Download citation
Download citation
link to html
In exo-2-(3,5-dioxo-10-oxa-4-aza­tri­cyclo­[5.2.1.02,6]­dec-8-en-4-yl)­phenyl acetate, C16H13NO5, the plane of the acetoxy group lies almost perpendicular to that of the phenyl ring [dihedral angle = 89.8 (1)°], in contrast with the smaller deviations found in the para isomer exo-4-(3,5-dioxo-10-oxa-4-aza­tri­cyclo­[5.2.1.02,6]­dec-8-en-4-yl)­phenyl acetate, C16H13NO5, these being 63.6 (1) and 37.0 (1)° for the two crystallographically independent mol­ecules. Irrespective of the position of the acetoxy group, both compounds pack through soft C—H...X (X is O or phenyl) interactions, forming interlinked centrosymmetric tetramers in the bc plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104008224/bm1565sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104008224/bm1565Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104008224/bm1565IIsup3.hkl
Contains datablock II

CCDC references: 243612; 243613

Comment top

Diels-Alder reactions between furan and maleimide are well studied (Kwart & King, 1968). However, there are few examples of their crystal structures, particularly of those derived from N-arylmaleimides (Allen, 2002). Diels-Alder reactions produce the endo and exo isomers, depending on the relative orientation of the approach of the diene and dienophile. Usually, the exo adduct is the thermodynamic product and the endo the kinetic one (Kwart & Burchuk, 1951). Control of the adduct stereochemistry has been achieved using chiral N-arylmaleimides (Kitagawa et al., 1998). Recently, several efforts have been made to accelerate the rate (Howell et al., 2002) or control the stereochemistry (Philip & Robertson, 1998) of Diels-Alder cycloadditions, on the basis of molecular recognition or supramolecular chemistry. Herein, the molecular and supramolecular structure of the Diels-Alder adducts exo-4-(2'-acetoxyphenyl)-10-oxa-4-azatricyclo(5.2.1.02,6)dec-8- en-3,5-dione I and its para isomer II, are reported.

Compounds (I) and (II) crystallize in the monoclinic crystal system with space groups P21/c and P21/n, respectively, and their molecular structures are depicted in Figures 1 and 2, respectively. The two independent molecules found in the asymmetric unit of II are labelled as IIA and IIB. The common geometric features of both molecules (Tables 1 and 3) show that N—Caryl and N—C(O) bond lengths are in the mean range reported for free N-aryl maleimides (Miller et al., 2000). The phenyl ring is twisted relative to the succinimide ring in both adducts, with mean interplanar angles of 65.8 (1)°, 61.8 1)° and 66.8 (1)° for I, IIA and IIB, respectively. The torsion angle between these two rings is very similar to the value reported for both a furan-N-phenyl maleimide Diels-Alder adduct (Jarosz et al., 2001) and several free N-aryl maleimides (Miller et al., 2000). The acetoxy group points toward the oxo bridge and is almost perpendicular to the phenyl ring both in the ortho-isomer I and the para-isomer IIA, whereas in the para-isomer IIB it is closer to planarity: the angle between the phenyl and the acetoxy planes are 89.8 (1)°, 63.6 (1)° and 37.0 (1)° for I, IIA and IIB, respectively.

The conformational differences determine the supramolecular structure exhibited by each compound. In the absence of strong hydrogen bonding donors the intermolecular geometry features weak C—H···X (X = O, Ph) interactions (Steiner, 2002; Umezawa et al., 1998) whose geometry is summarized in Tables 2 and 4 for I and II, respectively. Graph set notation is used to describe the hydrogen-bonding patterns throughout this paper (Bernstein et al., 1995). In compound (I) the interlinked C22(14)[DaDb] antiparallel chains zigzagging along the b axis are formed through C6—H6···O16 (Da) and C12—H12···O5 (Db) interactions. Thus, tetrameric units exhibiting a R44(28)[DaDc] ring pattern (Fig. 3) appear by interlinking C15—H15···O17 (Dc) interactions.

The para- isomer presents a different supramolecular structure in which sheets of molecules IIA and sheets of molecules IIB lie in an alternating family of parallel (101) and (202) planes, respectively. Centrosymmetric dimers of IIA are formed by C1—H1···PhA (Dd; C1···PhA = 3.899 (4) Å; C1—H1···PhA 174.5°; symmetry code: −x,-y,-z) hydrogen bonding interactions. IIB sheets are composed by interlinked tetrameric units formed by C28—H28A···PhB (De; C28···PhB = 3.690 (4) Å; C28—H28···PhB = 145.8°; symmetry code: 3/2 − x,1/2 + y,1/2 − z), C38—H38B···PhB (Df; C38···PhB = 3.658 (4) Å; C38—H38B···PhB = 150.8°; symmetry code: 2 − x,-y,1 − z) and C27—H27···O37 (Dg) interactions that define a R46(18) ring pattern (Figure 4). Finally, the three dimensional network is achieved by the association between IIA and IIB, the former molecule providing most of the acceptors and the last one providing most of the donors. Thus zigzag tapes, are formed through C14—H14···O25 (Dh), C18—H18···O37 (Di), C32—H32···O5 (Dj), and C22—H22···O3 (Dk) interactions to conform the tapes described by the C44(23)[R22(14)R22(22)] hydrogen bonding pattern (Figure 5).

In summary, exo Diels-Alder adducts between furan and ortho- and para-N-acetoxyphenyl maleimides I and II, respectively, are characterized by hydrogen bonded tetrameric structures which forms sheets in the bc plane through soft C—H···X (XO, Ph) interactions. Notably, the interlinked tetrameric units persist when the position of the acetoxy group is altered.

Experimental top

Diels-Alder adducts were obtained by reaction between of 1H-pirrole-1-[2'-acetoxyphenyl]-2,5-dione or 1H-pirrole-1- [4'-acetoxyphenyl]-2,5-dione (1.0 mmol) and furan (2.2 mmol) dissolved in xylene (3 ml) in a sealed ampoule at 140 °C for 8 h. The products crystallize as white solids in 73% and 56% yield, respectively. In both cases crystals suitable for X-ray analysis were obtained from chloroform solutions by slow hexane diffusion. Melting points were measured on a Gallenkamp MFB-595 apparatus and are uncorrected. IR spectra were recorded as KBr discs using a Perkin-Elmer 16 F PC IR spectrophotometer. 1H and 13C NMR spectra were recorded with a Jeol Eclipse instrument (1H, 270.17; 13C, 67.94 MHz) in CDCl3 solutions, measured with SiMe4 as internal reference following standard techniques. Mass spectra were recorded on a Hewlett Packard 5989 A Series II spectrometer.

Exo-4-(2'-acetoxyphenyl)-10-oxa-4-azatricyclo(5.2.1.02,6)dec-8-en −3,5-dione (I). Colourless crystals, mp 175–179 °C; IR (KBr) ν/cm−1: 1728, 1766 (CO), 1592 (C C), 1384 (OAc), 1310 (C—N); 1H NMR δ/(p.p.m.): 7.44 (m, 1H, H-13), 7.32 (m, 1H, H-14), 7.27 (m, 1H, H-12), 7.26 (m, 1H, H-15), 6.56 (s, 2H, H-8,9), 5.37 (s, 2H, H-1,7), 3.00 (s, 2H, H-2,6), 2.19 (s, 3H, Me); 13C NMR δ/(p.p.m.): 174.6 (C-3,5), 168.4 (C-17), 146.3 (C-11), 136.7 (C-8,9), 130.5 (C-13), 129.1 (C-15), 126.5 (C-14), 124.4 (C-10), 123.8 (C-12), 81.3 (C-1,7), 47.7 (C-2,6), 20.6 (Me); MS m/z (%) 299 (2) (M+), 257 (14), 231 (13), 189 (100), 161 (3), 145 (62).

Exo-4-(4'-acetoxyphenyl)-10-oxa-4-azatricyclo(5.2.1.02,6)dec-8-en −3,5-dione (II). Colourless crystals, mp 165–170 °C; IR (KBr) ν/cm−1: 1710, 1758 (CO), 1600 (CC), 1366 (OAc), 1310 (C—N); 1H NMR δ/(p.p.m.): 7.31 (d, 2H, H-11,15), 7.19 (d, 2H, H-12,14), 6.53 (s, 2H, H-8,9), 5.36 (s, 2H, H-1,7), 2.97 (s, 2H, H-2,6), 2.29 (s, 3H, Me); 13C NMR δ/(p.p.m.): 175.2 (C-3,5), 168.8 (C-17), 150.4 (C-13), 136.6 (C-8,9), 129.0 (C-11), 127.5 (C-11,15), 122.2 (C-12,14), 81.3 (C-1,7), 47.4 (C-2,6), 21.0 (Me); MS m/z (%) 299 (4) (M+), 257 (6), 231 (13), 189 (100), 161 (5), 145 (7).

Refinement top

H atoms were treated as riding atoms, with distances in the range 0.93–0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) for others.

Computing details top

For both compounds, data collection: CAD-4 EXPRESS (Enraf Nonius, 1992); cell refinement: CAD-4 EXPRESS; data reduction: JANA98 (Vaclav, 1998). Program(s) used to solve structure: SHELXS97(Sheldrick, 1997) for (I); SHELXS97 (Sheldrick, 1997) for (II). For both compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: WinGX (Farrugia, 1999); software used to prepare material for publication: SHELXL97 and RESVIEW (Schwenk, 1996).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
Figure 1. Molecular structure of the title ortho-Diels-Alder adduct I, showing displacement ellipsoids drawn at the 30% probability level.

Figure 2. Molecular structure of the para-Diels-Alder adduct II showing displacement ellipsoids drawn at the 30% probability level. Two independent molecules occur in the asymmetric unit.

Figure 3. Supramolecular structure of the ortho-Diels-Alder adduct I viewed along the a axis. Hydrogen atoms not participating in H-bonding were omitted for clarity.

Figure 4. Supramolecular structure of the para-Diels-Alder adduct IIB viewed along the a axis. Hydrogen atoms not participating in H-bonding were omitted for clarity.

Figure 5. View along the a axis of the molecular tapes formed between the para-Diels-Alder adducts IIA and IIB. Hydrogen atoms not participating in H-bonding were omited for clarity.
(I) top
Crystal data top
C16H13NO5F(000) = 624
Mr = 299.27Dx = 1.423 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 24 reflections
a = 8.859 (1) Åθ = 10–11°
b = 12.830 (2) ŵ = 0.11 mm1
c = 12.615 (1) ÅT = 293 K
β = 102.971 (2)°Square prism, colorless
V = 1397.2 (3) Å30.5 × 0.3 × 0.1 mm
Z = 4
Data collection top
Enraf-Nonius CAD4
diffractometer
1767 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.012
Graphite monochromatorθmax = 27.0°, θmin = 2.3°
Detector resolution: 3 pixels mm-1h = 1111
ω/2θ scansk = 016
3024 measured reflectionsl = 016
3024 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0648P)2]
where P = (Fo2 + 2Fc2)/3
3024 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C16H13NO5V = 1397.2 (3) Å3
Mr = 299.27Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.859 (1) ŵ = 0.11 mm1
b = 12.830 (2) ÅT = 293 K
c = 12.615 (1) Å0.5 × 0.3 × 0.1 mm
β = 102.971 (2)°
Data collection top
Enraf-Nonius CAD4
diffractometer
1767 reflections with I > 2σ(I)
3024 measured reflectionsRint = 0.012
3024 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.02Δρmax = 0.22 e Å3
3024 reflectionsΔρmin = 0.22 e Å3
199 parameters
Special details top

Experimental. Diffractometer operator Susana Rojas scanwidth_degrees 0.7 low_scanspeed_degrees/min 16.1 high_scanspeed_degrees/min 60 Background measurement: Moving crystal and moving counter at the beginning and end of scan, each for 25% of total scan area. Crystal mounted on a glass fiber.

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.49533 (15)0.20117 (10)0.40385 (10)0.0517 (4)
O30.47902 (14)0.06648 (10)0.13987 (11)0.0513 (4)
O50.75555 (18)0.35679 (12)0.26498 (16)0.0825 (7)
O160.77638 (13)0.02143 (10)0.31047 (9)0.0442 (4)
O170.92242 (19)0.11933 (12)0.44083 (12)0.0698 (6)
N40.64920 (15)0.20033 (10)0.20070 (11)0.0377 (4)
C10.3540 (2)0.17664 (15)0.32589 (15)0.0483 (6)
C20.39280 (19)0.22151 (13)0.22041 (13)0.0388 (5)
C30.50446 (18)0.15109 (13)0.18062 (13)0.0365 (5)
C50.6463 (2)0.29921 (13)0.24562 (16)0.0457 (6)
C60.4870 (2)0.31903 (13)0.26490 (14)0.0408 (5)
C70.4861 (2)0.31216 (14)0.38806 (15)0.0468 (6)
C80.3207 (2)0.33437 (16)0.39648 (15)0.0531 (6)
C90.2407 (2)0.25130 (17)0.35860 (16)0.0574 (7)
C100.78422 (18)0.15391 (13)0.17741 (13)0.0373 (5)
C110.84853 (18)0.06624 (13)0.23344 (13)0.0379 (5)
C120.97745 (19)0.01889 (15)0.21066 (14)0.0459 (6)
C131.0443 (2)0.06109 (16)0.13155 (16)0.0517 (6)
C140.9822 (2)0.14950 (16)0.07573 (15)0.0529 (6)
C150.8522 (2)0.19553 (15)0.09806 (14)0.0470 (6)
C170.8240 (2)0.05535 (14)0.41477 (14)0.0461 (6)
C180.7362 (3)0.00211 (17)0.48723 (16)0.0617 (7)
H1A0.323450.103090.322400.0580*
H2A0.300230.237670.163970.0466*
H6A0.440560.383630.230930.0490*
H7A0.566270.352910.436830.0562*
H8A0.283880.394580.423070.0636*
H9A0.135400.240460.352980.0689*
H12A1.018800.040720.248150.0551*
H13A1.131460.029930.115740.0621*
H14A1.028180.177980.022950.0635*
H15A0.810140.254590.059860.0564*
H18A0.771720.026910.560380.0926*
H18B0.752520.071760.485250.0926*
H18C0.627710.016940.462670.0926*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0510 (8)0.0551 (8)0.0488 (7)0.0098 (6)0.0110 (6)0.0121 (6)
O30.0460 (7)0.0456 (7)0.0632 (8)0.0074 (6)0.0139 (6)0.0094 (6)
O50.0560 (9)0.0586 (9)0.1474 (16)0.0264 (8)0.0537 (10)0.0365 (10)
O160.0424 (7)0.0465 (7)0.0450 (6)0.0055 (6)0.0127 (5)0.0045 (5)
O170.0822 (11)0.0713 (10)0.0613 (9)0.0290 (9)0.0278 (8)0.0195 (7)
N40.0303 (7)0.0352 (7)0.0505 (8)0.0018 (6)0.0154 (6)0.0004 (6)
C10.0453 (10)0.0461 (10)0.0583 (10)0.0040 (8)0.0217 (8)0.0080 (8)
C20.0290 (8)0.0433 (9)0.0450 (9)0.0007 (7)0.0099 (7)0.0054 (7)
C30.0313 (8)0.0382 (9)0.0409 (8)0.0028 (7)0.0097 (6)0.0034 (7)
C50.0405 (9)0.0360 (9)0.0665 (11)0.0057 (8)0.0247 (8)0.0008 (8)
C60.0372 (9)0.0338 (8)0.0540 (10)0.0041 (7)0.0155 (7)0.0042 (7)
C70.0410 (10)0.0478 (10)0.0514 (10)0.0070 (8)0.0100 (8)0.0017 (8)
C80.0521 (11)0.0595 (12)0.0535 (10)0.0112 (10)0.0244 (9)0.0022 (9)
C90.0469 (10)0.0712 (14)0.0624 (12)0.0036 (10)0.0298 (10)0.0042 (11)
C100.0295 (8)0.0410 (8)0.0430 (8)0.0020 (7)0.0116 (6)0.0029 (7)
C110.0348 (8)0.0408 (9)0.0391 (8)0.0034 (7)0.0104 (7)0.0023 (7)
C120.0366 (9)0.0458 (10)0.0536 (10)0.0057 (8)0.0066 (8)0.0039 (8)
C130.0352 (9)0.0670 (13)0.0560 (10)0.0027 (9)0.0166 (8)0.0132 (9)
C140.0417 (10)0.0719 (13)0.0499 (10)0.0045 (10)0.0206 (8)0.0002 (10)
C150.0409 (10)0.0538 (11)0.0493 (10)0.0010 (8)0.0164 (8)0.0075 (8)
C170.0463 (10)0.0443 (10)0.0494 (10)0.0028 (8)0.0144 (8)0.0007 (8)
C180.0677 (13)0.0686 (13)0.0545 (11)0.0023 (11)0.0256 (10)0.0140 (10)
Geometric parameters (Å, º) top
O1—C11.443 (2)C10—C151.386 (2)
O1—C71.438 (2)C11—C121.380 (2)
O3—C31.201 (2)C12—C131.380 (3)
O5—C51.198 (2)C13—C141.382 (3)
O16—C111.401 (2)C14—C151.378 (3)
O16—C171.360 (2)C17—C181.492 (3)
O17—C171.189 (2)C1—H1A0.9800
N4—C31.401 (2)C2—H2A0.9800
N4—C51.392 (2)C6—H6A0.9801
N4—C101.425 (2)C7—H7A0.9799
C1—C21.557 (2)C8—H8A0.9299
C1—C91.510 (3)C9—H9A0.9300
C2—C31.507 (2)C12—H12A0.9301
C2—C61.538 (2)C13—H13A0.9300
C5—C61.506 (3)C14—H14A0.9298
C6—C71.558 (3)C15—H15A0.9299
C7—C81.520 (3)C18—H18A0.9599
C8—C91.309 (3)C18—H18B0.9599
C10—C111.382 (2)C18—H18C0.9603
O1···N43.1613 (19)C12···C8ii3.578 (3)
O1···C183.343 (3)C12···O5x3.113 (2)
O3···C8i3.329 (2)C13···O5x3.268 (3)
O3···O163.0594 (18)C13···C13xi3.594 (3)
O3···C113.221 (2)C13···C1vi3.566 (3)
O3···C6ii3.384 (2)C14···O17i3.401 (3)
O3···C7ii3.304 (2)C15···O53.203 (3)
O5···C153.203 (3)C15···O17i3.243 (2)
O5···C12iii3.113 (2)C17···O17iv3.399 (2)
O5···C13iii3.268 (3)C17···N43.358 (2)
O16···N42.7848 (18)C18···O17iv3.341 (3)
O16···O33.0594 (18)C18···C1viii3.507 (3)
O16···C33.079 (2)C18···O13.343 (3)
O17···C17iv3.399 (2)C1···H18Bviii3.0638
O17···C15v3.243 (2)C5···H15A3.0745
O17···C18iv3.341 (3)C9···H18Bviii3.0227
O17···C123.311 (2)C11···H8Aii3.0141
O17···C14v3.401 (3)C12···H8Aii2.9994
O17···C103.303 (2)C13···H1Avi3.0870
O1···H18C2.6688C14···H2Avi3.0081
O3···H7Aii2.9036C15···H7Ai2.9371
O3···H6Aii2.8542C17···H15Av3.0679
O5···H13Aiii2.7431C18···H1Aviii2.9048
O5···H12Aiii2.4293H1A···C13vii3.0870
O16···H6Aii2.5771H1A···C18viii2.9048
O17···H9Avi2.8534H1A···H18Aviii2.4978
O17···H18Biv2.8860H2A···C14vii3.0081
O17···H14Av2.8771H6A···O3ix2.8542
O17···H15Av2.5556H6A···O16ix2.5771
N4···O13.1613 (19)H7A···O3ix2.9036
N4···O162.7848 (18)H7A···C15v2.9371
N4···C173.358 (2)H8A···C11ix3.0141
C1···C13vii3.566 (3)H8A···C12ix2.9994
C1···C18viii3.507 (3)H9A···O17vii2.8534
C3···O163.079 (2)H12A···O5x2.4293
C3···C8i3.594 (3)H13A···O5x2.7431
C6···O3ix3.384 (2)H14A···O17i2.8771
C7···O3ix3.304 (2)H15A···C53.0745
C8···C12ix3.578 (3)H15A···O17i2.5556
C8···C11ix3.561 (3)H15A···C17i3.0679
C8···C3v3.594 (3)H18A···H1Aviii2.4978
C8···O3v3.329 (2)H18B···O17iv2.8860
C10···O173.303 (2)H18B···C1viii3.0638
C11···C8ii3.561 (3)H18B···C9viii3.0227
C11···O33.221 (2)H18C···O12.6688
C12···O173.311 (2)
C1—O1—C796.20 (13)C10—C15—C14120.07 (17)
C11—O16—C17116.68 (13)O16—C17—O17122.51 (17)
C3—N4—C5112.64 (14)O16—C17—C18110.80 (15)
C3—N4—C10123.44 (13)O17—C17—C18126.69 (17)
C5—N4—C10123.92 (14)O1—C1—H1A115.43
O1—C1—C2100.23 (13)C2—C1—H1A115.42
O1—C1—C9101.75 (14)C9—C1—H1A115.42
C2—C1—C9106.66 (15)C1—C2—H2A112.94
C1—C2—C3110.51 (14)C3—C2—H2A112.94
C1—C2—C6101.22 (13)C6—C2—H2A112.95
C3—C2—C6105.45 (14)C2—C6—H6A112.84
O3—C3—N4124.16 (15)C5—C6—H6A112.87
O3—C3—C2127.64 (15)C7—C6—H6A112.85
N4—C3—C2108.19 (13)O1—C7—H7A115.52
O5—C5—N4123.84 (17)C6—C7—H7A115.51
O5—C5—C6127.30 (17)C8—C7—H7A115.49
N4—C5—C6108.85 (14)C7—C8—H8A127.07
C2—C6—C5104.77 (14)C9—C8—H8A127.07
C2—C6—C7101.19 (13)C1—C9—H9A126.95
C5—C6—C7111.48 (15)C8—C9—H9A126.94
O1—C7—C6100.45 (13)C11—C12—H12A120.41
O1—C7—C8101.64 (14)C13—C12—H12A120.42
C6—C7—C8106.26 (15)C12—C13—H13A119.87
C7—C8—C9105.86 (17)C14—C13—H13A119.87
C1—C9—C8106.11 (16)C13—C14—H14A119.93
N4—C10—C11120.25 (14)C15—C14—H14A119.89
N4—C10—C15120.60 (15)C10—C15—H15A119.99
C11—C10—C15119.15 (16)C14—C15—H15A119.95
O16—C11—C10119.28 (14)C17—C18—H18A109.49
O16—C11—C12119.46 (15)C17—C18—H18B109.50
C10—C11—C12121.17 (15)C17—C18—H18C109.47
C11—C12—C13119.17 (17)H18A—C18—H18B109.48
C12—C13—C14120.26 (17)H18A—C18—H18C109.44
C13—C14—C15120.17 (17)H18B—C18—H18C109.45
C7—O1—C1—C260.14 (15)C3—C2—C6—C51.13 (17)
C7—O1—C1—C949.44 (16)C1—C2—C6—C70.32 (16)
C1—O1—C7—C849.21 (15)C1—C2—C3—O371.2 (2)
C1—O1—C7—C659.98 (15)C1—C2—C6—C5116.31 (15)
C17—O16—C11—C1292.22 (19)C1—C2—C3—N4107.77 (15)
C11—O16—C17—O170.4 (3)C6—C2—C3—O3179.84 (17)
C11—O16—C17—C18179.29 (15)N4—C5—C6—C7105.87 (17)
C17—O16—C11—C1091.29 (19)O5—C5—C6—C2177.5 (2)
C3—N4—C10—C1165.7 (2)O5—C5—C6—C773.9 (3)
C3—N4—C5—O5176.73 (19)N4—C5—C6—C22.76 (19)
C10—N4—C3—O31.7 (3)C2—C6—C7—C869.56 (17)
C5—N4—C10—C11114.37 (19)C2—C6—C7—O135.96 (16)
C10—N4—C3—C2177.32 (14)C5—C6—C7—C8179.52 (14)
C3—N4—C5—C63.5 (2)C5—C6—C7—O174.96 (16)
C5—N4—C3—O3178.22 (17)C6—C7—C8—C972.94 (19)
C10—N4—C5—O53.2 (3)O1—C7—C8—C931.71 (19)
C5—N4—C3—C22.73 (19)C7—C8—C9—C10.2 (2)
C10—N4—C5—C6176.54 (14)C15—C10—C11—O16177.34 (15)
C3—N4—C10—C15113.93 (18)C15—C10—C11—C120.9 (3)
C5—N4—C10—C1566.0 (2)C11—C10—C15—C140.1 (3)
C9—C1—C2—C669.32 (17)N4—C10—C11—O162.3 (2)
C9—C1—C2—C3179.33 (14)N4—C10—C15—C14179.55 (16)
O1—C1—C2—C375.00 (16)N4—C10—C11—C12178.71 (15)
C2—C1—C9—C872.70 (19)C10—C11—C12—C131.0 (3)
O1—C1—C2—C636.35 (16)O16—C11—C12—C13177.41 (16)
O1—C1—C9—C831.9 (2)C11—C12—C13—C140.2 (3)
C3—C2—C6—C7114.85 (14)C12—C13—C14—C150.6 (3)
C6—C2—C3—N40.83 (17)C13—C14—C15—C100.7 (3)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x+1, y1/2, z+1/2; (iii) x+2, y+1/2, z+1/2; (iv) x+2, y, z+1; (v) x, y+1/2, z+1/2; (vi) x+1, y, z; (vii) x1, y, z; (viii) x+1, y, z+1; (ix) x+1, y+1/2, z+1/2; (x) x+2, y1/2, z+1/2; (xi) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O16ix0.98002.58003.478 (2)153.00
C12—H12A···O5x0.93002.43003.113 (2)130.00
C15—H15A···O17i0.93002.56003.243 (2)131.00
Symmetry codes: (i) x, y+1/2, z1/2; (ix) x+1, y+1/2, z+1/2; (x) x+2, y1/2, z+1/2.
(II) top
Crystal data top
C16H13NO5F(000) = 1248
Mr = 299.27Dx = 1.402 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ynCell parameters from 24 reflections
a = 9.703 (1) Åθ = 11–12°
b = 15.856 (1) ŵ = 0.11 mm1
c = 18.8450 (19) ÅT = 293 K
β = 101.962 (5)°Square prism, yellow
V = 2836.4 (4) Å30.3 × 0.25 × 0.2 mm
Z = 8
Data collection top
Enraf-Nonius CAD4
diffractometer
2253 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 26.0°, θmin = 2.2°
Detector resolution: 3 pixels mm-1h = 1111
ω/2θ scansk = 019
5538 measured reflectionsl = 023
5538 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0646P)2]
where P = (Fo2 + 2Fc2)/3
5538 reflections(Δ/σ)max = 0.020
400 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C16H13NO5V = 2836.4 (4) Å3
Mr = 299.27Z = 8
Monoclinic, P21/nMo Kα radiation
a = 9.703 (1) ŵ = 0.11 mm1
b = 15.856 (1) ÅT = 293 K
c = 18.8450 (19) Å0.3 × 0.25 × 0.2 mm
β = 101.962 (5)°
Data collection top
Enraf-Nonius CAD4
diffractometer
2253 reflections with I > 2σ(I)
5538 measured reflectionsRint = 0.034
5538 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 0.93Δρmax = 0.35 e Å3
5538 reflectionsΔρmin = 0.35 e Å3
400 parameters
Special details top

Experimental. Diffractometer operator H. Höpfl scanwidth_degrees 0.7 low_scanspeed_degrees/min 16.1 high_scanspeed_degrees/min 60 Background measurement: Moving crystal and moving counter at the beginning and end of scan, each for 25% of total scan area. Crystal mounted on a glass fiber.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0191 (2)0.16913 (14)0.11849 (12)0.0746 (9)
O30.1657 (2)0.00908 (14)0.01384 (11)0.0744 (9)
O50.1441 (3)0.01752 (15)0.25202 (11)0.0858 (10)
O160.0880 (2)0.35516 (12)0.15138 (10)0.0630 (8)
O170.0795 (3)0.37797 (15)0.03384 (13)0.0946 (10)
N40.1473 (2)0.00695 (14)0.13263 (12)0.0512 (8)
C10.0690 (3)0.1885 (2)0.06816 (18)0.0707 (12)
C20.1958 (3)0.12936 (17)0.09564 (15)0.0544 (10)
C30.1693 (3)0.03871 (18)0.07322 (16)0.0544 (11)
C50.1623 (3)0.04275 (18)0.19440 (16)0.0575 (11)
C60.2010 (3)0.13028 (17)0.17702 (15)0.0546 (10)
C70.0815 (3)0.1938 (2)0.18225 (17)0.0693 (12)
C80.1279 (4)0.2790 (2)0.1611 (2)0.0843 (16)
C90.1210 (4)0.2759 (2)0.0918 (2)0.0837 (16)
C100.1276 (3)0.09630 (17)0.13336 (13)0.0489 (9)
C110.2287 (3)0.1484 (2)0.11614 (18)0.0711 (13)
C120.2143 (3)0.23500 (19)0.12056 (19)0.0739 (14)
C130.0997 (3)0.26800 (17)0.14145 (14)0.0526 (10)
C140.0035 (3)0.21669 (18)0.15609 (15)0.0583 (11)
C150.0105 (3)0.13043 (18)0.15254 (15)0.0564 (11)
C170.0838 (3)0.4056 (2)0.09228 (18)0.0616 (11)
C180.0844 (4)0.49638 (19)0.11220 (19)0.0785 (14)
O211.00593 (19)0.46221 (12)0.32806 (10)0.0573 (7)
O230.9221 (2)0.34904 (12)0.48155 (10)0.0720 (8)
O250.7380 (2)0.29353 (12)0.24434 (10)0.0636 (7)
O360.9386 (2)0.04083 (12)0.41482 (11)0.0705 (8)
O370.7207 (3)0.08364 (16)0.4113 (2)0.1404 (16)
N240.8376 (2)0.30206 (13)0.36563 (10)0.0437 (7)
C210.9522 (3)0.50362 (17)0.38433 (15)0.0561 (10)
C220.8220 (3)0.44778 (16)0.38632 (13)0.0473 (9)
C230.8664 (3)0.36358 (17)0.41917 (15)0.0495 (9)
C250.7769 (3)0.33530 (17)0.29842 (14)0.0454 (9)
C260.7681 (3)0.42965 (15)0.30516 (13)0.0436 (8)
C270.8817 (3)0.47567 (18)0.27199 (15)0.0568 (10)
C280.8562 (3)0.56844 (19)0.28022 (19)0.0681 (11)
C290.8980 (3)0.58555 (19)0.34885 (18)0.0658 (11)
C300.8623 (3)0.21400 (16)0.37867 (13)0.0440 (9)
C310.9615 (3)0.17200 (18)0.34938 (15)0.0551 (10)
C320.9820 (3)0.08666 (18)0.36162 (15)0.0579 (11)
C330.9040 (3)0.04472 (16)0.40281 (15)0.0520 (10)
C340.8054 (3)0.08589 (18)0.43337 (15)0.0555 (10)
C350.7835 (3)0.17141 (16)0.41975 (14)0.0516 (10)
C370.8424 (4)0.0994 (2)0.41970 (18)0.0723 (12)
C380.9026 (4)0.18475 (18)0.43178 (19)0.0855 (14)
H1A0.024310.182610.016770.0851*
H2A0.283000.150980.083810.0653*
H6A0.292850.147880.205350.0655*
H7A0.047430.192150.227670.0836*
H8A0.155800.324690.191690.1015*
H9A0.143530.318760.062460.1003*
H11A0.306620.125650.101530.0854*
H12A0.282960.270510.109260.0886*
H14A0.083300.239880.168480.0701*
H15A0.059380.095350.163120.0678*
H18A0.106750.529840.073640.1176*
H18B0.153710.505880.155820.1176*
H18C0.006890.512020.119990.1176*
H21A1.019390.509210.430710.0674*
H22A0.752010.475900.408850.0567*
H26A0.672930.451480.286800.0523*
H27A0.888880.457350.223220.0682*
H28A0.818080.606090.243530.0815*
H29A0.894980.637550.371300.0790*
H31A1.014520.201010.321460.0660*
H32A1.048690.057880.341880.0696*
H34A0.754730.056990.462480.0666*
H35A0.715250.199930.438510.0620*
H38A0.833260.222450.443600.1282*
H38B0.983300.183440.471080.1282*
H38C0.930490.203990.388550.1282*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0470 (12)0.0832 (16)0.0920 (17)0.0087 (11)0.0105 (11)0.0127 (12)
O30.0955 (17)0.0773 (15)0.0575 (13)0.0079 (12)0.0321 (12)0.0013 (11)
O50.120 (2)0.0873 (17)0.0539 (13)0.0389 (14)0.0269 (13)0.0014 (11)
O160.0833 (15)0.0476 (12)0.0566 (12)0.0021 (10)0.0109 (10)0.0026 (10)
O170.142 (2)0.0829 (17)0.0685 (16)0.0170 (16)0.0441 (15)0.0148 (13)
N40.0519 (14)0.0514 (14)0.0529 (14)0.0065 (11)0.0169 (11)0.0006 (11)
C10.073 (2)0.067 (2)0.069 (2)0.0185 (18)0.0074 (16)0.0082 (17)
C20.0501 (16)0.0526 (18)0.0622 (17)0.0022 (13)0.0153 (13)0.0066 (14)
C30.0520 (18)0.0596 (19)0.0552 (18)0.0062 (14)0.0196 (14)0.0020 (15)
C50.0576 (19)0.0580 (19)0.0563 (18)0.0105 (15)0.0103 (14)0.0002 (15)
C60.0446 (16)0.0561 (18)0.0614 (18)0.0030 (13)0.0069 (13)0.0027 (14)
C70.061 (2)0.075 (2)0.073 (2)0.0015 (17)0.0162 (16)0.0189 (18)
C80.079 (3)0.056 (2)0.117 (3)0.0077 (18)0.018 (2)0.008 (2)
C90.091 (3)0.055 (2)0.102 (3)0.0179 (19)0.013 (2)0.012 (2)
C100.0482 (16)0.0488 (17)0.0493 (15)0.0016 (14)0.0093 (12)0.0012 (13)
C110.0476 (18)0.062 (2)0.109 (3)0.0093 (16)0.0287 (17)0.0091 (18)
C120.058 (2)0.054 (2)0.114 (3)0.0072 (16)0.0279 (19)0.0094 (18)
C130.0590 (19)0.0473 (18)0.0516 (16)0.0071 (14)0.0119 (14)0.0018 (13)
C140.0546 (18)0.057 (2)0.0681 (19)0.0074 (15)0.0236 (15)0.0011 (15)
C150.0450 (16)0.0531 (19)0.075 (2)0.0020 (14)0.0211 (14)0.0009 (15)
C170.0600 (19)0.061 (2)0.064 (2)0.0012 (15)0.0131 (15)0.0101 (17)
C180.077 (2)0.057 (2)0.098 (3)0.0080 (18)0.0098 (19)0.0123 (19)
O210.0437 (11)0.0618 (12)0.0677 (12)0.0013 (9)0.0143 (9)0.0004 (10)
O230.1047 (17)0.0612 (13)0.0417 (11)0.0055 (12)0.0041 (11)0.0017 (10)
O250.0769 (14)0.0589 (12)0.0485 (11)0.0022 (11)0.0018 (9)0.0094 (10)
O360.0711 (15)0.0489 (13)0.0904 (16)0.0135 (11)0.0143 (12)0.0057 (11)
O370.075 (2)0.0623 (17)0.281 (4)0.0009 (16)0.030 (2)0.016 (2)
N240.0494 (13)0.0378 (12)0.0432 (12)0.0024 (10)0.0082 (10)0.0027 (10)
C210.0553 (18)0.0496 (17)0.0567 (17)0.0025 (14)0.0041 (13)0.0063 (14)
C220.0490 (16)0.0461 (16)0.0479 (15)0.0050 (13)0.0129 (12)0.0067 (12)
C230.0517 (16)0.0514 (17)0.0456 (16)0.0035 (13)0.0104 (12)0.0036 (13)
C250.0406 (15)0.0500 (16)0.0456 (16)0.0023 (12)0.0088 (12)0.0012 (13)
C260.0367 (14)0.0442 (15)0.0474 (14)0.0017 (11)0.0031 (11)0.0023 (12)
C270.0667 (19)0.0550 (18)0.0496 (16)0.0027 (15)0.0142 (14)0.0045 (14)
C280.064 (2)0.0529 (19)0.082 (2)0.0058 (15)0.0027 (17)0.0175 (17)
C290.062 (2)0.0446 (18)0.088 (2)0.0008 (15)0.0092 (17)0.0043 (16)
C300.0441 (15)0.0450 (16)0.0417 (14)0.0014 (12)0.0060 (12)0.0030 (12)
C310.0520 (17)0.057 (2)0.0591 (17)0.0019 (14)0.0182 (14)0.0001 (14)
C320.0536 (18)0.058 (2)0.0666 (18)0.0133 (15)0.0227 (14)0.0038 (15)
C330.0560 (18)0.0395 (16)0.0597 (17)0.0099 (13)0.0101 (14)0.0004 (13)
C340.0562 (18)0.0526 (18)0.0606 (16)0.0020 (14)0.0188 (14)0.0018 (14)
C350.0549 (17)0.0450 (17)0.0580 (17)0.0071 (14)0.0188 (13)0.0019 (13)
C370.066 (2)0.057 (2)0.088 (2)0.0057 (19)0.0024 (18)0.0031 (18)
C380.101 (3)0.0442 (19)0.093 (2)0.0092 (18)0.022 (2)0.0003 (17)
Geometric parameters (Å, º) top
O1—C11.436 (4)C7—H7A0.9797
O1—C71.436 (4)C8—H8A0.9305
O3—C31.207 (4)C9—H9A0.9303
O5—C51.204 (4)C11—H11A0.9294
O16—C131.402 (3)C12—H12A0.9301
O16—C171.365 (4)C14—H14A0.9296
O17—C171.178 (4)C15—H15A0.9300
O21—C211.434 (3)C18—H18A0.9601
O21—C271.445 (3)C18—H18B0.9600
O23—C231.210 (3)C18—H18C0.9600
O25—C251.208 (3)C21—C221.550 (4)
O36—C331.404 (3)C21—C291.505 (4)
O36—C371.333 (4)C22—C231.497 (4)
O37—C371.185 (5)C22—C261.537 (3)
N4—C51.388 (4)C25—C261.505 (4)
N4—C101.430 (3)C26—C271.557 (4)
N4—C31.386 (4)C27—C281.505 (4)
N24—C231.390 (3)C28—C291.301 (5)
N24—C251.386 (3)C30—C311.377 (4)
N24—C301.429 (3)C30—C351.373 (4)
C1—C21.548 (4)C31—C321.380 (4)
C1—C91.510 (5)C32—C331.364 (4)
C2—C31.505 (4)C33—C341.379 (4)
C2—C61.524 (4)C34—C351.388 (4)
C5—C61.492 (4)C37—C381.473 (4)
C6—C71.554 (4)C21—H21A0.9801
C7—C81.504 (5)C22—H22A0.9797
C8—C91.295 (5)C26—H26A0.9797
C10—C151.373 (4)C27—H27A0.9800
C10—C111.372 (4)C28—H28A0.9302
C11—C121.384 (4)C29—H29A0.9299
C12—C131.359 (4)C31—H31A0.9302
C13—C141.362 (4)C32—H32A0.9301
C14—C151.377 (4)C34—H34A0.9298
C17—C181.487 (4)C35—H35A0.9301
C1—H1A0.9801C38—H38A0.9601
C2—H2A0.9805C38—H38B0.9600
C6—H6A0.9798C38—H38C0.9599
C1—O1—C795.7 (2)H18B—C18—H18C109.47
C13—O16—C17117.3 (2)C17—C18—H18A109.48
C21—O21—C2795.6 (2)C17—C18—H18B109.48
C33—O36—C37122.4 (2)C17—C18—H18C109.46
C5—N4—C10123.0 (2)H18A—C18—H18B109.47
C3—N4—C5111.9 (2)O21—C21—C22100.3 (2)
C3—N4—C10124.6 (2)O21—C21—C29102.3 (2)
C23—N24—C25112.3 (2)C22—C21—C29107.0 (2)
C23—N24—C30124.0 (2)C21—C22—C23110.7 (2)
C25—N24—C30123.6 (2)C21—C22—C26101.2 (2)
C2—C1—C9105.3 (3)C23—C22—C26104.7 (2)
O1—C1—C2101.0 (2)O23—C23—N24123.6 (2)
O1—C1—C9102.1 (3)O23—C23—C22127.2 (2)
C1—C2—C6100.9 (2)N24—C23—C22109.2 (2)
C3—C2—C6105.1 (2)O25—C25—N24124.2 (2)
C1—C2—C3114.0 (2)O25—C25—C26127.1 (2)
N4—C3—C2108.5 (2)N24—C25—C26108.8 (2)
O3—C3—C2127.0 (3)C22—C26—C25104.8 (2)
O3—C3—N4124.4 (3)C22—C26—C27100.9 (2)
O5—C5—N4123.9 (3)C25—C26—C27112.0 (2)
N4—C5—C6109.4 (2)O21—C27—C26100.9 (2)
O5—C5—C6126.7 (3)O21—C27—C28101.5 (2)
C2—C6—C5104.8 (2)C26—C27—C28105.8 (2)
C5—C6—C7111.3 (2)C27—C28—C29106.4 (3)
C2—C6—C7101.6 (2)C21—C29—C28105.7 (3)
O1—C7—C8102.2 (3)N24—C30—C31120.7 (2)
O1—C7—C699.0 (2)N24—C30—C35119.0 (2)
C6—C7—C8107.3 (3)C31—C30—C35120.4 (2)
C7—C8—C9106.1 (3)C30—C31—C32119.7 (3)
C1—C9—C8106.1 (3)C31—C32—C33119.7 (3)
C11—C10—C15119.8 (3)O36—C33—C32114.8 (2)
N4—C10—C15120.8 (2)O36—C33—C34123.6 (2)
N4—C10—C11119.4 (3)C32—C33—C34121.4 (3)
C10—C11—C12119.8 (3)C33—C34—C35118.6 (3)
C11—C12—C13119.9 (3)C30—C35—C34120.2 (3)
O16—C13—C14118.6 (3)O36—C37—O37122.4 (3)
C12—C13—C14120.6 (3)O36—C37—C38112.9 (3)
O16—C13—C12120.8 (3)O37—C37—C38124.5 (3)
C13—C14—C15119.9 (3)O21—C21—H21A115.10
C10—C15—C14120.0 (3)C22—C21—H21A115.15
O16—C17—C18111.3 (3)C29—C21—H21A115.13
O16—C17—O17122.3 (3)C21—C22—H22A113.10
O17—C17—C18126.4 (3)C23—C22—H22A113.12
C9—C1—H1A115.55C26—C22—H22A113.13
O1—C1—H1A115.49C22—C26—H26A112.75
C2—C1—H1A115.53C25—C26—H26A112.78
C6—C2—H2A112.04C27—C26—H26A112.74
C1—C2—H2A112.06O21—C27—H27A115.56
C3—C2—H2A112.04C26—C27—H27A115.56
C5—C6—H6A112.79C28—C27—H27A115.56
C2—C6—H6A112.81C27—C28—H28A126.81
C7—C6—H6A112.78C29—C28—H28A126.80
O1—C7—H7A115.45C21—C29—H29A127.17
C6—C7—H7A115.42C28—C29—H29A127.18
C8—C7—H7A115.43C30—C31—H31A120.15
C9—C8—H8A127.02C32—C31—H31A120.13
C7—C8—H8A126.87C31—C32—H32A120.15
C1—C9—H9A126.90C33—C32—H32A120.16
C8—C9—H9A127.04C33—C34—H34A120.70
C10—C11—H11A120.12C35—C34—H34A120.74
C12—C11—H11A120.08C30—C35—H35A119.92
C13—C12—H12A120.08C34—C35—H35A119.89
C11—C12—H12A120.04C37—C38—H38A109.48
C15—C14—H14A120.04C37—C38—H38B109.47
C13—C14—H14A120.01C37—C38—H38C109.47
C10—C15—H15A120.04H38A—C38—H38B109.47
C14—C15—H15A119.99H38A—C38—H38C109.48
H18A—C18—H18C109.47H38B—C38—H38C109.47
C7—O1—C1—C260.0 (2)N4—C5—C6—C24.5 (3)
C7—O1—C1—C948.5 (3)O5—C5—C6—C765.5 (4)
C1—O1—C7—C848.8 (3)O5—C5—C6—C2174.4 (3)
C1—O1—C7—C661.2 (2)C2—C6—C7—O139.1 (3)
C17—O16—C13—C1262.1 (4)C2—C6—C7—C866.8 (3)
C13—O16—C17—C18174.9 (3)C5—C6—C7—C8177.8 (3)
C13—O16—C17—O175.5 (4)C5—C6—C7—O171.9 (3)
C17—O16—C13—C14120.6 (3)O1—C7—C8—C931.9 (4)
C21—O21—C27—C2659.4 (2)C6—C7—C8—C971.7 (4)
C21—O21—C27—C2849.3 (2)C7—C8—C9—C10.4 (4)
C27—O21—C21—C2949.2 (2)C15—C10—C11—C122.2 (4)
C27—O21—C21—C2260.9 (2)N4—C10—C15—C14177.1 (2)
C33—O36—C37—O373.1 (5)N4—C10—C11—C12176.5 (3)
C33—O36—C37—C38179.5 (3)C11—C10—C15—C141.5 (4)
C37—O36—C33—C3438.2 (4)C10—C11—C12—C130.4 (5)
C37—O36—C33—C32145.6 (3)C11—C12—C13—C141.9 (5)
C3—N4—C10—C1156.8 (4)C11—C12—C13—O16175.3 (3)
C10—N4—C3—C2175.9 (2)O16—C13—C14—C15174.8 (2)
C5—N4—C10—C11115.7 (3)C12—C13—C14—C152.6 (4)
C3—N4—C5—O5177.7 (3)C13—C14—C15—C100.8 (4)
C5—N4—C10—C1562.9 (4)O21—C21—C22—C2638.5 (2)
C10—N4—C5—C6172.1 (2)C29—C21—C22—C2667.9 (3)
C10—N4—C3—O34.8 (4)C29—C21—C22—C23178.5 (2)
C5—N4—C3—C22.7 (3)C22—C21—C29—C2873.5 (3)
C10—N4—C5—O58.9 (4)O21—C21—C22—C2372.1 (2)
C5—N4—C3—O3178.0 (3)O21—C21—C29—C2831.5 (3)
C3—N4—C10—C15124.6 (3)C23—C22—C26—C27112.9 (2)
C3—N4—C5—C61.3 (3)C23—C22—C26—C253.6 (3)
C30—N24—C23—O234.0 (4)C21—C22—C26—C25118.7 (2)
C25—N24—C30—C35110.4 (3)C26—C22—C23—O23175.9 (3)
C23—N24—C25—C262.6 (3)C21—C22—C23—O2367.7 (4)
C25—N24—C23—C220.1 (3)C21—C22—C26—C272.2 (2)
C25—N24—C30—C3168.3 (4)C26—C22—C23—N242.3 (3)
C25—N24—C23—O23178.4 (3)C21—C22—C23—N24110.5 (2)
C23—N24—C30—C3567.0 (3)N24—C25—C26—C27104.7 (2)
C23—N24—C30—C31114.3 (3)O25—C25—C26—C2775.6 (4)
C30—N24—C25—O250.5 (4)O25—C25—C26—C22175.9 (3)
C30—N24—C25—C26179.8 (2)N24—C25—C26—C223.8 (3)
C23—N24—C25—O25177.1 (3)C22—C26—C27—C2871.0 (3)
C30—N24—C23—C22177.8 (2)C22—C26—C27—O2134.4 (2)
C2—C1—C9—C873.8 (4)C25—C26—C27—O2176.7 (2)
O1—C1—C2—C378.0 (3)C25—C26—C27—C28177.9 (2)
C9—C1—C2—C3176.1 (3)O21—C27—C28—C2932.5 (3)
C9—C1—C2—C671.9 (3)C26—C27—C28—C2972.5 (3)
O1—C1—C9—C831.3 (4)C27—C28—C29—C210.8 (3)
O1—C1—C2—C634.1 (3)C31—C30—C35—C341.4 (4)
C1—C2—C3—O375.1 (4)C35—C30—C31—C320.2 (4)
C1—C2—C6—C73.0 (3)N24—C30—C35—C34179.9 (2)
C1—C2—C6—C5112.9 (2)N24—C30—C31—C32178.9 (2)
C1—C2—C3—N4104.2 (3)C30—C31—C32—C330.2 (4)
C3—C2—C6—C7121.8 (2)C31—C32—C33—C340.7 (4)
C6—C2—C3—N45.3 (3)C31—C32—C33—O36176.9 (2)
C6—C2—C3—O3175.4 (3)C32—C33—C34—C351.8 (4)
C3—C2—C6—C55.8 (3)O36—C33—C34—C35177.7 (3)
N4—C5—C6—C7113.5 (3)C33—C34—C35—C302.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18B···O5i0.96002.36003.277 (4)159
C27—H27A···O37ii0.98002.61953.518 (4)153
C14—H14A···O25iii0.93002.60793.503 (4)162
C32—H32A···O5iv0.93002.41003.289 (4)158
C22—H22A···O3v0.98002.36003.245 (3)150
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x1, y, z; (iv) x+1, y, z; (v) x+1/2, y+1/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC16H13NO5C16H13NO5
Mr299.27299.27
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/n
Temperature (K)293293
a, b, c (Å)8.859 (1), 12.830 (2), 12.615 (1)9.703 (1), 15.856 (1), 18.8450 (19)
β (°) 102.971 (2) 101.962 (5)
V3)1397.2 (3)2836.4 (4)
Z48
Radiation typeMo KαMo Kα
µ (mm1)0.110.11
Crystal size (mm)0.5 × 0.3 × 0.10.3 × 0.25 × 0.2
Data collection
DiffractometerEnraf-Nonius CAD4
diffractometer
Enraf-Nonius CAD4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3024, 3024, 1767 5538, 5538, 2253
Rint0.0120.034
(sin θ/λ)max1)0.6380.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.127, 1.02 0.043, 0.147, 0.93
No. of reflections30245538
No. of parameters199400
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.220.35, 0.35

Computer programs: CAD-4 EXPRESS (Enraf Nonius, 1992), CAD-4 EXPRESS, JANA98 (Vaclav, 1998), SHELXS97(Sheldrick, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), WinGX (Farrugia, 1999), SHELXL97 and RESVIEW (Schwenk, 1996).

Selected geometric parameters (Å, º) for (I) top
O16—C111.401 (2)N4—C51.392 (2)
O16—C171.360 (2)N4—C101.425 (2)
O17—C171.189 (2)C2—C61.538 (2)
N4—C31.401 (2)C8—C91.309 (3)
C1—O1—C796.20 (13)N4—C10—C11120.25 (14)
C11—O16—C17116.68 (13)N4—C10—C15120.60 (15)
C3—N4—C5112.64 (14)O16—C11—C10119.28 (14)
C3—N4—C10123.44 (13)O16—C11—C12119.46 (15)
C5—N4—C10123.92 (14)O16—C17—O17122.51 (17)
O1—C7—C6100.45 (13)O16—C17—C18110.80 (15)
O1—C7—C8101.64 (14)O17—C17—C18126.69 (17)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C6—H6A···O16i0.98002.58003.478 (2)153.00
C12—H12A···O5ii0.93002.43003.113 (2)130.00
C15—H15A···O17iii0.93002.56003.243 (2)131.00
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y1/2, z+1/2; (iii) x, y+1/2, z1/2.
Selected geometric parameters (Å, º) for (II) top
O1—C11.436 (4)O25—C251.208 (3)
O1—C71.436 (4)O36—C331.404 (3)
O3—C31.207 (4)O36—C371.333 (4)
O5—C51.204 (4)O37—C371.185 (5)
O16—C131.402 (3)N4—C51.388 (4)
O16—C171.365 (4)N4—C101.430 (3)
O17—C171.178 (4)N4—C31.386 (4)
O21—C211.434 (3)N24—C231.390 (3)
O21—C271.445 (3)N24—C251.386 (3)
O23—C231.210 (3)N24—C301.429 (3)
C1—O1—C795.7 (2)O16—C13—C14118.6 (3)
C13—O16—C17117.3 (2)O16—C13—C12120.8 (3)
C21—O21—C2795.6 (2)O16—C17—C18111.3 (3)
C33—O36—C37122.4 (2)O16—C17—O17122.3 (3)
C5—N4—C10123.0 (2)O17—C17—C18126.4 (3)
C3—N4—C5111.9 (2)O21—C21—C22100.3 (2)
C3—N4—C10124.6 (2)O21—C21—C29102.3 (2)
C23—N24—C25112.3 (2)O23—C23—N24123.6 (2)
C23—N24—C30124.0 (2)O23—C23—C22127.2 (2)
C25—N24—C30123.6 (2)N24—C23—C22109.2 (2)
O1—C1—C2101.0 (2)O25—C25—N24124.2 (2)
O1—C1—C9102.1 (3)O25—C25—C26127.1 (2)
N4—C3—C2108.5 (2)N24—C25—C26108.8 (2)
O3—C3—C2127.0 (3)O21—C27—C26100.9 (2)
O3—C3—N4124.4 (3)O21—C27—C28101.5 (2)
O5—C5—N4123.9 (3)N24—C30—C31120.7 (2)
N4—C5—C6109.4 (2)N24—C30—C35119.0 (2)
O5—C5—C6126.7 (3)O36—C33—C32114.8 (2)
O1—C7—C8102.2 (3)O36—C33—C34123.6 (2)
O1—C7—C699.0 (2)O36—C37—O37122.4 (3)
N4—C10—C15120.8 (2)O36—C37—C38112.9 (3)
N4—C10—C11119.4 (3)O37—C37—C38124.5 (3)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C18—H18B···O5i0.96002.36003.277 (4)159
C27—H27A···O37ii0.98002.61953.518 (4)153
C14—H14A···O25iii0.93002.60793.503 (4)162
C32—H32A···O5iv0.93002.41003.289 (4)158
C22—H22A···O3v0.98002.36003.245 (3)150
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+3/2, y+1/2, z+1/2; (iii) x1, y, z; (iv) x+1, y, z; (v) x+1/2, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds