Download citation
Download citation
link to html
Dioxotetrafluoromolybdate, (NH4)2MoO2F4, was synthesized in a single-crystal form and its structures [(I) at 297 K and (II) at 223 K] were determined by X-ray diffraction. Two independent states of a cis-MoO2F4 octahedron are characteristic of static and dynamic disorder in structure (I). The dynamically disordered Mo atom is displaced from the symmetry axis producing four possible orientations of an anion that allow O and F atoms to be identified in separate orientations owing to the inherent differences between the Mo—O and Mo—F bonding. After the phase transition at lower temperature, (I) transforms into the statically disordered structure (II) with three possible orientations of the cis-MoO2F4 octahedron. In this case, it also seemed possible to distinguish between O and F atoms on a local scale. H atoms of two independent NH4 groups in (II) which form bifurcated N—H...F(O) hydrogen bonds were localized.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768109052987/bp5027sup1.cif
Contains datablocks RT, LT, publication_text

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768109052987/bp5027RTsup2.hkl
Contains datablock RT

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768109052987/bp5027LTsup3.hkl
Contains datablock LT

Computing details top

For both structures, data collection: Bruker Smart v5.054 (Bruker, 1998); cell refinement: Bruker SAINT v6.02a (Bruker, 2000); data reduction: Bruker SAINT v6.02a (Bruker, 2000); program(s) used to solve structure: Bruker SHELXTL v5.1 (Bruker, 1998); program(s) used to refine structure: Bruker SHELXTL v5.1 (Bruker, 1998); molecular graphics: Bruker SHELXTL v5.1 (Bruker, 1998); software used to prepare material for publication: Bruker SHELXTL v5.1 (Bruker, 1998).

ammonium dioxotetrafluoromolybdate (RT) top
Crystal data top
(F4MoO2)·2(H4N)F(000) = 464
Mr = 240.02Dx = 2.595 Mg m3
Orthorhombic, CmcmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2c 2Cell parameters from 899 reflections
a = 5.9672 (7) Åθ = 4.7–43.4°
b = 14.4798 (17) ŵ = 2.16 mm1
c = 7.1105 (9) ÅT = 297 K
V = 614.37 (13) Å3Sphere, colorless
Z = 40.30 × 0.30 × 0.30 mm
Data collection top
Bruker Smart 1000 CCD
diffractometer
1276 independent reflections
Radiation source: fine-focus sealed tube1202 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 8.33 pixels mm-1θmax = 43.4°, θmin = 4.7°
ω scansh = 1011
Absorption correction: multi-scan
SADABS v.2.03; Bruker 1999
k = 2727
Tmin = 0.564, Tmax = 0.564l = 1313
8355 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0296P)2 + 0.3032P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.077(Δ/σ)max = 0.033
S = 1.30Δρmax = 0.55 e Å3
1278 reflectionsΔρmin = 0.64 e Å3
41 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.029 (3)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo10.00000.10349 (14)0.25000.0240 (10)0.43 (4)
Mo20.0237 (6)0.1084 (3)0.2266 (7)0.0273 (5)0.141 (10)
N10.50000.27122 (17)0.25000.0408 (5)
N20.00000.4382 (2)0.25000.0419 (5)
F10.00000.24576 (12)0.25000.0605 (7)
O10.00000.01262 (13)0.25000.0414 (4)
F20.22677 (17)0.11934 (9)0.06492 (13)0.0446 (2)0.75
O20.22677 (17)0.11934 (9)0.06492 (13)0.0446 (2)0.25
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.0295 (12)0.0164 (10)0.0261 (16)0.0000.0000.000
Mo20.0191 (9)0.0392 (11)0.0236 (7)0.0000 (3)0.0035 (3)0.0026 (5)
N10.0346 (10)0.0336 (9)0.0541 (13)0.0000.0000.000
N20.0371 (11)0.0457 (12)0.0430 (11)0.0000.0000.000
F10.0534 (11)0.0224 (6)0.106 (2)0.0000.0000.000
O10.0451 (10)0.0239 (6)0.0552 (12)0.0000.0000.000
F20.0329 (4)0.0679 (6)0.0331 (4)0.0072 (4)0.0123 (3)0.0052 (4)
O20.0329 (4)0.0679 (6)0.0331 (4)0.0072 (4)0.0123 (3)0.0052 (4)
Geometric parameters (Å, º) top
Mo1—Mo2i0.229 (6)N1—F2viii3.0589 (17)
Mo1—Mo2ii0.229 (6)N1—O2ix3.0589 (17)
Mo1—Mo2iii0.229 (6)N1—O2x3.0589 (17)
Mo1—O11.681 (3)N1—O1xi3.130 (3)
Mo1—O2ii1.9015 (9)N2—F12.787 (3)
Mo1—O2iii1.9015 (9)N2—O2xii2.8927 (12)
Mo1—O2i1.9015 (9)N2—F2viii2.8927 (12)
Mo1—F21.9015 (9)N2—O2xiii2.8927 (12)
Mo1—F12.060 (3)N2—O2ix2.8927 (12)
Mo2—Mo2iii0.282 (7)N2—O1xi3.0673 (9)
Mo2—Mo2ii0.332 (10)N2—O1xiv3.0673 (9)
Mo2—Mo2i0.436 (11)N2—O2xv3.356 (3)
Mo2—F21.678 (5)N2—O2xvi3.356 (3)
Mo2—O11.766 (5)N2—F2xvii3.356 (3)
Mo2—O2iii1.892 (3)N2—F2xiv3.356 (3)
Mo2—O2ii1.921 (4)F1—O2iii2.6294 (16)
Mo2—F12.001 (4)F1—F2i2.6294 (16)
Mo2—O2i2.111 (5)F1—O2ii2.6294 (16)
N1—F13.0063 (5)F1—F22.6294 (16)
N1—F1iv3.0063 (5)O1—O2ii2.6857 (17)
N1—F23.037 (2)O1—F22.6857 (17)
N1—O2ii3.037 (2)O1—O2i2.6857 (17)
N1—F2v3.037 (2)O1—O2iii2.6857 (17)
N1—O2vi3.037 (2)F2—O2ii2.6320 (19)
N1—O2vii3.0589 (17)F2—O2iii2.706 (2)
O1—Mo1—O2ii96.93 (7)F2—Mo2—O1102.46 (14)
O1—Mo1—F2ii96.93 (7)F2—Mo2—O2iii98.4 (3)
O1—Mo1—O2iii96.93 (7)O1—Mo2—O2iii94.42 (18)
O2ii—Mo1—O2iii166.14 (15)F2—Mo2—F190.8 (3)
F2ii—Mo1—O2iii166.14 (15)O1—Mo2—O2ii93.4 (2)
O1—Mo1—F2iii96.93 (7)F2—Mo2—F2ii93.76 (18)
O2ii—Mo1—O2i90.74 (7)O2iii—Mo2—F2ii163.76 (19)
F2ii—Mo1—O2i90.74 (7)O1—Mo2—F1166.7 (3)
O2iii—Mo1—O2i87.59 (7)O2iii—Mo2—F184.93 (16)
F2iii—Mo1—O2i87.59 (7)O2ii—Mo2—F184.18 (14)
O1—Mo1—F1180.0F2—Mo2—O2i170.2 (3)
O2ii—Mo1—F183.07 (7)O1—Mo2—O2i87.2 (3)
O2iii—Mo1—F183.07 (7)O2iii—Mo2—O2i82.03 (15)
O2i—Mo1—F183.07 (7)O2ii—Mo2—O2i84.2 (2)
F2—Mo1—F183.07 (7)F1—Mo2—O2i79.47 (10)
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z+1/2; (iii) x, y, z; (iv) x+1, y, z; (v) x+1, y, z+1/2; (vi) x+1, y, z; (vii) x+1/2, y+1/2, z+1/2; (viii) x+1/2, y+1/2, z+1/2; (ix) x+1/2, y+1/2, z; (x) x+1/2, y+1/2, z; (xi) x+1/2, y+1/2, z; (xii) x1/2, y+1/2, z; (xiii) x1/2, y+1/2, z+1/2; (xiv) x1/2, y+1/2, z; (xv) x+1/2, y+1/2, z+1/2; (xvi) x+1/2, y+1/2, z; (xvii) x1/2, y+1/2, z+1/2.
ammonium dioxotetrafluoromolybdate (LT) top
Crystal data top
(F4MoO2)·2(H4N)F(000) = 464
Mr = 240.02Dx = 2.650 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 969 reflections
a = 7.1452 (4) Åθ = 2.9–43.4°
b = 5.8979 (3) ŵ = 2.21 mm1
c = 14.2737 (7) ÅT = 223 K
V = 601.52 (5) Å3Sphere, colorless
Z = 40.30 × 0.30 × 0.30 mm
Data collection top
Bruker Smart 1000 CCD
diffractometer
2362 independent reflections
Radiation source: fine-focus sealed tube2237 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 8.33 pixels mm-1θmax = 43.4°, θmin = 2.9°
ω scansh = 1313
Absorption correction: multi-scan
SADABS v.2.03; Bruker 1999
k = 1110
Tmin = 0.558, Tmax = 0.558l = 2627
15861 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023H-atom parameters not refined
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0239P)2 + 0.2646P]
where P = (Fo2 + 2Fc2)/3
S = 1.22(Δ/σ)max = 0.142
2362 reflectionsΔρmax = 0.75 e Å3
60 parametersΔρmin = 1.56 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0150 (15)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mo10.30609 (8)0.25000.13002 (5)0.01391 (9)0.4104 (14)
Mo20.28753 (7)0.22779 (14)0.14343 (4)0.01500 (12)0.2948 (7)
N10.29547 (17)0.25000.47581 (9)0.02317 (19)
N20.27591 (19)0.75000.30300 (9)0.0247 (2)
O10.27924 (16)0.25000.26264 (7)0.02634 (19)0.50
F10.27924 (16)0.25000.26264 (7)0.02634 (19)0.50
O20.45390 (11)0.02252 (14)0.12209 (6)0.02736 (14)0.75
F20.45390 (11)0.02252 (14)0.12209 (6)0.02736 (14)0.25
F30.23317 (17)0.25000.00101 (6)0.02885 (19)
F40.08373 (10)0.01878 (13)0.13688 (5)0.02548 (12)
H10.37090.25000.43000.065*
H20.22600.13300.47460.065*
H30.35480.25000.52600.065*
H40.34780.86960.30900.065*
H50.18630.75000.34040.065*
H60.23040.75000.24530.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01203 (12)0.01303 (17)0.01668 (17)0.0000.00041 (10)0.000
Mo20.01531 (12)0.0136 (3)0.01606 (13)0.00071 (9)0.00052 (8)0.00039 (10)
N10.0245 (5)0.0249 (5)0.0201 (4)0.0000.0001 (3)0.000
N20.0241 (5)0.0278 (6)0.0223 (4)0.0000.0009 (3)0.000
O10.0318 (5)0.0309 (5)0.0164 (3)0.0000.0026 (3)0.000
F10.0318 (5)0.0309 (5)0.0164 (3)0.0000.0026 (3)0.000
O20.0212 (3)0.0212 (3)0.0397 (4)0.0075 (2)0.0004 (2)0.0029 (3)
F20.0212 (3)0.0212 (3)0.0397 (4)0.0075 (2)0.0004 (2)0.0029 (3)
F30.0378 (5)0.0333 (5)0.0155 (3)0.0000.0010 (3)0.000
F40.0221 (2)0.0220 (3)0.0324 (3)0.0080 (2)0.00431 (19)0.0041 (2)
Geometric parameters (Å, º) top
Mo1—Mo2i0.2671 (8)N1—H20.8502
Mo1—O2i1.7112 (8)N1—H30.8324
Mo1—O21.7112 (8)N2—F3vi2.8270 (16)
Mo1—O11.9027 (12)N2—F4ix2.8438 (13)
Mo1—F31.9139 (11)N2—F4iv2.8438 (13)
Mo1—F42.0961 (8)N2—F2viii3.0034 (14)
Mo1—F4i2.0961 (8)N2—F2x3.0034 (14)
Mo2—Mo2i0.2619 (16)N2—O13.0048 (3)
Mo2—O11.7077 (11)N2—O1xi3.0048 (3)
Mo2—O21.7239 (10)N2—F4i3.1655 (14)
Mo2—F41.9101 (9)N2—F4xi3.1655 (14)
Mo2—F2i1.9169 (10)N2—F2i3.2969 (15)
Mo2—F32.0738 (11)N2—F2xi3.2969 (15)
Mo2—F4i2.0888 (9)N2—H40.8768
N1—F4ii2.9230 (13)N2—H50.8336
N1—F4iii2.9230 (13)N2—H60.8855
N1—F4iv2.9478 (14)F1—F42.6520 (11)
N1—F4v2.9478 (14)F1—F4i2.6520 (11)
N1—F3vi2.9778 (3)F1—O22.7171 (12)
N1—F3iii2.9778 (3)F1—O2i2.7171 (12)
N1—O13.0449 (17)O2—F32.6971 (12)
N1—F2vii3.1160 (14)F3—O2i2.6971 (12)
N1—F2viii3.1160 (14)F3—F4i2.6002 (11)
N1—F3v3.1449 (17)F3—F42.6002 (11)
N1—F2ii3.1808 (14)O2—O2i2.6833 (16)
N1—F2iii3.1808 (14)O2—F42.6534 (11)
N1—H10.8474F4—F4i2.7274 (15)
O2i—Mo1—F197.36 (4)O1—Mo2—O2104.71 (5)
O2—Mo1—F197.36 (4)O1—Mo2—F2i96.95 (5)
F1—Mo1—F482.94 (4)O1—Mo2—F4i88.02 (4)
F1—Mo1—F4i82.94 (4)O1—Mo2—F3164.90 (6)
O2i—Mo1—F395.99 (4)F4—Mo2—F381.37 (4)
O2—Mo1—F395.99 (4)O2—Mo2—F390.01 (4)
F3—Mo1—F480.71 (4)F2i—Mo2—F384.94 (4)
F3—Mo1—F4i80.71 (4)F3—Mo2—F4i77.31 (4)
O2—Mo1—F487.75 (4)O2—Mo2—F4i167.25 (5)
O2i—Mo1—F4i87.75 (4)O2—Mo2—F2i94.81 (6)
O2i—Mo1—O2103.26 (7)F2i—Mo2—F4i82.85 (5)
F4—Mo1—F4i81.17 (5)F4—Mo2—F4i85.88 (5)
F1—Mo1—F3158.41 (6)O2—Mo2—F493.66 (5)
O2i—Mo1—F4168.81 (4)F4—Mo2—F2i163.89 (5)
O1—Mo2—F494.12 (4)
Symmetry codes: (i) x, y+1/2, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1/2, y, z+1/2; (iv) x+1/2, y+1/2, z+1/2; (v) x+1/2, y, z+1/2; (vi) x+1/2, y+1, z+1/2; (vii) x1/2, y, z+1/2; (viii) x1/2, y+1/2, z+1/2; (ix) x+1/2, y+1, z+1/2; (x) x1/2, y+1, z+1/2; (xi) x, y+1, z.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds