Download citation
Download citation
link to html
Three N-ethyl­carbazole derivatives have been synthesized and tested for non-linear optical (NLO) properties. The compounds are 2-(9-ethyl-9H-carbazol-3-yl­methyl­ene)­malono­nitrile, C18H13N3, (IIIa), 2-cyano-3-(9-ethyl-9H-carba­zol-3-yl)­thio­acryl­amide, C18H15N3S, (IIIb), and 3-(9-ethyl-9H-carbazol-3-yl)-2-(4-phenyl-1,3-thia­zol-2-yl)­acrylo­nitrile, C26H19N3S, (V). It was found that the mol­ecules of (IIIa) and (V) are nearly planar, while non-planarity is more pronounced for (IIIb). Molecules of (IIIa) and (V) exhibit herring-bone packing motifs. In (IIIb), the mol­ecules form layers coplanar with (\overline 201), within which they form centrosymmetric dimers via N—H...S hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101020170/bm1472sup1.cif
Contains datablocks IIIa, IIIb, V, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101020170/bm1472IIIasup2.hkl
Contains datablock IIIa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101020170/bm1472IIIbsup3.hkl
Contains datablock IIIb

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101020170/bm1472Vsup4.hkl
Contains datablock V

CCDC references: 182017; 182018; 182019

Comment top

Polar organic molecules as components of NLO, electro-optical, photorefractive and optical-limiting materials have been under intensive investigation for the last two decades (e.g. Zyss, 1994; Nalwa & Miyata, 1997; Kuzyk & Dirk, 1998). Structural data, along with theoretical calculations and experimental measurements, help to reveal the nature of the relevant structure-property relationships. The present investigation is a continuation of our project which includes synthesis, structural studies and evaluation of properties of organic compounds for potential optical applications (Antipin et al., 1997, 1998, 2001; Timofeeva et al., 2000; Nesterov et al., 2000). To our knowledge, no structural information on NLO carbazole derivatives has previously been available. Recently, we have synthesized and characterized a series of N-ethylcarbazole derivatives, (IIIa), (IIIb) and (V), shown in the synthetic scheme below. \sch

In this paper we present the results of structural investigations and the evaluation of second-harmonic generation (SGH) in solution for compounds (IIIa), (IIIb) and (V). Recently, we investigated another polar N-ethylcarbazole derivative, namely (E)-4-(9-ethyl-9H-carbazol-3-ylvinyl)-N-methylpyridinium iodide, (VI) (Wang et al., 2001), and we will compare the molecular geometry parameters for all four of these compounds.

The polar molecules under investigation can be formally divided into three planar fragments: a donor part, D, comprising the N-ethylcarbazole moiety less the ethyl group, a bridging part, B [–CHC< in (IIIa), (IIIb) and (V), but –CHCH– in (VI)], and an acceptor part, A, which differs in each molecule. The geometric parameters for N-ethylcarbazole in (IIIa), (IIIb), (V) and in the two symmetrically independent molecules of (VI) are very similar and do not vary from the standard values for corresponding heterocyclic systems (Allen et al., 1987). The orientation of the N-ethyl substituents in all the molecules is almost perpendicular to the carbazole plane (Tables 1, 2 and 4). In all the molecules, the bridging part B has a CC bond which is slightly longer than the standard value (Allen et al., 1987). As the attached single bonds are slightly shorter (Tables 1, 2 and 4), this is evidence of some delocalization in the bridging units of these molecules.

The geometric parameters of the dicyanovinyl acceptor fragment in molecule (IIIa) (Fig. 1) are standard (Timofeeva et al., 2000). Molecule (IIIa) is almost planar, the dihedral angle between the least-squares mean planes of the donor part D Is this change OK? and the dicyanovinyl group is 5.1 (1)°. This does not differ significantly from the results for the other dicyanovinylaromatic molecules (Timofeeva et al., 2000). Molecules of (IIIa) adopt a herring-bone packing motif.

The Cambridge Structural Database (CSD, Version?; Allen & Kennard, 1993) contains only one compound, namely trans,trans-2-cyano-5-(4-methoxyphenyl)penta-2,4-dienethioamide (Nesterov et al., 2000), which has mutually trans CN and S substituents and is suitable for direct comparison with the cyanovinylthioamide fragment found in (IIIb) (Fig. 2). In the other two known structures containing such fragments, the cyano and thio substituents are mutually cis (Brunskill at al., 1984; Nesterov et al., 1991).

The different relative orientations of the substituents do not significantly influence the bond lengths and angles in this fragment, and their values are very similar in all these molecules. Molecule (IIIb) is less planar than (IIIa); the dihedral angle between the D and B fragments is 15.5 (1)°, and between B and A it is 12.0 (2)°. The molecules pack in layers coplanar with (201). Within these layers, (IIIb) forms centrosymmetric dimers via N3—H3B···S1i hydrogen bonds [Table 3; symmetry code: (i) 1 - x, 1 - y, 2 - z].

In molecule (V) (Fig. 3), the values for the molecular geometry parameters of the phenylthiazole (Ph—T) substituents are similar to the other examples found in the CSD. The dihedral angles between planar fragments in (V) are D/B 6.3 (1), B/T 5.0 (1) and T/Ph 4.2 (1)°. Molecule (V) has a `bent' conformation and a mutually trans orientation of the S atom and CC bridge (Fig. 3). We used molecular mechanics calculations to compare the relative energies of `bent' and `stretched' molecules of (V) having cis orientations of S and the double bond. Please explain `bent' and `stretched'. We found that the `stretched' conformation is favoured (the energy difference is 2.1 kcal mol-1; 1kcal mol-1 = 4.184 kJ mol-1), and this suggests that under other circumstances (e.g. in solution or in other polymorph), molecule (V) might adopt a different conformation. Molecules of (V) exhibit a herring-bone pattern in their packing.

All crystalline samples investigated are centrosymmetric, so they cannot manifest SHG in their crystalline phases. X-ray powder diffraction has shown that for both (IIIb) and (V), the crystalline phase present in the powder samples and in single crystals is the same. In contrast, the powder diffraction pattern for compound (IIIa) shows the presence of another crystalline phase. Unfortunately, we have not been able to obtain single crystals of the second phase of (IIIa) by conventional methods, and we are currently investigating other approaches to growing single crystals suitable for X-ray investigation.

SHG in solution can be measured after orientation of the molecules by an electric field. Electric field-induced second harmonic generation (EFISH) measurements of hyperpolarizability β(ω) in solution give values of 42.5, 60.2 and 65.2 × 10-30 esu for molecules (IIIa), (IIIb) and (V), respectively. These results suggest that materials incorporating molecules of (IIIb) or (V) might be as efficient as traditional cyanovinyl derivatives (Antipin et al., 1997), but their melting point and thermal stability would both be higher because of the presence of the N-ethylcarbazole moiety.

Experimental top

The title compounds (IIIa) and (IIIb) were obtained by the reaction of N-ethyl-3-carbazolealdehyde, (I) (1.115 g, 0.005 mol), with malononitrile, (IIa) (0.330 g, 0.005 mol), or 2-cyanothioacetamide, (IIb) (0.500 g, 0.005 mol), respectively, in the presence of a catalytic amount of morpholine in ethanol (20 ml) at room temperature. The precipitates which separated from the solutions were recrystallized from ethanol (30 ml) and acetonitrile (30 ml), respectively [m.p. 431 K, yield 1.018 g (75%) for (IIIa); m.p. 490 K, yield 1.176 g (77%) for (IIIb)]. Compound (V) was obtained by the reaction of (IIIb) (1.527 g, 0.005 mol) with 2-bromoacetophenone, (IV) (0.995 g, 0.005 mol), in dimethylformamide (20 ml) at room temperature. The precipitate which separated from the solution was recrystallized from acetonitrile (30 ml) [m.p. 428 K; yield 1.521 g (75%)]. Crystals were obtained by isothermal evaporation from ethanolic solutions of (IIIa) or (IIIb), or from a solution of (V) in acetonitrile.

Refinement top

Molecular mechanics calculations were carried out using MM3 (Allinger et al., 1989; Lii & Allinger, 1989). EFISH measurements of hyperpolarizability of the three compounds in solution were performed using the methods described by Sanghadasa et al. (1996) and Antipin et al. (1997). H atoms were placed geometrically; for (IIIa) and (V), those attached to sp2, methyl and methylene C atoms were set at 0.95, 0.98 and 0.99 Å, respectively. For (IIIb), the corresponding distances were 0.93, 0.96 and 0.97 Å. For methyl H atoms, Uiso(H) = 1.5Ueq(C), for all others Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989) for (IIIa), (IIIb); P3 (Siemens, 1989) for (V). Cell refinement: CAD-4 Software for (IIIa), (IIIb); P3 for (V). For all compounds, data reduction: SHELXTL-Plus (Sheldrick, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus; software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of the molecule of (IIIa) showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the molecule of (IIIb) showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 3] Fig. 3. A view of the molecule of (V) showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
(IIIa) 2-(9-ethyl-9H-carbazol-3-ylmethylene)malononitrile top
Crystal data top
C18H13N3F(000) = 568
Mr = 271.31Dx = 1.269 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.731 (3) ÅCell parameters from 24 reflections
b = 4.2160 (8) Åθ = 11–12°
c = 26.640 (5) ŵ = 0.08 mm1
β = 96.87 (3)°T = 298 K
V = 1419.6 (5) Å3Needle, yellow
Z = 40.5 × 0.1 × 0.1 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.024
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 1.5°
Graphite monochromatorh = 015
θ/2θ scansk = 05
2575 measured reflectionsl = 3131
2458 independent reflections3 standard reflections every 97 reflections
1280 reflections with I > 2σ(I) intensity decay: 3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.062P)2]
where P = (Fo2 + 2Fc2)/3
2458 reflections(Δ/σ)max = 0.001
191 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C18H13N3V = 1419.6 (5) Å3
Mr = 271.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.731 (3) ŵ = 0.08 mm1
b = 4.2160 (8) ÅT = 298 K
c = 26.640 (5) Å0.5 × 0.1 × 0.1 mm
β = 96.87 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.024
2575 measured reflections3 standard reflections every 97 reflections
2458 independent reflections intensity decay: 3%
1280 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.00Δρmax = 0.17 e Å3
2458 reflectionsΔρmin = 0.21 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.24263 (18)0.2665 (6)0.12782 (9)0.0432 (7)
N20.7266 (3)0.2384 (9)0.01848 (13)0.0812 (11)
N30.9166 (2)0.3603 (10)0.12600 (12)0.0877 (12)
C10.4002 (2)0.2588 (8)0.08033 (12)0.0487 (9)
H1A0.36860.37700.05210.058*
C20.5028 (2)0.1540 (8)0.08266 (11)0.0502 (9)
H2A0.54250.20470.05570.060*
C30.5512 (2)0.0260 (8)0.12358 (11)0.0447 (8)
C40.4921 (2)0.1046 (8)0.16329 (11)0.0452 (9)
H4A0.52300.23110.19070.054*
C50.3892 (2)0.0020 (8)0.16249 (10)0.0418 (8)
C60.3086 (2)0.0295 (8)0.19616 (11)0.0416 (8)
C70.3045 (2)0.1738 (8)0.24234 (12)0.0497 (9)
H7A0.36370.28840.25810.060*
C80.2135 (3)0.1496 (9)0.26530 (12)0.0559 (9)
H8A0.21030.24500.29740.067*
C90.1260 (3)0.0143 (9)0.24167 (13)0.0565 (10)
H9A0.06350.02430.25790.068*
C100.1272 (2)0.1612 (8)0.19584 (12)0.0495 (9)
H10A0.06740.27270.18000.059*
C110.2202 (2)0.1390 (8)0.17366 (11)0.0416 (8)
C120.1706 (2)0.4617 (9)0.09390 (12)0.0533 (9)
H12A0.21270.60770.07510.064*
H12B0.12690.59210.11430.064*
C130.0992 (3)0.2686 (10)0.05679 (13)0.0719 (12)
H13A0.05300.41050.03490.108*
H13B0.05590.12760.07510.108*
H13C0.14200.14160.03610.108*
C140.3439 (2)0.1862 (8)0.12072 (11)0.0415 (8)
C150.6578 (2)0.1410 (8)0.12851 (12)0.0513 (9)
H15A0.67630.27020.15740.062*
C160.7369 (2)0.0986 (8)0.09939 (11)0.0466 (9)
C170.7297 (2)0.0886 (10)0.05432 (14)0.0563 (10)
C180.8373 (3)0.2418 (10)0.11382 (13)0.0595 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0349 (14)0.0495 (18)0.0444 (15)0.0088 (13)0.0006 (11)0.0012 (14)
N20.076 (2)0.101 (3)0.069 (2)0.019 (2)0.0201 (18)0.015 (2)
N30.0536 (19)0.124 (3)0.088 (2)0.028 (2)0.0153 (17)0.017 (2)
C10.0421 (19)0.059 (2)0.0440 (18)0.0069 (17)0.0025 (14)0.0087 (18)
C20.0402 (18)0.063 (2)0.0472 (19)0.0058 (19)0.0053 (14)0.0010 (19)
C30.0355 (17)0.052 (2)0.0460 (18)0.0026 (17)0.0033 (14)0.0014 (17)
C40.0433 (19)0.048 (2)0.0413 (18)0.0024 (17)0.0054 (14)0.0005 (16)
C50.0359 (17)0.045 (2)0.0429 (18)0.0005 (16)0.0008 (13)0.0013 (17)
C60.0392 (18)0.045 (2)0.0390 (17)0.0020 (16)0.0007 (14)0.0013 (16)
C70.050 (2)0.049 (2)0.049 (2)0.0031 (18)0.0030 (15)0.0026 (18)
C80.056 (2)0.066 (3)0.0459 (19)0.004 (2)0.0076 (16)0.0047 (19)
C90.047 (2)0.068 (3)0.057 (2)0.006 (2)0.0145 (16)0.007 (2)
C100.0415 (18)0.053 (2)0.054 (2)0.0055 (17)0.0042 (15)0.0012 (18)
C110.0400 (17)0.045 (2)0.0394 (18)0.0051 (16)0.0040 (14)0.0034 (16)
C120.0494 (19)0.057 (2)0.0526 (19)0.0165 (19)0.0040 (15)0.0107 (19)
C130.068 (2)0.078 (3)0.064 (2)0.025 (2)0.0192 (19)0.001 (2)
C140.0347 (17)0.045 (2)0.0439 (18)0.0042 (16)0.0014 (13)0.0045 (16)
C150.0411 (18)0.063 (2)0.0493 (19)0.0054 (18)0.0018 (15)0.0008 (18)
C160.0395 (18)0.055 (2)0.0452 (19)0.0041 (17)0.0038 (14)0.0072 (18)
C170.044 (2)0.072 (3)0.054 (2)0.0055 (19)0.0118 (17)0.002 (2)
C180.043 (2)0.078 (3)0.059 (2)0.010 (2)0.0114 (17)0.007 (2)
Geometric parameters (Å, º) top
N1—C111.395 (4)C7—C81.377 (4)
N1—C121.461 (4)C7—H7A0.9500
N1—C141.368 (3)C8—C91.396 (4)
N2—C171.142 (4)C8—H8A0.9500
N3—C181.138 (4)C9—C101.371 (4)
C1—C21.372 (4)C9—H9A0.9500
C1—C141.396 (4)C10—C111.387 (4)
C1—H1A0.9500C10—H10A0.9500
C2—C31.408 (4)C12—C131.501 (4)
C2—H2A0.9500C12—H12A0.9900
C3—C41.409 (4)C12—H12B0.9900
C3—C151.432 (4)C13—H13A0.9800
C4—C51.383 (4)C13—H13B0.9800
C4—H4A0.9500C13—H13C0.9800
C5—C141.421 (4)C15—C161.355 (4)
C5—C61.448 (4)C15—H15A0.9500
C6—C71.379 (4)C16—C181.424 (5)
C6—C111.403 (4)C16—C171.431 (5)
C14—N1—C11108.7 (2)C9—C10—C11116.8 (3)
C14—N1—C12125.8 (3)C9—C10—H10A121.6
C11—N1—C12125.4 (2)C11—C10—H10A121.6
C2—C1—C14117.9 (3)C10—C11—N1128.4 (3)
C2—C1—H1A121.1C10—C11—C6122.2 (3)
C14—C1—H1A121.1N1—C11—C6109.3 (3)
C1—C2—C3122.3 (3)N1—C12—C13112.8 (3)
C1—C2—H2A118.9N1—C12—H12A109.0
C3—C2—H2A118.9C13—C12—H12A109.0
C2—C3—C4119.0 (3)N1—C12—H12B109.0
C2—C3—C15125.1 (3)C13—C12—H12B109.0
C4—C3—C15115.9 (3)H12A—C12—H12B107.8
C5—C4—C3120.1 (3)C12—C13—H13A109.5
C5—C4—H4A119.9C12—C13—H13B109.5
C3—C4—H4A119.9H13A—C13—H13B109.5
C4—C5—C14119.0 (3)C12—C13—H13C109.5
C4—C5—C6134.5 (3)H13A—C13—H13C109.5
C14—C5—C6106.5 (2)H13B—C13—H13C109.5
C7—C6—C11119.4 (3)N1—C14—C1129.2 (3)
C7—C6—C5134.3 (3)N1—C14—C5109.1 (3)
C11—C6—C5106.3 (3)C1—C14—C5121.7 (3)
C8—C7—C6119.1 (3)C16—C15—C3131.6 (3)
C8—C7—H7A120.4C16—C15—H15A114.2
C6—C7—H7A120.4C3—C15—H15A114.2
C7—C8—C9120.4 (3)C15—C16—C18119.6 (3)
C7—C8—H8A119.8C15—C16—C17125.2 (3)
C9—C8—H8A119.8C18—C16—C17115.2 (3)
C10—C9—C8122.1 (3)N2—C17—C16178.3 (4)
C10—C9—H9A119.0N3—C18—C16178.6 (4)
C8—C9—H9A119.0
C14—C1—C2—C31.1 (5)C12—N1—C11—C6178.9 (3)
C1—C2—C3—C40.7 (5)C7—C6—C11—C101.3 (5)
C1—C2—C3—C15179.6 (3)C5—C6—C11—C10179.7 (3)
C2—C3—C4—C51.8 (5)C7—C6—C11—N1179.3 (3)
C15—C3—C4—C5178.5 (3)C5—C6—C11—N10.9 (4)
C3—C4—C5—C141.1 (5)C14—N1—C12—C1394.2 (4)
C3—C4—C5—C6179.2 (3)C11—N1—C12—C1387.8 (4)
C4—C5—C6—C71.3 (7)C11—N1—C14—C1179.6 (3)
C14—C5—C6—C7178.9 (4)C12—N1—C14—C12.2 (5)
C4—C5—C6—C11179.4 (4)C11—N1—C14—C50.1 (3)
C14—C5—C6—C110.8 (3)C12—N1—C14—C5178.4 (3)
C11—C6—C7—C80.1 (5)C2—C1—C14—N1178.8 (3)
C5—C6—C7—C8178.0 (3)C2—C1—C14—C51.8 (5)
C6—C7—C8—C91.1 (5)C4—C5—C14—N1179.8 (3)
C7—C8—C9—C101.3 (5)C6—C5—C14—N10.4 (3)
C8—C9—C10—C110.2 (5)C4—C5—C14—C10.8 (5)
C9—C10—C11—N1179.6 (3)C6—C5—C14—C1179.1 (3)
C9—C10—C11—C61.1 (5)C2—C3—C15—C163.9 (6)
C14—N1—C11—C10180.0 (3)C4—C3—C15—C16176.5 (3)
C12—N1—C11—C101.7 (5)C3—C15—C16—C18179.5 (4)
C14—N1—C11—C60.7 (4)C3—C15—C16—C170.9 (6)
(IIIb) 2-cyano-3-(9-ethyl-9H-carbazol-3-yl)thioacrylamide top
Crystal data top
C18H15N3SZ = 2
Mr = 305.39F(000) = 320
Triclinic, P1Dx = 1.284 Mg m3
a = 8.4370 (17) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.7500 (17) ÅCell parameters from 24 reflections
c = 12.300 (3) Åθ = 11–12°
α = 79.82 (3)°µ = 0.20 mm1
β = 76.82 (3)°T = 298 K
γ = 63.76 (3)°Parallelepiped prism, orange
V = 790.0 (3) Å30.50 × 0.35 × 0.30 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.013
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 1.7°
Graphite monochromatorh = 010
θ/2θ scansk = 910
2971 measured reflectionsl = 1414
2762 independent reflections3 standard reflections every 97 reflections
2257 reflections with I > 2σ(I) intensity decay: 3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.06P)2 + 0.24P]
where P = (Fo2 + 2Fc2)/3
2762 reflections(Δ/σ)max = 0.001
200 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C18H15N3Sγ = 63.76 (3)°
Mr = 305.39V = 790.0 (3) Å3
Triclinic, P1Z = 2
a = 8.4370 (17) ÅMo Kα radiation
b = 8.7500 (17) ŵ = 0.20 mm1
c = 12.300 (3) ÅT = 298 K
α = 79.82 (3)°0.50 × 0.35 × 0.30 mm
β = 76.82 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.013
2971 measured reflections3 standard reflections every 97 reflections
2762 independent reflections intensity decay: 3%
2257 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.05Δρmax = 0.33 e Å3
2762 reflectionsΔρmin = 0.19 e Å3
200 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.41428 (8)0.37861 (7)0.89386 (4)0.0599 (2)
N10.0770 (2)0.5525 (2)0.26053 (12)0.0453 (4)
N20.2878 (3)0.9276 (3)0.64142 (18)0.0721 (6)
N30.4516 (2)0.6662 (2)0.85720 (13)0.0565 (5)
H3A0.44380.76030.81810.068*
H3B0.48800.64130.92060.068*
C10.1080 (3)0.7126 (2)0.39735 (15)0.0482 (4)
H1A0.04770.82070.36290.058*
C20.1753 (3)0.6928 (2)0.49317 (15)0.0475 (4)
H2A0.16170.78950.52260.057*
C30.2644 (2)0.5304 (2)0.54832 (13)0.0409 (4)
C40.2851 (2)0.3853 (2)0.50360 (14)0.0414 (4)
H4A0.34050.27750.54000.050*
C50.2230 (2)0.4016 (2)0.40500 (13)0.0385 (4)
C60.2251 (2)0.2815 (2)0.33690 (14)0.0420 (4)
C70.2969 (3)0.1045 (3)0.34141 (18)0.0565 (5)
H7A0.35540.03740.40010.068*
C80.2804 (4)0.0297 (3)0.2577 (2)0.0702 (6)
H8A0.32880.08890.25970.084*
C90.1920 (4)0.1294 (3)0.1701 (2)0.0707 (7)
H9A0.18370.07550.11420.085*
C100.1163 (3)0.3055 (3)0.16378 (17)0.0561 (5)
H10A0.05570.37130.10570.067*
C110.1346 (2)0.3806 (2)0.24809 (14)0.0427 (4)
C120.0334 (3)0.6954 (3)0.19076 (17)0.0569 (5)
H12A0.11170.78930.23640.068*
H12B0.10810.66060.16080.068*
C130.0772 (4)0.7543 (4)0.0971 (2)0.0844 (8)
H13A0.00040.84910.05350.127*
H13B0.15220.66250.05050.127*
H13C0.15080.78940.12650.127*
C140.1327 (2)0.5660 (2)0.35335 (14)0.0402 (4)
C150.3292 (2)0.5051 (2)0.65209 (14)0.0431 (4)
H15A0.36580.39370.68560.052*
C160.3463 (2)0.6140 (2)0.70918 (14)0.0426 (4)
C170.3106 (3)0.7882 (3)0.66844 (16)0.0502 (5)
C180.4077 (2)0.5594 (3)0.81966 (14)0.0445 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0807 (4)0.0756 (4)0.0394 (3)0.0425 (3)0.0283 (2)0.0058 (2)
N10.0520 (9)0.0510 (9)0.0372 (8)0.0203 (7)0.0196 (7)0.0021 (6)
N20.0845 (14)0.0540 (12)0.0779 (13)0.0146 (10)0.0425 (11)0.0081 (9)
N30.0723 (11)0.0784 (12)0.0355 (8)0.0440 (10)0.0190 (8)0.0010 (8)
C10.0533 (11)0.0451 (10)0.0448 (10)0.0132 (8)0.0228 (8)0.0019 (8)
C20.0527 (11)0.0491 (10)0.0427 (10)0.0161 (9)0.0188 (8)0.0089 (8)
C30.0401 (9)0.0528 (10)0.0296 (8)0.0185 (8)0.0083 (7)0.0031 (7)
C40.0452 (10)0.0479 (10)0.0308 (8)0.0198 (8)0.0092 (7)0.0015 (7)
C50.0400 (9)0.0472 (10)0.0300 (8)0.0203 (8)0.0066 (7)0.0015 (7)
C60.0470 (10)0.0510 (10)0.0333 (9)0.0258 (8)0.0068 (7)0.0023 (7)
C70.0732 (14)0.0504 (12)0.0528 (11)0.0301 (10)0.0191 (10)0.0013 (9)
C80.0951 (18)0.0534 (13)0.0728 (15)0.0348 (13)0.0231 (13)0.0099 (11)
C90.0991 (18)0.0702 (15)0.0619 (13)0.0448 (14)0.0225 (13)0.0156 (11)
C100.0708 (13)0.0679 (13)0.0434 (10)0.0363 (11)0.0200 (9)0.0052 (9)
C110.0461 (10)0.0529 (11)0.0351 (9)0.0252 (8)0.0083 (7)0.0048 (7)
C120.0641 (13)0.0597 (12)0.0519 (11)0.0215 (10)0.0300 (10)0.0026 (9)
C130.102 (2)0.0909 (19)0.0746 (17)0.0514 (17)0.0369 (15)0.0167 (14)
C140.0398 (9)0.0497 (10)0.0326 (8)0.0181 (8)0.0117 (7)0.0019 (7)
C150.0424 (9)0.0554 (11)0.0306 (8)0.0189 (8)0.0088 (7)0.0026 (7)
C160.0372 (9)0.0550 (11)0.0321 (8)0.0147 (8)0.0077 (7)0.0056 (7)
C170.0480 (11)0.0588 (13)0.0422 (10)0.0128 (9)0.0179 (8)0.0135 (9)
C180.0384 (9)0.0653 (12)0.0315 (9)0.0212 (9)0.0064 (7)0.0094 (8)
Geometric parameters (Å, º) top
S1—C181.665 (2)C6—C111.410 (3)
N1—C111.387 (2)C7—C81.375 (3)
N1—C121.457 (2)C7—H7A0.9300
N1—C141.371 (2)C8—C91.392 (3)
N2—C171.146 (3)C8—H8A0.9300
N3—C181.327 (2)C9—C101.378 (3)
N3—H3A0.8600C9—H9A0.9300
N3—H3B0.8600C10—C111.391 (3)
C1—C21.374 (2)C10—H10A0.9300
C1—C141.393 (3)C12—C131.480 (3)
C1—H1A0.9300C12—H12A0.9700
C2—C31.411 (3)C12—H12B0.9700
C2—H2A0.9300C13—H13A0.9600
C3—C41.397 (3)C13—H13B0.9600
C3—C151.445 (2)C13—H13C0.9600
C4—C51.388 (2)C15—C161.351 (3)
C4—H4A0.9300C15—H15A0.9300
C5—C141.408 (2)C16—C171.435 (3)
C5—C61.447 (2)C16—C181.488 (2)
C6—C71.387 (3)
C14—N1—C11108.64 (15)C8—C9—H9A119.0
C14—N1—C12125.48 (16)C9—C10—C11117.1 (2)
C11—N1—C12125.79 (15)C9—C10—H10A121.4
C18—N3—H3A120.0C11—C10—H10A121.4
C18—N3—H3B120.0N1—C11—C10129.15 (18)
H3A—N3—H3B120.0N1—C11—C6109.16 (15)
C2—C1—C14118.06 (17)C10—C11—C6121.68 (18)
C2—C1—H1A121.0N1—C12—C13111.69 (19)
C14—C1—H1A121.0N1—C12—H12A109.3
C1—C2—C3122.13 (17)C13—C12—H12A109.3
C1—C2—H2A118.9N1—C12—H12B109.3
C3—C2—H2A118.9C13—C12—H12B109.3
C4—C3—C2118.78 (15)H12A—C12—H12B107.9
C4—C3—C15117.50 (16)C12—C13—H13A109.5
C2—C3—C15123.66 (17)C12—C13—H13B109.5
C5—C4—C3120.19 (16)H13A—C13—H13B109.5
C5—C4—H4A119.9C12—C13—H13C109.5
C3—C4—H4A119.9H13A—C13—H13C109.5
C4—C5—C14119.26 (16)H13B—C13—H13C109.5
C4—C5—C6134.19 (17)N1—C14—C1128.98 (17)
C14—C5—C6106.53 (15)N1—C14—C5109.49 (15)
C7—C6—C11119.55 (17)C1—C14—C5121.53 (15)
C7—C6—C5134.28 (17)C16—C15—C3131.64 (18)
C11—C6—C5106.15 (16)C16—C15—H15A114.2
C8—C7—C6118.9 (2)C3—C15—H15A114.2
C8—C7—H7A120.5C15—C16—C17123.41 (16)
C6—C7—H7A120.5C15—C16—C18121.76 (17)
C7—C8—C9120.8 (2)C17—C16—C18114.82 (16)
C7—C8—H8A119.6N2—C17—C16175.4 (2)
C9—C8—H8A119.6N3—C18—C16115.93 (17)
C10—C9—C8121.9 (2)N3—C18—S1121.89 (14)
C10—C9—H9A119.0C16—C18—S1122.14 (14)
C14—C1—C2—C31.2 (3)C5—C6—C11—N10.78 (19)
C1—C2—C3—C40.2 (3)C7—C6—C11—C100.5 (3)
C1—C2—C3—C15176.91 (18)C5—C6—C11—C10177.96 (17)
C2—C3—C4—C51.7 (3)C14—N1—C12—C1390.9 (2)
C15—C3—C4—C5179.03 (15)C11—N1—C12—C1393.0 (2)
C3—C4—C5—C142.6 (3)C11—N1—C14—C1179.08 (18)
C3—C4—C5—C6178.88 (17)C12—N1—C14—C14.3 (3)
C4—C5—C6—C73.6 (4)C11—N1—C14—C51.9 (2)
C14—C5—C6—C7177.8 (2)C12—N1—C14—C5174.73 (17)
C4—C5—C6—C11178.26 (19)C2—C1—C14—N1179.17 (18)
C14—C5—C6—C110.37 (19)C2—C1—C14—C50.3 (3)
C11—C6—C7—C81.0 (3)C4—C5—C14—N1177.47 (15)
C5—C6—C7—C8176.9 (2)C6—C5—C14—N11.41 (19)
C6—C7—C8—C90.5 (4)C4—C5—C14—C11.6 (3)
C7—C8—C9—C100.6 (4)C6—C5—C14—C1179.51 (16)
C8—C9—C10—C111.1 (4)C4—C3—C15—C16172.01 (18)
C14—N1—C11—C10176.94 (19)C2—C3—C15—C1610.9 (3)
C12—N1—C11—C106.4 (3)C3—C15—C16—C174.8 (3)
C14—N1—C11—C61.7 (2)C3—C15—C16—C18176.30 (17)
C12—N1—C11—C6174.96 (17)C15—C16—C18—N3167.64 (17)
C9—C10—C11—N1177.9 (2)C17—C16—C18—N311.3 (2)
C9—C10—C11—C60.5 (3)C15—C16—C18—S114.4 (2)
C7—C6—C11—N1179.26 (17)C17—C16—C18—S1166.67 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···S1i0.862.553.402 (2)170
Symmetry code: (i) x+1, y+1, z+2.
(V) 3-(9-ethyl-9H-carbazol-3-yl)-2-(4-phenyl-1,3-thiazol-2-yl)acrylonitrile top
Crystal data top
C26H19N3SF(000) = 848
Mr = 405.50Dx = 1.299 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 19.384 (5) ÅCell parameters from 24 reflections
b = 16.456 (4) Åθ = 10–11°
c = 6.5323 (17) ŵ = 0.17 mm1
β = 95.637 (19)°T = 155 K
V = 2073.6 (9) Å3Parallelepiped prism, yellow
Z = 40.45 × 0.30 × 0.25 mm
Data collection top
Syntex P21
diffractometer
Rint = 0.037
Radiation source: fine-focus sealed tubeθmax = 27.1°, θmin = 1.6°
Graphite monochromatorh = 2424
θ/2θ scansk = 211
4942 measured reflectionsl = 08
4540 independent reflections2 standard reflections every 98 reflections
3066 reflections with I > 2σ(I) intensity decay: 3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 0.92 w = 1/[σ2(Fo2) + (0.068P)2]
where P = (Fo2 + 2Fc2)/3
4540 reflections(Δ/σ)max = 0.001
272 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C26H19N3SV = 2073.6 (9) Å3
Mr = 405.50Z = 4
Monoclinic, P21/cMo Kα radiation
a = 19.384 (5) ŵ = 0.17 mm1
b = 16.456 (4) ÅT = 155 K
c = 6.5323 (17) Å0.45 × 0.30 × 0.25 mm
β = 95.637 (19)°
Data collection top
Syntex P21
diffractometer
Rint = 0.037
4942 measured reflections2 standard reflections every 98 reflections
4540 independent reflections intensity decay: 3%
3066 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 0.92Δρmax = 0.30 e Å3
4540 reflectionsΔρmin = 0.32 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.20194 (3)0.31806 (3)0.05188 (7)0.02802 (13)
N10.12528 (8)0.61215 (9)1.2467 (2)0.0254 (3)
N20.06157 (9)0.38222 (11)0.3266 (3)0.0384 (4)
N30.30257 (8)0.38962 (9)0.2654 (2)0.0248 (3)
C10.09224 (10)0.53882 (11)0.9157 (3)0.0263 (4)
H1A0.04360.54430.92020.032*
C20.11898 (9)0.49900 (11)0.7554 (3)0.0250 (4)
H2A0.08790.47660.64870.030*
C30.19116 (9)0.49047 (10)0.7449 (3)0.0233 (4)
C40.23698 (9)0.52376 (10)0.9019 (3)0.0222 (4)
H4A0.28560.51900.89640.027*
C50.21125 (9)0.56379 (10)1.0661 (3)0.0216 (4)
C60.24330 (9)0.60339 (10)1.2497 (3)0.0229 (4)
C70.31150 (10)0.61490 (11)1.3325 (3)0.0276 (4)
H7A0.34890.59381.26530.033*
C80.32373 (10)0.65775 (11)1.5147 (3)0.0313 (4)
H8A0.37000.66621.57300.038*
C90.26847 (11)0.68879 (11)1.6141 (3)0.0311 (4)
H9A0.27820.71871.73800.037*
C100.20072 (11)0.67714 (11)1.5376 (3)0.0289 (4)
H10A0.16370.69801.60700.035*
C110.18801 (9)0.63357 (10)1.3541 (3)0.0242 (4)
C120.05616 (9)0.62479 (11)1.3134 (3)0.0281 (4)
H12A0.06070.63531.46330.034*
H12B0.02880.57441.28840.034*
C130.01729 (12)0.69442 (14)1.2049 (3)0.0428 (5)
H13A0.02860.69931.25480.064*
H13B0.01200.68421.05640.064*
H13C0.04320.74501.23290.064*
C140.13916 (9)0.57089 (10)1.0716 (3)0.0235 (4)
C150.22154 (9)0.45043 (10)0.5780 (3)0.0230 (4)
H15A0.27070.45380.58620.028*
C160.19238 (9)0.40897 (10)0.4118 (3)0.0231 (4)
C170.11940 (10)0.39494 (11)0.3680 (3)0.0267 (4)
C180.23587 (9)0.37656 (10)0.2586 (3)0.0235 (4)
C190.28324 (10)0.31182 (11)0.0283 (3)0.0294 (4)
H19A0.29410.28330.14740.035*
C200.33026 (10)0.35307 (11)0.1013 (3)0.0262 (4)
C210.40495 (10)0.36253 (12)0.0813 (3)0.0305 (4)
C220.43695 (12)0.32309 (16)0.0731 (4)0.0494 (6)
H22A0.41000.29010.16990.059*
C230.50706 (13)0.33114 (18)0.0876 (4)0.0596 (7)
H23A0.52790.30370.19380.072*
C240.54709 (12)0.37859 (17)0.0506 (4)0.0522 (6)
H24A0.59560.38330.04160.063*
C250.51646 (12)0.41932 (16)0.2021 (4)0.0509 (6)
H25A0.54370.45330.29580.061*
C260.44613 (11)0.41086 (13)0.2182 (3)0.0400 (5)
H26A0.42570.43860.32460.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0328 (3)0.0242 (2)0.0271 (2)0.00163 (19)0.00313 (18)0.00433 (19)
N10.0276 (8)0.0254 (8)0.0243 (8)0.0004 (6)0.0084 (6)0.0026 (6)
N20.0320 (10)0.0438 (10)0.0395 (10)0.0056 (8)0.0040 (8)0.0111 (8)
N30.0303 (8)0.0197 (7)0.0250 (8)0.0020 (6)0.0050 (6)0.0011 (6)
C10.0243 (9)0.0279 (9)0.0271 (9)0.0015 (7)0.0050 (7)0.0005 (8)
C20.0251 (9)0.0256 (9)0.0241 (9)0.0017 (7)0.0012 (7)0.0008 (7)
C30.0271 (10)0.0182 (8)0.0250 (9)0.0005 (7)0.0057 (7)0.0026 (7)
C40.0222 (9)0.0186 (8)0.0263 (9)0.0002 (7)0.0054 (7)0.0041 (7)
C50.0252 (9)0.0168 (8)0.0228 (9)0.0010 (7)0.0028 (7)0.0027 (7)
C60.0312 (10)0.0154 (8)0.0231 (9)0.0001 (7)0.0067 (7)0.0021 (7)
C70.0299 (10)0.0220 (9)0.0314 (10)0.0004 (8)0.0054 (8)0.0012 (8)
C80.0339 (10)0.0261 (10)0.0326 (11)0.0029 (8)0.0031 (8)0.0015 (8)
C90.0447 (12)0.0213 (9)0.0266 (10)0.0040 (8)0.0006 (8)0.0010 (8)
C100.0408 (11)0.0214 (9)0.0257 (9)0.0006 (8)0.0084 (8)0.0013 (8)
C110.0302 (10)0.0171 (8)0.0261 (9)0.0002 (7)0.0062 (8)0.0034 (7)
C120.0281 (10)0.0287 (9)0.0287 (10)0.0000 (8)0.0094 (8)0.0008 (8)
C130.0451 (13)0.0471 (13)0.0376 (12)0.0191 (10)0.0115 (9)0.0045 (10)
C140.0294 (10)0.0185 (8)0.0230 (9)0.0007 (7)0.0054 (7)0.0007 (7)
C150.0238 (9)0.0199 (8)0.0259 (9)0.0003 (7)0.0048 (7)0.0026 (7)
C160.0279 (9)0.0190 (8)0.0231 (9)0.0004 (7)0.0059 (7)0.0022 (7)
C170.0330 (11)0.0229 (9)0.0252 (10)0.0008 (8)0.0075 (8)0.0045 (7)
C180.0310 (10)0.0152 (8)0.0245 (9)0.0003 (7)0.0040 (7)0.0008 (7)
C190.0381 (11)0.0246 (9)0.0266 (10)0.0023 (8)0.0079 (8)0.0033 (8)
C200.0311 (10)0.0202 (8)0.0283 (10)0.0031 (7)0.0076 (8)0.0012 (7)
C210.0339 (10)0.0289 (10)0.0298 (10)0.0056 (8)0.0090 (8)0.0021 (8)
C220.0428 (13)0.0622 (16)0.0456 (13)0.0008 (11)0.0165 (11)0.0182 (12)
C230.0471 (15)0.089 (2)0.0461 (15)0.0132 (14)0.0202 (12)0.0094 (14)
C240.0348 (12)0.0761 (18)0.0477 (14)0.0025 (12)0.0135 (11)0.0098 (13)
C250.0322 (12)0.0656 (16)0.0549 (15)0.0057 (11)0.0033 (10)0.0062 (13)
C260.0366 (12)0.0434 (12)0.0406 (12)0.0007 (9)0.0069 (9)0.0078 (10)
Geometric parameters (Å, º) top
S1—C181.7342 (18)C10—C111.398 (3)
S1—C191.712 (2)C10—H10A0.9500
N1—C111.388 (2)C12—C131.509 (3)
N1—C121.464 (2)C12—H12A0.9900
N1—C141.379 (2)C12—H12B0.9900
N2—C171.146 (2)C13—H13A0.9800
N3—C181.307 (2)C13—H13B0.9800
N3—C201.383 (2)C13—H13C0.9800
C1—C21.379 (3)C15—C161.358 (2)
C1—C141.401 (3)C15—H15A0.9500
C1—H1A0.9500C16—C171.434 (3)
C2—C31.415 (2)C16—C181.471 (2)
C2—H2A0.9500C19—C201.362 (3)
C3—C41.401 (3)C19—H19A0.9500
C3—C151.448 (2)C20—C211.475 (3)
C4—C51.392 (2)C21—C261.389 (3)
C4—H4A0.9500C21—C221.395 (3)
C5—C141.406 (2)C22—C231.378 (3)
C5—C61.450 (2)C22—H22A0.9500
C6—C71.391 (3)C23—C241.374 (4)
C6—C111.415 (2)C23—H23A0.9500
C7—C81.384 (3)C24—C251.377 (3)
C7—H7A0.9500C24—H24A0.9500
C8—C91.403 (3)C25—C261.385 (3)
C8—H8A0.9500C25—H25A0.9500
C9—C101.372 (3)C26—H26A0.9500
C9—H9A0.9500
C18—S1—C1988.93 (9)C12—C13—H13A109.5
C11—N1—C12126.54 (15)C12—C13—H13B109.5
C11—N1—C14108.14 (14)H13A—C13—H13B109.5
C12—N1—C14125.15 (15)C12—C13—H13C109.5
C18—N3—C20111.08 (15)H13A—C13—H13C109.5
C2—C1—C14117.76 (17)H13B—C13—H13C109.5
C2—C1—H1A121.1N1—C14—C1128.54 (17)
C14—C1—H1A121.1N1—C14—C5109.72 (15)
C1—C2—C3122.11 (17)C1—C14—C5121.74 (16)
C1—C2—H2A118.9C16—C15—C3131.52 (17)
C3—C2—H2A118.9C16—C15—H15A114.2
C4—C3—C2118.98 (16)C3—C15—H15A114.2
C4—C3—C15117.00 (16)C15—C16—C17124.43 (16)
C2—C3—C15124.00 (16)C15—C16—C18120.34 (16)
C5—C4—C3119.99 (16)C17—C16—C18115.21 (16)
C5—C4—H4A120.0N2—C17—C16177.5 (2)
C3—C4—H4A120.0N3—C18—C16123.25 (16)
C4—C5—C14119.41 (16)N3—C18—S1114.59 (13)
C4—C5—C6133.87 (16)C16—C18—S1122.16 (14)
C14—C5—C6106.72 (15)C20—C19—S1111.09 (14)
C7—C6—C11120.04 (17)C20—C19—H19A124.5
C7—C6—C5134.13 (17)S1—C19—H19A124.5
C11—C6—C5105.83 (16)C19—C20—N3114.30 (17)
C8—C7—C6118.66 (17)C19—C20—C21126.89 (17)
C8—C7—H7A120.7N3—C20—C21118.81 (17)
C6—C7—H7A120.7C26—C21—C22117.6 (2)
C7—C8—C9120.66 (18)C26—C21—C20120.70 (18)
C7—C8—H8A119.7C22—C21—C20121.67 (19)
C9—C8—H8A119.7C23—C22—C21121.1 (2)
C10—C9—C8121.84 (18)C23—C22—H22A119.4
C10—C9—H9A119.1C21—C22—H22A119.4
C8—C9—H9A119.1C24—C23—C22120.4 (2)
C9—C10—C11117.78 (18)C24—C23—H23A119.8
C9—C10—H10A121.1C22—C23—H23A119.8
C11—C10—H10A121.1C23—C24—C25119.5 (2)
N1—C11—C10129.45 (17)C23—C24—H24A120.2
N1—C11—C6109.55 (15)C25—C24—H24A120.2
C10—C11—C6121.00 (17)C24—C25—C26120.2 (2)
N1—C12—C13113.41 (16)C24—C25—H25A119.9
N1—C12—H12A108.9C26—C25—H25A119.9
C13—C12—H12A108.9C25—C26—C21121.1 (2)
N1—C12—H12B108.9C25—C26—H26A119.5
C13—C12—H12B108.9C21—C26—H26A119.5
H12A—C12—H12B107.7
C14—C1—C2—C30.4 (3)C4—C5—C14—N1179.80 (15)
C1—C2—C3—C40.2 (3)C6—C5—C14—N10.06 (19)
C1—C2—C3—C15178.89 (17)C4—C5—C14—C10.1 (2)
C2—C3—C4—C50.6 (2)C6—C5—C14—C1179.98 (16)
C15—C3—C4—C5179.40 (15)C4—C3—C15—C16175.92 (18)
C3—C4—C5—C140.5 (2)C2—C3—C15—C165.4 (3)
C3—C4—C5—C6179.34 (17)C3—C15—C16—C170.9 (3)
C4—C5—C6—C71.5 (3)C3—C15—C16—C18177.52 (17)
C14—C5—C6—C7178.36 (19)C20—N3—C18—C16179.18 (16)
C4—C5—C6—C11179.14 (18)C20—N3—C18—S10.39 (19)
C14—C5—C6—C111.03 (18)C15—C16—C18—N34.4 (3)
C11—C6—C7—C81.5 (3)C17—C16—C18—N3174.18 (16)
C5—C6—C7—C8179.18 (18)C15—C16—C18—S1176.07 (13)
C6—C7—C8—C90.1 (3)C17—C16—C18—S15.4 (2)
C7—C8—C9—C101.0 (3)C19—S1—C18—N30.20 (14)
C8—C9—C10—C110.6 (3)C19—S1—C18—C16179.38 (15)
C14—N1—C11—C10178.64 (17)C18—S1—C19—C200.06 (15)
C12—N1—C11—C105.9 (3)S1—C19—C20—N30.3 (2)
C14—N1—C11—C61.84 (19)S1—C19—C20—C21178.99 (15)
C12—N1—C11—C6173.61 (16)C18—N3—C20—C190.4 (2)
C9—C10—C11—N1178.72 (17)C18—N3—C20—C21178.91 (16)
C9—C10—C11—C60.8 (3)C19—C20—C21—C26175.8 (2)
C7—C6—C11—N1177.73 (15)N3—C20—C21—C263.4 (3)
C5—C6—C11—N11.76 (19)C19—C20—C21—C224.8 (3)
C7—C6—C11—C101.8 (3)N3—C20—C21—C22175.92 (19)
C5—C6—C11—C10178.67 (15)C26—C21—C22—C230.7 (4)
C14—N1—C12—C1381.2 (2)C20—C21—C22—C23178.7 (2)
C11—N1—C12—C13104.1 (2)C21—C22—C23—C240.1 (4)
C11—N1—C14—C1178.92 (17)C22—C23—C24—C251.1 (4)
C12—N1—C14—C15.6 (3)C23—C24—C25—C261.6 (4)
C11—N1—C14—C51.16 (19)C24—C25—C26—C211.0 (4)
C12—N1—C14—C5174.36 (15)C22—C21—C26—C250.2 (3)
C2—C1—C14—N1179.38 (17)C20—C21—C26—C25179.2 (2)
C2—C1—C14—C50.5 (3)

Experimental details

(IIIa)(IIIb)(V)
Crystal data
Chemical formulaC18H13N3C18H15N3SC26H19N3S
Mr271.31305.39405.50
Crystal system, space groupMonoclinic, P21/cTriclinic, P1Monoclinic, P21/c
Temperature (K)298298155
a, b, c (Å)12.731 (3), 4.2160 (8), 26.640 (5)8.4370 (17), 8.7500 (17), 12.300 (3)19.384 (5), 16.456 (4), 6.5323 (17)
α, β, γ (°)90, 96.87 (3), 9079.82 (3), 76.82 (3), 63.76 (3)90, 95.637 (19), 90
V3)1419.6 (5)790.0 (3)2073.6 (9)
Z424
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.080.200.17
Crystal size (mm)0.5 × 0.1 × 0.10.50 × 0.35 × 0.300.45 × 0.30 × 0.25
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Enraf-Nonius CAD-4
diffractometer
Syntex P21
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2575, 2458, 1280 2971, 2762, 2257 4942, 4540, 3066
Rint0.0240.0130.037
(sin θ/λ)max1)0.5940.5940.640
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.156, 1.00 0.039, 0.114, 1.05 0.043, 0.112, 0.92
No. of reflections245827624540
No. of parameters191200272
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.210.33, 0.190.30, 0.32

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), P3 (Siemens, 1989), CAD-4 Software, P3, SHELXTL-Plus (Sheldrick, 1994), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus, SHELXL97.

Selected geometric parameters (Å, º) for (IIIa) top
N2—C171.142 (4)C15—C161.355 (4)
N3—C181.138 (4)C16—C181.424 (5)
C3—C151.432 (4)C16—C171.431 (5)
C2—C3—C15125.1 (3)C18—C16—C17115.2 (3)
C16—C15—C3131.6 (3)N2—C17—C16178.3 (4)
C15—C16—C18119.6 (3)N3—C18—C16178.6 (4)
C15—C16—C17125.2 (3)
C11—N1—C12—C1387.8 (4)
Selected geometric parameters (Å, º) for (IIIb) top
S1—C181.665 (2)C15—C161.351 (3)
N2—C171.146 (3)C16—C171.435 (3)
N3—C181.327 (2)C16—C181.488 (2)
C3—C151.445 (2)
C2—C3—C15123.66 (17)N2—C17—C16175.4 (2)
C16—C15—C3131.64 (18)N3—C18—C16115.93 (17)
C15—C16—C17123.41 (16)N3—C18—S1121.89 (14)
C15—C16—C18121.76 (17)C16—C18—S1122.14 (14)
C17—C16—C18114.82 (16)
C11—N1—C12—C1393.0 (2)
Hydrogen-bond geometry (Å, º) for (IIIb) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···S1i0.862.553.402 (2)170
Symmetry code: (i) x+1, y+1, z+2.
Selected geometric parameters (Å, º) for (V) top
S1—C181.7342 (18)C3—C151.448 (2)
S1—C191.712 (2)C15—C161.358 (2)
N2—C171.146 (2)C16—C171.434 (3)
N3—C181.307 (2)C16—C181.471 (2)
N3—C201.383 (2)C19—C201.362 (3)
C18—S1—C1988.93 (9)N3—C18—C16123.25 (16)
C18—N3—C20111.08 (15)N3—C18—S1114.59 (13)
C2—C3—C15124.00 (16)C16—C18—S1122.16 (14)
C16—C15—C3131.52 (17)C20—C19—S1111.09 (14)
C15—C16—C17124.43 (16)C19—C20—N3114.30 (17)
C15—C16—C18120.34 (16)C19—C20—C21126.89 (17)
C17—C16—C18115.21 (16)N3—C20—C21118.81 (17)
N2—C17—C16177.5 (2)
C11—N1—C12—C13104.1 (2)N3—C20—C21—C263.4 (3)
C15—C16—C18—N34.4 (3)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds