Download citation
Download citation
link to html
A carbohydrate-derived optically active P-chiral dioxo­phenyl­phospho­lane–borane complex, C27H32BO6P, was prepared from bis­(diethyl­amino)­phenyl­phosphine and methyl 2,6-di-O-benzyl-β-D-galacto­pyran­oside. The phosphinite was pre­pared with high diastereoselectivity and in good yield. The absolute configuration (R) at the P atom was deduced from the known configuration of the sugar moiety. Weak intermolecular interactions link the mol­ecules into a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104004287/bm1560sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104004287/bm1560Isup2.hkl
Contains datablock I

CCDC reference: 241222

Comment top

In the drive to design and optimize ligands for asymmetric catalysis, the preparation and characterization of new optically active phosphorus compounds is essential. A great variety of phosphonites have been prepared (Jugé Stephan Genet et al., 1990; Murillo et al., 198?; Reetz et al., 1999), but only a few have been prepared as the corresponding borane complex. The use of a stabilizing complex with borane was developed by Imamoto and co-workers (Imamoto et al., 1987). Borane prevents the phosphinite from oxidizing to the corresponding phosphonate. To our knowledge, no crystal structure of a carbohydrate-derived dioxophospholaneborane complex has been reported prior to the present work.

Electron-deficient P-chiral ligands are rare. Jugé and co-workers have shown the great potential of such compounds, both as ligands and as chiral building blocks in the synthesis of new P-chiral compounds (Jugé Stephan Laffitte & Genet, 1990). Most likely, selective opening of the dioxophospholane borane complex with either lithium or Grignard reagents can give rise to novel carbohydrate-derived phosphonites and ultimately P-chiral phosphines. The title compound, (I), has, in addition to P-chirality, a chiral carbohydrate moiety. The use of a carbohydrate as a chiral auxiliary is very interesting, and the greater peripheral chirality on the carbohydrate moiety induces a highly chiral environment. P-chirality moves a stereocentre closer to a potential metal, a feature that might prove interesting in metal-catalysed reactions. These factors will be explored further in a range of asymmetric reactions. The two Jugé et al. (1990) refs were not distinguished in the original CIF - please check they are correctly cited above and below. \sch

A view of the asymmetric unit of (I), comprising a single molecule, is shown in Fig. 1. The geometries of the five-membered dioxophospholane ring (P1/O10/C10/C11/O11) Should this be P1/O3/C3/C4/O4? and at the P atom are consistent with a similar structure reported earlier (Jugé, 1990). The carbohydrate moiety is in a distorted chair conformation. In the dioxophenylphospolane-borane moiety, the O3—C3—C4—O4 torsion angle is 40.0 (2)°, compared with a value of 60.8 (4)° in the corresponding carbohydrate which is only protected in the anomeric position (Banerjee et al., 1994), and a similar value of 36.63 (2)° in another β-D-galactopyranoside where a five-membered ring is assembled between the 3- and 4-position O atoms (Hoogendorp et al., 1983).

The packing in (I) is governed by non-classical hydrogen-bonding interactions. These can be divided into C—H···π and C—H···O(ethereal type) weak interactions (Table 2). As shown in Fig. 2, the C—H···π interaction results in chains running along the [101] direction. These chains are connected by weak C—H···O interactions (C···O 3.33 Å) between screw-axis-related molecules (Fig. 3). Finally, a C12—H12···O3 interaction forms a link between the chains, creating a three-dimensional network (Fig. 4a and b).

Table 2. Intermolecular contact geometry (Å, °)

Experimental top

Bis(diethylamino)phenylphosphine (151.4 mg, 0.5 mmol) and methyl-O-(2,6-dibenzyl)-β-D-galactopyranoside (187.1 mg, 0.5 mmol) were dissolved in toluene (10 ml). The resulting mixture was then refluxed under an Ar atmosphere until no evolution of diethylamine could be detected by the use of a pH indicator (approximately 16 h). The solution was then cooled to 273 K and BH3·DMS (0.3 ml, 0.6 mmol) was added dropwise by syringe. After stirring for an additional 16 h at ambient temperature, the reaction mixture was concentrated under reduced pressure to yield a colourless syrup. The syrup was dissolved in and crystallized from 2-propanol by slow evaporation.

Refinement top

Approximately 8% of the collected data were removed due to bad background. The poor quality also results in an unusually high Rint of 0.142. The absolute configuration could not be determined from the diffraction data, because of the high uncertainty (0.4) in the Flack (1983) parameter, but was assigned by the known configuration of the carbohydrate moiety. H atoms were placed in calculated positions and refined riding on their carrier atoms at distances of 0.93, 0.96, 0.96, 0.97 and 0.98 Å for aromatic, borane, methyl, methylene and methine C—H, respectively, and with Uiso(H) = xUeq(C, B), where x = 1.5 for methyl and borane H atoms and 1.2 for all others.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of one chain in (I), connected through C—H···π interactions (dashed lines). The C9···C18 C—H···π distance is 3.67 (4) Å.
[Figure 3] Fig. 3. Two parallel chains in (I), connected through C—H···O interactions.
[Figure 4] Fig. 4. (a) Side and (b) front views, showing the C12—H12.·O3 interaction connecting the stacked chains in (I).
Methyl 2,6-di-O-benzyl-3,4-O-phenylphosphinediyl-β-D-galactopyranoside (P—B)borane top
Crystal data top
C27H32BO6PF(000) = 524
Mr = 494.32Dx = 1.213 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 10.7567 (19) ÅCell parameters from 19 reflections
b = 9.800 (9) Åθ = 11.1–15.3°
c = 12.926 (4) ŵ = 0.14 mm1
β = 96.63 (2)°T = 293 K
V = 1353.6 (13) Å3Rod, colourless
Z = 20.55 × 0.25 × 0.10 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
θmax = 27.0°, θmin = 2.3°
non–profiled ω/2θ scansh = 1313
5762 measured reflectionsk = 120
3105 independent reflectionsl = 1616
1621 reflections with I > 2σ(I)3 standard reflections every 120 min
Rint = 0.142 intensity decay: none
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0668P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.048(Δ/σ)max = 0.001
wR(F2) = 0.144Δρmax = 0.26 e Å3
S = 1.04Δρmin = 0.22 e Å3
3105 reflectionsAbsolute structure: (Flack, 1983)
319 parametersAbsolute structure parameter: 0.0 (4)
1 restraint
Crystal data top
C27H32BO6PV = 1353.6 (13) Å3
Mr = 494.32Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.7567 (19) ŵ = 0.14 mm1
b = 9.800 (9) ÅT = 293 K
c = 12.926 (4) Å0.55 × 0.25 × 0.10 mm
β = 96.63 (2)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.142
5762 measured reflections3 standard reflections every 120 min
3105 independent reflections intensity decay: none
1621 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.144Δρmax = 0.26 e Å3
S = 1.04Δρmin = 0.22 e Å3
3105 reflectionsAbsolute structure: (Flack, 1983)
319 parametersAbsolute structure parameter: 0.0 (4)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5235 (4)0.2634 (5)0.1040 (3)0.0570 (10)
H10.55770.35150.12280.068*
C20.3968 (4)0.2826 (4)0.0643 (3)0.0554 (10)
H20.35900.19330.05440.067*
C30.4123 (4)0.3596 (4)0.0381 (3)0.0578 (10)
H30.42060.45740.02460.069*
C40.5218 (4)0.3120 (4)0.1138 (3)0.0530 (9)
H40.54190.38110.16800.064*
C50.6372 (3)0.2779 (4)0.0630 (3)0.0520 (9)
H50.67560.36320.04310.062*
C60.7324 (4)0.1990 (5)0.1326 (3)0.0586 (10)
H6A0.70130.10800.14400.070*
H6B0.80920.19080.10040.070*
C70.6079 (5)0.1774 (7)0.2531 (4)0.0905 (18)
H7A0.58360.12930.31680.136*
H7B0.67900.13310.21560.136*
H7C0.62950.26970.26850.136*
C80.2375 (4)0.2849 (6)0.2106 (3)0.0730 (13)
H8A0.28750.21610.24040.088*
H8B0.20420.34560.26630.088*
C90.1311 (4)0.2167 (5)0.1664 (3)0.0584 (10)
C100.1219 (5)0.0742 (6)0.1658 (4)0.0753 (14)
H100.18350.02110.19080.090*
C110.0203 (6)0.0128 (5)0.1277 (5)0.0909 (17)
H110.01420.08190.12820.109*
C120.0704 (6)0.0876 (6)0.0899 (5)0.0863 (16)
H120.13840.04500.06510.104*
C130.0603 (5)0.2288 (7)0.0886 (4)0.0796 (14)
H130.12100.28210.06240.096*
C140.0395 (5)0.2882 (5)0.1263 (4)0.0717 (13)
H140.04550.38290.12450.086*
C150.8442 (5)0.2024 (7)0.2977 (4)0.0887 (15)
H15A0.92470.20480.27070.106*
H15B0.82020.10760.30360.106*
C160.8561 (5)0.2681 (7)0.4039 (4)0.0737 (13)
C170.9284 (6)0.2069 (10)0.4829 (5)0.113 (2)
H170.97080.12720.46980.135*
C180.9407 (9)0.2585 (13)0.5806 (6)0.144 (4)
H180.98970.21300.63370.172*
C190.8824 (8)0.3755 (13)0.6015 (6)0.128 (3)
H190.89280.41250.66820.154*
C200.8098 (8)0.4370 (11)0.5251 (7)0.128 (3)
H200.76830.51680.53940.153*
C210.7943 (6)0.3845 (8)0.4239 (5)0.103 (2)
H210.74290.42830.37140.124*
C220.3378 (5)0.2915 (5)0.3037 (4)0.0740 (13)
C230.4468 (6)0.2963 (10)0.3691 (4)0.116 (3)
H230.51990.26290.34630.139*
C240.4513 (8)0.3507 (14)0.4703 (5)0.154 (4)
H240.52620.35420.51400.185*
C250.3456 (11)0.3970 (15)0.5022 (7)0.164 (5)
H250.34680.43140.56930.197*
C260.2362 (11)0.3948 (11)0.4383 (8)0.152 (4)
H260.16340.42890.46120.182*
C270.2335 (6)0.3416 (9)0.3389 (5)0.110 (2)
H270.15830.34030.29540.133*
O10.5062 (3)0.1777 (3)0.1908 (2)0.0698 (9)
O20.3157 (3)0.3610 (3)0.1351 (2)0.0676 (8)
O30.3036 (3)0.3364 (3)0.0936 (2)0.0656 (8)
O40.4739 (3)0.1896 (3)0.1592 (2)0.0590 (7)
O50.6075 (2)0.1969 (3)0.0281 (2)0.0553 (7)
O60.7558 (3)0.2689 (3)0.2285 (2)0.0643 (8)
P10.33112 (10)0.21660 (13)0.17683 (10)0.0638 (3)
B10.2263 (6)0.0669 (7)0.1569 (6)0.090 (2)
HA0.14250.09350.16650.135*
HB0.25420.00290.20630.135*
HC0.22770.03250.08750.135*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.066 (2)0.0489 (19)0.056 (2)0.008 (2)0.0065 (19)0.002 (2)
C20.058 (2)0.0422 (18)0.064 (2)0.001 (2)0.0016 (18)0.010 (2)
C30.065 (2)0.045 (2)0.064 (3)0.006 (2)0.009 (2)0.006 (2)
C40.064 (2)0.0415 (18)0.054 (2)0.0044 (19)0.0064 (19)0.0002 (19)
C50.056 (2)0.0448 (18)0.055 (2)0.006 (2)0.0053 (17)0.004 (2)
C60.060 (2)0.056 (2)0.060 (2)0.003 (2)0.0076 (18)0.003 (2)
C70.092 (3)0.109 (5)0.072 (3)0.005 (4)0.018 (3)0.014 (4)
C80.068 (3)0.087 (3)0.061 (3)0.002 (3)0.005 (2)0.007 (3)
C90.059 (2)0.059 (2)0.054 (2)0.004 (3)0.0057 (18)0.000 (2)
C100.082 (3)0.062 (3)0.079 (3)0.018 (3)0.003 (3)0.004 (3)
C110.109 (4)0.053 (3)0.105 (4)0.014 (3)0.010 (4)0.006 (3)
C120.079 (3)0.073 (3)0.106 (4)0.020 (3)0.007 (3)0.001 (3)
C130.069 (3)0.085 (3)0.086 (3)0.006 (3)0.017 (3)0.001 (3)
C140.081 (3)0.056 (3)0.078 (3)0.002 (3)0.009 (3)0.006 (3)
C150.093 (3)0.091 (4)0.076 (3)0.020 (4)0.016 (2)0.004 (4)
C160.077 (3)0.084 (3)0.058 (3)0.009 (3)0.000 (2)0.001 (3)
C170.126 (5)0.116 (5)0.087 (4)0.001 (6)0.029 (3)0.007 (5)
C180.176 (8)0.172 (10)0.071 (4)0.026 (8)0.040 (4)0.003 (6)
C190.143 (7)0.175 (9)0.066 (4)0.036 (8)0.009 (4)0.027 (6)
C200.133 (6)0.144 (7)0.108 (5)0.016 (6)0.022 (5)0.044 (6)
C210.112 (5)0.111 (5)0.087 (4)0.012 (5)0.009 (3)0.017 (4)
C220.076 (3)0.070 (3)0.080 (3)0.003 (3)0.025 (3)0.010 (3)
C230.110 (4)0.166 (8)0.074 (3)0.021 (6)0.020 (3)0.003 (5)
C240.151 (7)0.233 (12)0.080 (4)0.012 (9)0.022 (4)0.010 (7)
C250.178 (8)0.227 (13)0.097 (5)0.037 (10)0.058 (6)0.043 (8)
C260.164 (8)0.161 (9)0.147 (7)0.009 (8)0.087 (7)0.041 (8)
C270.104 (4)0.122 (5)0.112 (4)0.001 (5)0.042 (4)0.018 (5)
O10.0709 (17)0.076 (2)0.0624 (17)0.0056 (18)0.0049 (14)0.0139 (18)
O20.0684 (18)0.0516 (16)0.079 (2)0.0038 (17)0.0066 (15)0.0105 (17)
O30.0620 (16)0.0646 (17)0.0717 (18)0.0172 (16)0.0145 (14)0.0099 (17)
O40.0605 (15)0.0494 (15)0.0691 (17)0.0049 (15)0.0167 (13)0.0117 (15)
O50.0581 (14)0.0505 (15)0.0570 (15)0.0012 (15)0.0056 (12)0.0036 (15)
O60.0709 (17)0.0566 (15)0.0622 (17)0.0000 (17)0.0060 (14)0.0046 (16)
P10.0609 (6)0.0591 (6)0.0745 (7)0.0037 (6)0.0204 (5)0.0064 (7)
B10.078 (4)0.072 (3)0.124 (5)0.013 (4)0.033 (4)0.001 (4)
Geometric parameters (Å, º) top
C1—O11.396 (5)C13—H130.9300
C1—O51.414 (5)C14—H140.9300
C1—C21.522 (5)C15—O61.390 (6)
C1—H10.9800C15—C161.509 (7)
C2—O21.415 (5)C15—H15A0.9700
C2—C31.516 (6)C15—H15B0.9700
C2—H20.9800C16—C171.350 (8)
C3—O31.458 (4)C16—C211.360 (9)
C3—C41.516 (6)C17—C181.352 (10)
C3—H30.9800C17—H170.9300
C4—O41.457 (4)C18—C191.349 (14)
C4—C51.507 (5)C18—H180.9300
C4—H40.9800C19—C201.331 (12)
C5—O51.426 (5)C19—H190.9300
C5—C61.498 (6)C20—C211.397 (9)
C5—H50.9800C20—H200.9300
C6—O61.414 (5)C21—H210.9300
C6—H6A0.9700C22—C271.351 (7)
C6—H6B0.9700C22—C231.365 (8)
C7—O11.431 (5)C22—P11.790 (5)
C7—H7A0.9600C23—C241.409 (10)
C7—H7B0.9600C23—H230.9300
C7—H7C0.9600C24—C251.332 (12)
C8—O21.424 (6)C24—H240.9300
C8—C91.494 (6)C25—C261.358 (12)
C8—H8A0.9700C25—H250.9300
C8—H8B0.9700C26—C271.384 (11)
C9—C141.360 (6)C26—H260.9300
C9—C101.399 (7)C27—H270.9300
C10—C111.387 (8)O3—P11.597 (3)
C10—H100.9300O4—P11.600 (3)
C11—C121.357 (8)P1—B11.851 (6)
C11—H110.9300B1—HA0.9600
C12—C131.388 (9)B1—HB0.9600
C12—H120.9300B1—HC0.9600
C13—C141.360 (7)
O1—C1—O5107.2 (3)C9—C14—C13123.6 (5)
O1—C1—C2107.7 (3)C9—C14—H14118.2
O5—C1—C2110.4 (3)C13—C14—H14118.2
O1—C1—H1110.5O6—C15—C16111.4 (5)
O5—C1—H1110.5O6—C15—H15A109.3
C2—C1—H1110.5C16—C15—H15A109.3
O2—C2—C3107.0 (3)O6—C15—H15B109.3
O2—C2—C1111.0 (3)C16—C15—H15B109.3
C3—C2—C1110.1 (3)H15A—C15—H15B108.0
O2—C2—H2109.6C17—C16—C21118.7 (6)
C3—C2—H2109.6C17—C16—C15118.7 (6)
C1—C2—H2109.6C21—C16—C15122.6 (5)
O3—C3—C2109.8 (3)C16—C17—C18121.8 (9)
O3—C3—C4104.0 (3)C16—C17—H17119.1
C2—C3—C4114.2 (3)C18—C17—H17119.1
O3—C3—H3109.6C17—C18—C19120.4 (9)
C2—C3—H3109.6C17—C18—H18119.8
C4—C3—H3109.6C19—C18—H18119.8
O4—C4—C5109.9 (3)C20—C19—C18118.9 (8)
O4—C4—C3103.2 (3)C20—C19—H19120.6
C5—C4—C3113.9 (3)C18—C19—H19120.6
O4—C4—H4109.9C19—C20—C21121.6 (9)
C5—C4—H4109.9C19—C20—H20119.2
C3—C4—H4109.9C21—C20—H20119.2
O5—C5—C6106.3 (3)C16—C21—C20118.6 (7)
O5—C5—C4111.5 (3)C16—C21—H21120.7
C6—C5—C4113.2 (3)C20—C21—H21120.7
O5—C5—H5108.6C27—C22—C23117.8 (6)
C6—C5—H5108.6C27—C22—P1120.7 (5)
C4—C5—H5108.6C23—C22—P1121.5 (4)
O6—C6—C5108.4 (3)C22—C23—C24121.5 (7)
O6—C6—H6A110.0C22—C23—H23119.2
C5—C6—H6A110.0C24—C23—H23119.2
O6—C6—H6B110.0C25—C24—C23118.5 (8)
C5—C6—H6B110.0C25—C24—H24120.8
H6A—C6—H6B108.4C23—C24—H24120.8
O1—C7—H7A109.5C24—C25—C26121.2 (8)
O1—C7—H7B109.5C24—C25—H25119.4
H7A—C7—H7B109.5C26—C25—H25119.4
O1—C7—H7C109.5C25—C26—C27119.6 (8)
H7A—C7—H7C109.5C25—C26—H26120.2
H7B—C7—H7C109.5C27—C26—H26120.2
O2—C8—C9113.0 (3)C22—C27—C26121.4 (7)
O2—C8—H8A109.0C22—C27—H27119.3
C9—C8—H8A109.0C26—C27—H27119.3
O2—C8—H8B109.0C1—O1—C7114.4 (4)
C9—C8—H8B109.0C2—O2—C8115.5 (4)
H8A—C8—H8B107.8C3—O3—P1110.4 (2)
C14—C9—C10117.2 (5)C4—O4—P1108.1 (2)
C14—C9—C8122.4 (5)C1—O5—C5112.4 (3)
C10—C9—C8120.5 (5)C15—O6—C6112.1 (4)
C11—C10—C9119.7 (5)O3—P1—O497.59 (14)
C11—C10—H10120.2O3—P1—C22107.5 (2)
C9—C10—H10120.2O4—P1—C22105.1 (2)
C12—C11—C10121.5 (5)O3—P1—B1115.2 (3)
C12—C11—H11119.3O4—P1—B1115.4 (2)
C10—C11—H11119.3C22—P1—B1114.3 (3)
C11—C12—C13119.0 (5)P1—B1—HA109.5
C11—C12—H12120.5P1—B1—HB109.5
C13—C12—H12120.5HA—B1—HB109.5
C14—C13—C12119.1 (5)P1—B1—HC109.5
C14—C13—H13120.4HA—B1—HC109.5
C12—C13—H13120.4HB—B1—HC109.5
O3—C3—C4—O440.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O5i0.982.373.314 (6)162
C6—H6A···O2ii0.972.433.352 (6)159
C18—H18···C9iii0.932.843.675 (8)150
C12—H12···O3iv0.932.713.510 (6)145
Symmetry codes: (i) x+1, y+1/2, z; (ii) x+1, y1/2, z; (iii) x+1, y, z+1; (iv) x, y1/2, z.

Experimental details

Crystal data
Chemical formulaC27H32BO6P
Mr494.32
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)10.7567 (19), 9.800 (9), 12.926 (4)
β (°) 96.63 (2)
V3)1353.6 (13)
Z2
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.55 × 0.25 × 0.10
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
5762, 3105, 1621
Rint0.142
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.144, 1.04
No. of reflections3105
No. of parameters319
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.22
Absolute structure(Flack, 1983)
Absolute structure parameter0.0 (4)

Computer programs: CAD-4 EXPRESS (Enraf Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997).

Selected geometric parameters (Å, º) top
C22—P11.790 (5)O4—P11.600 (3)
O3—P11.597 (3)P1—B11.851 (6)
C3—O3—P1110.4 (2)O4—P1—C22105.1 (2)
C4—O4—P1108.1 (2)O3—P1—B1115.2 (3)
O3—P1—O497.59 (14)O4—P1—B1115.4 (2)
O3—P1—C22107.5 (2)C22—P1—B1114.3 (3)
O3—C3—C4—O440.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O5i0.982.373.314 (6)162
C6—H6A···O2ii0.972.433.352 (6)159
C18—H18···C9iii0.932.843.675 (8)150
C12—H12···O3iv0.932.713.510 (6)145
Symmetry codes: (i) x+1, y+1/2, z; (ii) x+1, y1/2, z; (iii) x+1, y, z+1; (iv) x, y1/2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds