027 (2)0.005 (2)0.035 (3)
C260.063 (3)0.069 (3)0.120 (3)0.022 (2)0.010 (2)0.009 (2)
C270.056 (2)0.063 (2)0.081 (2)0.0279 (18)0.0015 (17)0.0055 (19)
C280.076 (3)0.047 (2)0.109 (3)0.017 (2)0.031 (2)0.032 (2)
C290.059 (2)0.071 (3)0.082 (2)0.030 (2)0.0148 (17)0.0322 (19)
C300.0407 (17)0.049 (2)0.077 (2)0.0118 (14)0.0063 (14)0.0159 (16)
C310.0390 (16)0.0395 (18)0.0511 (15)0.0099 (14)0.0129 (12)0.0071 (13)
C320.0510 (19)0.045 (2)0.0669 (19)0.0067 (16)0.0083 (14)0.0102 (15)
C330.065 (2)0.041 (2)0.100 (3)0.0046 (17)0.0170 (19)0.0077 (18)
C340.0305 (15)0.0371 (18)0.0542 (16)0.0063 (13)0.0048 (12)0.0033 (13)
C350.0461 (19)0.0358 (19)0.103 (2)0.0060 (14)0.0025 (16)0.0210 (17)
C360.0428 (18)0.046 (2)0.091 (2)0.0145 (15)0.0043 (15)0.0176 (17)
O10.0471 (13)0.0577 (16)0.1129 (17)0.0039 (12)0.0063 (12)0.0224 (13)
O20.0428 (14)0.0719 (18)0.153 (2)0.0084 (12)0.0064 (13)0.0407 (15)
O30.0750 (18)0.0600 (18)0.187 (3)0.0273 (14)0.0146 (17)0.0236 (17)
O40.0644 (16)0.0526 (16)0.157 (2)0.0223 (13)0.0026 (15)0.0102 (15)
O50.0415 (12)0.0481 (15)0.0978 (15)0.0010 (11)0.0055 (10)0.0192 (12)
O60.0352 (13)0.0696 (17)0.137 (2)0.0074 (11)0.0056 (12)0.0374 (14)
Ag10.03255 (18)0.0589 (2)0.0786 (2)0.00828 (15)0.00271 (14)0.00923 (17)
Ag20.0825 (2)0.0775 (2)0.1007 (2)0.04617 (16)0.00935 (15)0.03293 (16)
Ag30.0386 (2)0.0909 (3)0.0795 (2)0.00848 (19)0.00153 (16)0.0079 (2)
N10.0682 (18)0.059 (2)0.0698 (16)0.0283 (15)0.0077 (13)0.0195 (14)
N20.0552 (16)0.0504 (18)0.0674 (15)0.0230 (14)0.0002 (12)0.0116 (13)
N30.0310 (13)0.0396 (15)0.0779 (16)0.0079 (11)0.0003 (11)0.0112 (12)
N40.0344 (13)0.0409 (16)0.0744 (15)0.0085 (11)0.0008 (11)0.0086 (12)
N50.0680 (19)0.0603 (19)0.0721 (17)0.0312 (15)0.0063 (13)0.0172 (14)
N60.0583 (16)0.0553 (18)0.0618 (15)0.0250 (15)0.0004 (12)0.0073 (12)
N70.0363 (13)0.0416 (15)0.0731 (15)0.0106 (12)0.0039 (11)0.0087 (12)
N80.0415 (14)0.0541 (18)0.0722 (16)0.0119 (12)0.0005 (12)0.0007 (13)
N90.0483 (17)0.060 (2)0.0818 (18)0.0153 (16)0.0076 (13)0.0171 (15)
N100.0461 (17)0.053 (2)0.0703 (16)0.0096 (15)0.0040 (12)0.0136 (13)
Geometric parameters (Å, º) top
C1—C21.344 (4)C22—C271.392 (4)
C1—N81.374 (4)C22—C231.393 (4)
C1—H10.93C23—C241.367 (5)
C2—N71.362 (3)C23—H230.93
C2—H2A0.93C24—C251.367 (5)
C3—N81.335 (3)C24—H240.93
C3—N71.340 (3)C25—C261.368 (5)
C3—C41.455 (4)C25—H250.93
C4—C51.386 (4)C26—C271.377 (4)
C4—C91.387 (4)C26—H260.93
C5—C61.398 (5)C27—H270.93
C5—H50.93C28—C331.363 (4)
C6—C71.355 (6)C28—C291.368 (4)
C6—H6A0.93C28—H280.93
C7—C81.353 (6)C29—C301.393 (4)
C7—H7A0.93C29—H290.93
C8—C91.384 (4)C30—C311.392 (3)
C8—H80.93C30—H300.93
C9—H90.93C31—C321.382 (4)
C10—C111.349 (4)C31—C341.462 (4)
C10—N51.363 (4)C32—C331.375 (4)
C10—H100.93C32—H320.93
C11—N61.346 (4)C33—H330.93
C11—H110.93C34—N41.337 (3)
C12—N51.326 (4)C34—N31.339 (3)
C12—N61.359 (3)C35—C361.347 (4)
C12—C131.451 (4)C35—N31.355 (3)
C13—C141.386 (4)C35—H350.93
C13—C181.395 (4)C36—N41.369 (4)
C14—C151.368 (5)C36—H360.93
C14—H140.93O1—N91.238 (3)
C15—C161.365 (5)O2—N91.241 (3)
C15—H150.93O3—N91.214 (3)
C16—C171.374 (5)O4—N101.220 (3)
C16—H160.93O5—N101.254 (3)
C17—C181.376 (4)O6—N101.241 (3)
C17—H170.93Ag1—N4i2.095 (2)
C18—H180.93Ag1—N42.095 (2)
C19—C201.359 (4)Ag2—N12.104 (2)
C19—N11.362 (4)Ag2—N52.106 (2)
C19—H190.93Ag3—N8ii2.090 (2)
C20—N21.346 (4)Ag3—N82.090 (2)
C20—H200.93N2—H20.86
C21—N11.328 (4)N3—H30.86
C21—N21.356 (3)N6—H60.86
C21—C221.455 (4)N7—H70.86
C2—C1—N8109.9 (3)C23—C24—H24120.0
C2—C1—H1125.1C24—C25—C26120.0 (4)
N8—C1—H1125.1C24—C25—H25120.0
C1—C2—N7105.6 (3)C26—C25—H25120.0
C1—C2—H2A127.2C25—C26—C27120.5 (4)
N7—C2—H2A127.2C25—C26—H26119.8
N8—C3—N7109.0 (2)C27—C26—H26119.8
N8—C3—C4127.6 (3)C26—C27—C22120.6 (3)
N7—C3—C4123.4 (2)C26—C27—H27119.7
C5—C4—C9118.6 (3)C22—C27—H27119.7
C5—C4—C3121.5 (3)C33—C28—C29120.7 (3)
C9—C4—C3119.9 (3)C33—C28—H28119.6
C4—C5—C6119.4 (4)C29—C28—H28119.6
C4—C5—H5120.3C28—C29—C30120.0 (3)
C6—C5—H5120.3C28—C29—H29120.0
C7—C6—C5120.7 (4)C30—C29—H29120.0
C7—C6—H6A119.7C31—C30—C29119.8 (3)
C5—C6—H6A119.7C31—C30—H30120.1
C8—C7—C6120.6 (4)C29—C30—H30120.1
C8—C7—H7A119.7C32—C31—C30118.3 (3)
C6—C7—H7A119.7C32—C31—C34121.7 (2)
C7—C8—C9120.1 (4)C30—C31—C34120.0 (2)
C7—C8—H8120.0C33—C32—C31121.6 (3)
C9—C8—H8120.0C33—C32—H32119.2
C8—C9—C4120.7 (3)C31—C32—H32119.2
C8—C9—H9119.7C28—C33—C32119.5 (3)
C4—C9—H9119.7C28—C33—H33120.2
C11—C10—N5109.6 (3)C32—C33—H33120.2
C11—C10—H10125.2N4—C34—N3109.0 (2)
N5—C10—H10125.2N4—C34—C31127.2 (2)
N6—C11—C10106.1 (3)N3—C34—C31123.8 (2)
N6—C11—H11127.0C36—C35—N3106.1 (2)
C10—C11—H11127.0C36—C35—H35126.9
N5—C12—N6108.5 (3)N3—C35—H35126.9
N5—C12—C13127.8 (3)C35—C36—N4109.4 (2)
N6—C12—C13123.7 (3)C35—C36—H36125.3
C14—C13—C18118.3 (3)N4—C36—H36125.3
C14—C13—C12121.2 (3)N4i—Ag1—N4180
C18—C13—C12120.5 (3)N1—Ag2—N5175.94 (11)
C15—C14—C13120.5 (3)N8ii—Ag3—N8180
C15—C14—H14119.8C21—N1—C19106.7 (2)
C13—C14—H14119.8C21—N1—Ag2128.9 (2)
C16—C15—C14121.0 (3)C19—N1—Ag2124.3 (2)
C16—C15—H15119.5C20—N2—C21108.8 (3)
C14—C15—H15119.5C20—N2—H2125.6
C15—C16—C17119.6 (4)C21—N2—H2125.6
C15—C16—H16120.2C34—N3—C35109.1 (2)
C17—C16—H16120.2C34—N3—H3125.4
C16—C17—C18120.2 (3)C35—N3—H3125.4
C16—C17—H17119.9C34—N4—C36106.4 (2)
C18—C17—H17119.9C34—N4—Ag1129.74 (18)
C17—C18—C13120.4 (3)C36—N4—Ag1123.83 (18)
C17—C18—H18119.8C12—N5—C10106.9 (2)
C13—C18—H18119.8C12—N5—Ag2130.1 (2)
C20—C19—N1109.5 (3)C10—N5—Ag2122.3 (2)
C20—C19—H19125.3C11—N6—C12108.9 (3)
N1—C19—H19125.3C11—N6—H6125.5
N2—C20—C19106.0 (3)C12—N6—H6125.5
N2—C20—H20127.0C3—N7—C2109.3 (2)
C19—C20—H20127.0C3—N7—H7125.4
N1—C21—N2109.0 (3)C2—N7—H7125.4
N1—C21—C22127.8 (3)C3—N8—C1106.2 (2)
N2—C21—C22123.2 (3)C3—N8—Ag3129.2 (2)
C27—C22—C23117.4 (3)C1—N8—Ag3124.61 (19)
C27—C22—C21120.9 (3)O3—N9—O1121.0 (3)
C23—C22—C21121.6 (3)O3—N9—O2121.6 (3)
C24—C23—C22121.5 (3)O1—N9—O2117.4 (3)
C24—C23—H23119.2O4—N10—O6122.3 (3)
C22—C23—H23119.2O4—N10—O5120.1 (3)
C25—C24—C23120.0 (3)O6—N10—O5117.6 (3)
C25—C24—H24120.0
Symmetry codes: (i) x, y, z+2; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O6i0.862.032.893 (3)178
N3—H3···O5iii0.861.952.812 (3)178
N6—H6···O2ii0.861.992.846 (3)173
N7—H7···O1iv0.861.952.812 (3)177
Symmetry codes: (i) x, y, z+2; (ii) x+1, y+1, z+1; (iii) x+1, y, z+2; (iv) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ag(C9H8N2)2]NO3
Mr458.23
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)9.209 (5), 9.274 (5), 23.137 (5)
α, β, γ (°)88.307 (5), 80.976 (5), 72.369 (5)
V3)1859.5 (15)
Z4
Radiation typeMo Kα
µ (mm1)1.11
Crystal size (mm)0.31 × 0.28 × 0.22
Data collection
DiffractometerOxford Diffraction Gemini R Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis; Oxford Diffraction, 2006)
Tmin, Tmax0.62, 0.86
No. of measured, independent and
observed [I > 2σ(I)] reflections
14127, 8475, 4372
Rint0.029
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.079, 0.80
No. of reflections8475
No. of parameters490
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.43

Computer programs: CrysAlis (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O6i0.862.032.893 (3)178
N3—H3···O5ii0.861.952.812 (3)178
N6—H6···O2iii0.861.992.846 (3)173
N7—H7···O1iv0.861.952.812 (3)177
Symmetry codes: (i) x, y, z+2; (ii) x+1, y, z+2; (iii) x+1, y+1, z+1; (iv) x, y+1, z+1.
 

Acknowledgements

The authors thank Yuncheng University and Jilin University for support.

References

First citationLiu, Y.-Y., Ma, J.-F., Yang, J., Ma, J.-C. & Ping, G.-J. (2008). CrystEngComm, 10, 565–572.  Web of Science CSD CrossRef CAS Google Scholar
First citationOxford Diffraction (2006). CrysAlis. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233–2235.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds