Download citation
Download citation
link to html
The title molecule, (iodobromo)triphenylarsenic(III), [As(BrI)(C6H5)3], has a dart shape, with the phenyl rings arranged in a propeller conformation [I-As-C-C 61.3 (4), 43.8 (4) and 54.1 (4)°]. There is no indication that the halogen atoms have mixed site occupancies. Packing forces displace the I atom away from one phenyl ring [I-As-C 117.3 (2)°] towards the other two [I-As-C 109.8 (2) and 108.3 (2)°] and produce an even more pronounced leaning of the terminal bromine [As-I-Br 174.78 (2)°].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199012111/cf1314sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199012111/cf1314Isup2.hkl
Contains datablock I

CCDC reference: 142719

Comment top

This work is a continuation of our investigation into adducts formed between group VA donors and the heavier halogens. Both Ph3PI2 [Godfrey et al., 1991; I—P—C—C 38 (1), 45 (1), 57 (1)°] and Ph3PBr2 [Bricklebank et al., 1992; Br—P—C—C 43.0 (9), 49.1 (9), 57.7 (8)°] have similar shapes to the title molecule, (I). However, at 2.5904 (8) Å, the As—I bond in (I) is shorter than any of the analogous bonds in the various polymorphs of Ph3AsI2 (Abbas et al., 1994; Beagley et al., 1988), which range from 2.613 (2) to 2.653 (2) Å. Interestingly, if a Lewis acid competes for the terminal iodine in Ph3AsI2, the As—I bond is shortened below the Ph3AsIBr value, e.g. 2.485 (1) Å when GaI3 is used as the Lewis acid (Baker et al., 1994). This suggests that the As—I bond is short in (I) because the Br—I bonding is weaker than the corresponding I—I interaction. In contrast to the disordered Ph3PI1.29Br0.71 structure (Bricklebank et al., 1993), where P is attached to Br in 14 (2)% of the molecules, the structure of (I) contains no As—Br bonds.

Experimental top

Triphenylarsine (1.98 g, 7.25 mmol) was added to diethyl ether (ca 75 ml) under dry argon and a saturated ether solution of IBr (1.5 g, 7.25 mmol) was then added (Godfrey, 1993). A yellow solid precipitated immediately and was recrystallized from diethyl ether to give orange crystals suitable for X-ray analysis.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1994); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELX97 (Sheldrick, 1997); program(s) used to refine structure: SHELX97; molecular graphics: ORTEPIII (Farrugia, 1997; Burnett & Johnson, 1996); software used to prepare material for publication: SHELX97.

Figures top
[Figure 1] Fig. 1. ORTEPIII (Farrugia, 1997; Burnett and Johnson, 1996) drawing of the structure of (I), showing the atom-numbering scheme and with 50% probability displacement ellispoids.
(iodobromo)triphenylarsenic top
Crystal data top
[As(BrI)(C6H5)3]F(000) = 976
Mr = 513.03Dx = 1.927 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.1198 (13) ÅCell parameters from 25 reflections
b = 9.960 (2) Åθ = 13.3–16.4°
c = 19.483 (3) ŵ = 5.92 mm1
β = 92.176 (12)°T = 203 K
V = 1768.4 (6) Å3Needle, orange
Z = 40.25 × 0.15 × 0.11 mm
Data collection top
Nonius MACH3
diffractometer
2360 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
2θ/ω scansh = 010
Absorption correction: ψ-scan
(North et al., 1968)
k = 011
Tmin = 0.386, Tmax = 0.521l = 2323
3270 measured reflections3 standard reflections every 150 reflections
3065 independent reflections intensity decay: 0.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.089Calculated w = 1/[σ2(Fo2) + (0.0503P)2 + 2.5099P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
3065 reflectionsΔρmax = 0.65 e Å3
191 parametersΔρmin = 0.99 e Å3
0 restraintsExtinction correction: SHELX97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00015 (19)
Crystal data top
[As(BrI)(C6H5)3]V = 1768.4 (6) Å3
Mr = 513.03Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.1198 (13) ŵ = 5.92 mm1
b = 9.960 (2) ÅT = 203 K
c = 19.483 (3) Å0.25 × 0.15 × 0.11 mm
β = 92.176 (12)°
Data collection top
Nonius MACH3
diffractometer
2360 reflections with I > 2σ(I)
Absorption correction: ψ-scan
(North et al., 1968)
Rint = 0.041
Tmin = 0.386, Tmax = 0.5213 standard reflections every 150 reflections
3270 measured reflections intensity decay: 0.0%
3065 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.02Δρmax = 0.65 e Å3
3065 reflectionsΔρmin = 0.99 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.25473 (4)0.91923 (4)0.664462 (18)0.03120 (14)
Br10.09272 (6)1.09119 (6)0.75101 (3)0.03675 (18)
As10.38469 (6)0.74618 (6)0.58831 (3)0.02898 (17)
C10.2719 (5)0.7190 (6)0.5051 (3)0.0295 (13)
C20.2100 (6)0.5955 (6)0.4894 (3)0.0313 (13)
H20.22510.52270.51950.038*
C30.1261 (6)0.5788 (7)0.4295 (3)0.0411 (15)
H30.08470.49450.41890.049*
C40.1029 (6)0.6847 (7)0.3854 (3)0.0386 (15)
H40.04690.67260.34440.046*
C50.1619 (6)0.8089 (7)0.4013 (3)0.0400 (15)
H50.14470.88190.37150.048*
C60.2476 (6)0.8261 (6)0.4621 (3)0.0330 (13)
H60.28800.91060.47310.040*
C70.3923 (6)0.5783 (6)0.6358 (3)0.0287 (12)
C80.2692 (6)0.5341 (7)0.6681 (3)0.0394 (16)
H80.18560.58920.66930.047*
C90.2686 (6)0.4104 (7)0.6984 (3)0.0405 (15)
H90.18370.38000.71950.049*
C100.3924 (7)0.3293 (6)0.6982 (3)0.0360 (14)
H100.39160.24390.71880.043*
C110.5180 (7)0.3760 (7)0.6672 (3)0.0397 (15)
H110.60270.32220.66740.048*
C120.5186 (6)0.4999 (7)0.6365 (3)0.0366 (15)
H120.60380.53170.61620.044*
C130.5814 (5)0.7866 (6)0.5633 (3)0.0298 (13)
C140.6242 (6)0.7721 (6)0.4968 (3)0.0348 (14)
H140.55540.74870.46170.042*
C150.7699 (7)0.7923 (7)0.4825 (3)0.0411 (16)
H150.79990.78640.43690.049*
C160.8710 (6)0.8212 (7)0.5346 (4)0.0408 (16)
H160.97030.83230.52460.049*
C170.8283 (6)0.8338 (7)0.6006 (4)0.0442 (17)
H170.89790.85530.63580.053*
C180.6838 (6)0.8151 (7)0.6160 (3)0.0408 (16)
H180.65460.82150.66160.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0184 (2)0.0404 (2)0.0344 (2)0.00318 (16)0.00319 (14)0.00032 (17)
Br10.0309 (3)0.0378 (4)0.0420 (3)0.0022 (3)0.0070 (2)0.0009 (3)
As10.0137 (3)0.0406 (4)0.0325 (3)0.0029 (2)0.0011 (2)0.0015 (3)
C10.012 (3)0.037 (4)0.038 (3)0.004 (2)0.004 (2)0.001 (3)
C20.022 (3)0.035 (3)0.037 (3)0.001 (3)0.002 (2)0.007 (3)
C30.024 (3)0.050 (4)0.049 (4)0.012 (3)0.005 (3)0.012 (3)
C40.019 (3)0.058 (4)0.039 (3)0.001 (3)0.006 (2)0.011 (3)
C50.025 (3)0.054 (4)0.040 (3)0.009 (3)0.007 (3)0.001 (3)
C60.021 (3)0.033 (3)0.045 (3)0.001 (2)0.001 (3)0.005 (3)
C70.022 (3)0.031 (3)0.033 (3)0.002 (2)0.003 (2)0.002 (3)
C80.014 (3)0.060 (4)0.044 (4)0.001 (3)0.000 (2)0.011 (3)
C90.024 (3)0.053 (4)0.043 (3)0.011 (3)0.004 (2)0.007 (3)
C100.039 (4)0.035 (4)0.034 (3)0.003 (3)0.006 (3)0.000 (3)
C110.034 (3)0.049 (4)0.035 (3)0.009 (3)0.002 (3)0.005 (3)
C120.020 (3)0.052 (4)0.037 (3)0.001 (3)0.004 (2)0.003 (3)
C130.010 (2)0.034 (3)0.045 (3)0.007 (2)0.002 (2)0.004 (3)
C140.020 (3)0.043 (4)0.041 (3)0.008 (3)0.002 (2)0.007 (3)
C150.031 (3)0.053 (4)0.040 (4)0.007 (3)0.010 (3)0.003 (3)
C160.017 (3)0.038 (4)0.067 (5)0.004 (3)0.000 (3)0.012 (3)
C170.016 (3)0.055 (4)0.061 (4)0.005 (3)0.012 (3)0.018 (4)
C180.030 (3)0.057 (4)0.035 (3)0.007 (3)0.006 (3)0.008 (3)
Geometric parameters (Å, º) top
I1—As12.5904 (8)C7—C121.391 (8)
I1—Br12.8546 (8)C8—C91.366 (9)
As1—C11.906 (5)C9—C101.388 (9)
As1—C71.911 (6)C10—C111.395 (9)
As1—C131.920 (5)C11—C121.372 (9)
C1—C61.370 (8)C13—C141.374 (8)
C1—C21.383 (8)C13—C181.390 (8)
C2—C31.381 (8)C14—C151.383 (8)
C3—C41.371 (9)C15—C161.376 (9)
C4—C51.380 (9)C16—C171.364 (9)
C5—C61.404 (8)C17—C181.375 (8)
C7—C81.381 (8)
As1—I1—Br1174.78 (2)C8—C7—As1119.0 (4)
C1—As1—C7107.2 (2)C12—C7—As1120.7 (4)
C1—As1—C13107.1 (2)C9—C8—C7120.1 (6)
C7—As1—C13106.8 (2)C8—C9—C10120.5 (6)
C1—As1—I1109.76 (17)C9—C10—C11119.2 (6)
C7—As1—I1108.30 (17)C12—C11—C10120.4 (6)
C13—As1—I1117.26 (18)C11—C12—C7119.5 (6)
C6—C1—C2120.1 (5)C14—C13—C18120.7 (5)
C6—C1—As1118.7 (4)C14—C13—As1121.2 (4)
C2—C1—As1121.2 (4)C18—C13—As1117.6 (4)
C3—C2—C1120.2 (6)C13—C14—C15119.0 (6)
C4—C3—C2120.3 (6)C16—C15—C14120.2 (6)
C3—C4—C5119.9 (6)C17—C16—C15120.5 (6)
C4—C5—C6119.9 (6)C16—C17—C18120.2 (6)
C1—C6—C5119.5 (6)C17—C18—C13119.3 (6)
C8—C7—C12120.3 (6)

Experimental details

Crystal data
Chemical formula[As(BrI)(C6H5)3]
Mr513.03
Crystal system, space groupMonoclinic, P21/c
Temperature (K)203
a, b, c (Å)9.1198 (13), 9.960 (2), 19.483 (3)
β (°) 92.176 (12)
V3)1768.4 (6)
Z4
Radiation typeMo Kα
µ (mm1)5.92
Crystal size (mm)0.25 × 0.15 × 0.11
Data collection
DiffractometerNonius MACH3
diffractometer
Absorption correctionψ-scan
(North et al., 1968)
Tmin, Tmax0.386, 0.521
No. of measured, independent and
observed [I > 2σ(I)] reflections
3270, 3065, 2360
Rint0.041
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.089, 1.02
No. of reflections3065
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.99

Computer programs: CAD-4 Software (Enraf-Nonius, 1994), CAD-4 Software, XCAD4 (Harms & Wocadlo, 1995), SHELX97 (Sheldrick, 1997), SHELX97, ORTEPIII (Farrugia, 1997; Burnett & Johnson, 1996).

Selected geometric parameters (Å, º) top
I1—As12.5904 (8)As1—C71.911 (6)
I1—Br12.8546 (8)As1—C131.920 (5)
As1—C11.906 (5)
As1—I1—Br1174.78 (2)C1—As1—I1109.76 (17)
C1—As1—C7107.2 (2)C7—As1—I1108.30 (17)
C1—As1—C13107.1 (2)C13—As1—I1117.26 (18)
C7—As1—C13106.8 (2)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds