organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1060

Butane-1,4-di­ammonium bis­(perchlorate)

aDepartment of Chemistry, University of Johannesburg, PO Box 524, Auckland Park, Johannesburg, 2006, South Africa
*Correspondence e-mail: carderne@uj.ac.za

(Received 29 March 2011; accepted 31 March 2011; online 7 April 2011)

The butane-1,4-diammonium cation of the title compound, C4H14N22+·2ClO4, lies on a special position of site symmetry 2/m, whereas the perchlorate anion is located on a crystallographic mirror plane. An intricate three-dimensional hydrogen-bonding network exists in the crystal structure with each H atom of the ammonium group exhibiting bifurcated inter­actions to the perchlorate anion. Complex hydrogen-bonded ring and chain motifs are also evident, in particular a 50-membered ring with graph-set notation R1010(50) is identified.

Related literature

For related structural studies of butane-1,4-diammonium salts, see: van Blerk & Kruger (2007[Blerk, C. van & Kruger, G. J. (2007). Acta Cryst. E63, o342-o344.]); Lemmerer & Billing (2006[Lemmerer, A. & Billing, D. G. (2006). Acta Cryst. E62, o1954-o1956.]); Gabro et al. (2009[Gabro, M., Lalancette, R. A. & Bernal, I. (2009). Acta Cryst. E65, o1352.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C4H14N22+·2ClO4

  • Mr = 289.07

  • Monoclinic, C 2/m

  • a = 19.4755 (10) Å

  • b = 5.6210 (3) Å

  • c = 5.3470 (2) Å

  • β = 97.222 (3)°

  • V = 580.70 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 296 K

  • 0.50 × 0.34 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (AX-Scale; Bruker, 2008[Bruker (2008). AXScale, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.757, Tmax = 0.912

  • 3067 measured reflections

  • 793 independent reflections

  • 694 reflections with I > 2s(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.155

  • S = 1.17

  • 793 reflections

  • 46 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.89 2.35 3.035 (3) 134
N1—H1N⋯O1ii 0.89 2.35 3.035 (3) 134
N1—H2N⋯O1 0.89 2.68 3.435 (4) 143
N1—H2N⋯O3 0.89 2.21 3.0308 (14) 153
Symmetry codes: (i) x, y, z+1; (ii) x, -y, z+1.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). AXScale, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). AXScale, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]; data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The crystal structure of the title compound (I) adds to our current ongoing studies of long-chained diammonium mineral acid salts. Colourless rectangular crystals of butane-1,4-diammonium diperchlorate were synthesized and formed part of our structural chemistry study of the inorganic mineral acid salts of butane-1,4-diamine.

The butane-1,4-diammonium cation lies over an inversion centre and a twofold rotation axis. It also straddles a crystallographic mirror plane. The asymmetric unit contains one-half of a perchlorate anion and one-half of the butane-1,4-diammonium cation. The hydrocarbon chain is also fully extended and is of necessity completely planar as it lies in the crystallographic mirror plane. The molecular structure of (I) is shown in Figure 1.

Figure 2 illustrates the packing arrangement of the title compound (I). Single stacked layers of cations pack together with perchlorate anions inserted between the cation chains in line with the ammonium groups showing a distinct inorganic - organic layering effect that is a common feature of these long-chained diammonium salts. An extensive three-dimensional hydrogen-bonding network is formed.

A close-up view of the hydrogen bonding interactions can be viewed in Figure 3 where very clear evidence of bifurcated interactions can be seen on each hydrogen atom of both ammonium groups. The hydrogen bond distances and angles for (I) can be found in Table 2.

Since the hydrogen bonding network is extremely intricate and complex, we focus on one particularly interesting hydrogen-bonding ring motif in the structure. Figure 4 shows a view of five diammonium cations and five perchlorate anions (viewed down the a axis) that are hydrogen bonded together to form a large, level 2, 50-membered ring motif with graph set notation R1010(50). Numerous other ring and chain motifs were identified with Mercury (Macrae et al.), but since the one in Figure 4 is the highest level motif obtainable in the structure, the other motifs of lower level are not depicted here.

Related literature top

For related structural studies of butane-1,4-diammonium salts, see: van Blerk & Kruger (2007); Lemmerer & Billing (2006); Gabro et al. (2009). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was prepared by adding butane-1,4-diamine (0.50 g, 5.67 mmol) to 30% perchloric acid (HClO4, 2 ml, 9.138 mmol, Merck) in a sample vial. The mixture was then refluxed at 363 K for 2 h. The solution was cooled at 2 K h-1 to room temperature. Colourless crystals of butane-1,4-diammonium diperchlorate were collected and a suitable single-crystal was selected for the X-ray diffraction study.

Refinement top

Hydrogen atoms could be identified from the difference Fourier map but once these atoms were refined, their distances from the parent atoms were found to be significantly shorter than the ideal distances for C—H and N—H respectively. The H-atoms were therefore geometrically positioned and refined in the riding-model approximation, with C—H = 0.97 Å, N—H = 0.89 Å, and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(N). The highest peak in the final difference map is 0.69Å from O2 and the deepest hole is 0.69Å from Cl1.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008; data reduction: SAINT (Bruker, 2008; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001) and Mercury (Macrae et al., 2006).; software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. : Molecular structure of the title compound, with atomic numbering scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. : Packing arrangement of the title compound viewed down the b axis. Hydrogen bonds are indicated by red dashed lines.
[Figure 3] Fig. 3. : Close-up view of the title compound clearly showing the bifurcated hydrogen-bonding interactions. Hydrogen bonds are indicated by red dashed lines.
[Figure 4] Fig. 4. : Close up view of the title compound viewed down the a axis showing the 50-membered level 2 ring motif.
Butane-1,4-diammonium bis(perchlorate) top
Crystal data top
C4H14N22+·2ClO4F(000) = 300
Mr = 289.07Dx = 1.653 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 1622 reflections
a = 19.4755 (10) Åθ = 3.8–28.2°
b = 5.6210 (3) ŵ = 0.59 mm1
c = 5.3470 (2) ÅT = 296 K
β = 97.222 (3)°Block, colourless
V = 580.70 (5) Å30.50 × 0.34 × 0.16 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
793 independent reflections
Radiation source: fine-focus sealed tube694 reflections with I > 2s(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 28.3°, θmin = 3.8°
Absorption correction: multi-scan
(AX-Scale; Bruker, 2008)
h = 2325
Tmin = 0.757, Tmax = 0.912k = 77
3067 measured reflectionsl = 67
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.155H-atom parameters constrained
S = 1.17 w = 1/[σ2(Fo2) + (0.0955P)2 + 0.3477P]
where P = (Fo2 + 2Fc2)/3
793 reflections(Δ/σ)max < 0.001
46 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.44 e Å3
Crystal data top
C4H14N22+·2ClO4V = 580.70 (5) Å3
Mr = 289.07Z = 2
Monoclinic, C2/mMo Kα radiation
a = 19.4755 (10) ŵ = 0.59 mm1
b = 5.6210 (3) ÅT = 296 K
c = 5.3470 (2) Å0.50 × 0.34 × 0.16 mm
β = 97.222 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
793 independent reflections
Absorption correction: multi-scan
(AX-Scale; Bruker, 2008)
694 reflections with I > 2s(I)
Tmin = 0.757, Tmax = 0.912Rint = 0.028
3067 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.155H-atom parameters constrained
S = 1.17Δρmax = 0.47 e Å3
793 reflectionsΔρmin = 0.44 e Å3
46 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.57860 (17)0.00000.7538 (6)0.0466 (8)
H10.56610.13940.84500.056*
C20.53822 (16)0.00000.4976 (6)0.0467 (8)
H20.55080.13940.40650.056*
Cl10.65841 (4)0.50000.27016 (13)0.0403 (3)
N10.65459 (14)0.00000.7476 (5)0.0450 (7)
H1N0.67620.00000.90450.068*
H2N0.66660.12930.66730.068*
O10.69616 (13)0.2898 (5)0.2214 (5)0.0755 (7)
O20.59205 (16)0.50000.1238 (6)0.0698 (9)
O30.65031 (17)0.50000.5341 (5)0.0633 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0461 (18)0.061 (2)0.0321 (15)0.0000.0021 (12)0.000
C20.0403 (18)0.068 (2)0.0315 (15)0.0000.0028 (12)0.000
Cl10.0480 (5)0.0380 (5)0.0344 (5)0.0000.0031 (3)0.000
N10.0425 (15)0.0501 (17)0.0398 (14)0.0000.0049 (11)0.000
O10.0818 (14)0.0697 (16)0.0730 (14)0.0253 (12)0.0014 (11)0.0236 (11)
O20.0619 (18)0.069 (2)0.071 (2)0.0000.0187 (14)0.000
O30.095 (2)0.0596 (17)0.0377 (14)0.0000.0171 (13)0.000
Geometric parameters (Å, º) top
C1—N11.484 (4)Cl1—O11.433 (2)
C1—C21.492 (4)Cl1—O1ii1.433 (2)
C1—H10.9700Cl1—O31.440 (3)
C2—C2i1.492 (6)N1—H1N0.8900
C2—H20.9700N1—H2N0.8900
Cl1—O21.424 (3)
N1—C1—C2113.0 (3)O2—Cl1—O1ii110.54 (12)
N1—C1—H1109.0O1—Cl1—O1ii111.1 (2)
C2—C1—H1109.0O2—Cl1—O3109.6 (2)
H1—C1—H1iii107.8O1—Cl1—O3107.48 (13)
C1—C2—C2i113.3 (3)O1ii—Cl1—O3107.48 (13)
C1—C2—H2108.9C1—N1—H1N109.5
C2i—C2—H2108.9C1—N1—H2N109.5
H2—C2—H2iii107.7H1N—N1—H2N109.5
O2—Cl1—O1110.54 (12)
N1—C1—C2—C2i180.0
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z; (iii) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1iv0.892.353.035 (3)134
N1—H1N···O1v0.892.353.035 (3)134
N1—H2N···O10.892.683.435 (4)143
N1—H2N···O30.892.213.0308 (14)153
Symmetry codes: (iv) x, y, z+1; (v) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC4H14N22+·2ClO4
Mr289.07
Crystal system, space groupMonoclinic, C2/m
Temperature (K)296
a, b, c (Å)19.4755 (10), 5.6210 (3), 5.3470 (2)
β (°) 97.222 (3)
V3)580.70 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.59
Crystal size (mm)0.50 × 0.34 × 0.16
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(AX-Scale; Bruker, 2008)
Tmin, Tmax0.757, 0.912
No. of measured, independent and
observed [I > 2s(I)] reflections
3067, 793, 694
Rint0.028
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.155, 1.17
No. of reflections793
No. of parameters46
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.44

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001) and Mercury (Macrae et al., 2006)., publCIF (Westrip, 2010) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O1i0.892.353.035 (3)134
N1—H1N···O1ii0.892.353.035 (3)134
N1—H2N···O10.892.683.435 (4)143
N1—H2N···O30.892.213.0308 (14)153
Symmetry codes: (i) x, y, z+1; (ii) x, y, z+1.
 

Acknowledgements

The authors acknowledge the National Research Foundation Thuthuka programme (GUN 66314) and the University of Johannesburg for funding and facilities for this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlerk, C. van & Kruger, G. J. (2007). Acta Cryst. E63, o342–o344.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2008). AXScale, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGabro, M., Lalancette, R. A. & Bernal, I. (2009). Acta Cryst. E65, o1352.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLemmerer, A. & Billing, D. G. (2006). Acta Cryst. E62, o1954–o1956.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 5| May 2011| Page o1060
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds