Download citation
Download citation
link to html
In the title compound, [Cu(C20H24N2)2]BF4, the complex cation adopts a distorted tetrahedral structure, the dihedral angle between the least-squares planes of the chelating ligand backbones being 51.1 (2)°. This flattening of the tetrahedral coordination sphere may be driven by the presence of intramolecular π–π stacking interactions between mesityl groups on adjacent ligands.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199015863/bm1389sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199015863/bm1389Isup2.hkl
Contains datablock I

CCDC reference: 143235

Comment top

The title complex, (I), was prepared during our studies of the copper chemistry of bis- and meridional tris-imine ligands (Halcrow et al., 1997; Li et al., 1998; Solanki et al., 1998, 1999). The CuI ion is four coordinate, with the four Cu—N bond lengths being crystallographically indistinguishable. While a tetrahedral geometry might be expected for a four coordinate CuI centre, the geometry about Cu1 is distorted by the restricted bite of the chelating ligands [the average intra-ligand N—Cu—N angle is 82.43 (8)°]. In addition, the coordination sphere is severely twisted towards planarity, the dihedral angle (θ) between the least-squares planes formed by the atoms Cu1/N2/C3/C4/N5 and by Cu1/N24/C25/C26/N27 being 51.1 (2)°; θ 90° for an ideal tetrahedron, and 0° for a square planar structure. For comparison, previously reported crystal structures of CuI/bis-diimine complexes have shown θ values in the range 49–90° (Halcrow et al., 1997, and references therein). The average N—Cu—N angle about Cu1 is 111.94 (15)°, however, which is close to the tetrahedral angle of 109.5°. This suggests that the co-ordination geometry in this complex is still best thought of as being derived from a tetrahedral arrangement of N-donors. \sch

There are two intramolecular ππ stacking interactions within the cation, between mesityl rings on adjacent ligands. For the phenyl rings [C6—C11] and [C28—C33], the dihedral angle between the least-squares mean planes of the two arenes is 4.8 (2)°, the inter-ring spacing is 3.5 Å and the offset between the centroids of the two rings is 0.9 Å. Between [C15—C20] and [C37—C42], the dihedral angle is 1.3 (2)°, the inter-ring spacing is 3.4 Å and the centroid offset is 0.7 Å. In both cases, the inter-centroid offset distance is smaller than the ideal value of 3 Å for an attractive ππ interaction (Hunter & Sanders, 1990). This probably results from the geometric constraints of the copper ion coordination sphere, and suggests that the stacking interactions here should be relatively weak. There are no unusually close intermolecular contacts within the crystal lattice.

It is interesting to compare this structure with that of [Cu(L)2][Cu(O2C6Cl-4-But2-3,6)2] [L = N, N'-bis(tert-butyl)-1,2-ethanediylidenediamine], whose cation adopts a more regular tetrahedral geometry with θ=89° (Zakharov et al., 1990). The difference between these two structures may reflect the increased steric bulk of the tert-butyl compared to the mesityl ligand substituents, which might prevent a planar twist in the latter complex. Alternatively, the planar distortion in our structure may be driven by the formation of the intramolecular ππ interactions.

Experimental top

The diimine ligand was prepared by refluxing glyoxal with 2 molar equivalents of 2,4,6-trimethylaniline in aqueous methanol. The resultant pale yellow precipitate was used without further purification. The title complex was obtained by the treatment of [Cu(NCMe)4]BF4 with 2 molar equivalents of the above yellow solid in MeCN. After filtration and concentration of this solution, dark green crystals were obtained by vapour diffusion of Et2O. Found: C 65.1, H 6.6, N 7.5%. Calculated for C40H48BCuF4N4 C 65.3, H 6.6, N 7.6%.

Refinement top

The BF4- anion is disordered over two orientations: B46—F50, which have an occupancy of 0.6; and B51—F55, of occupancy 0.4. A l l B—F distances were restrained to 1.38 (2) Å, and F···F distances to 2.25 (2) Å. All non-H atoms, including both orientations of the disordered anion, were refined anisotropically, while H atoms were placed in calculated positions and refined using a riding model.

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO-SMN (Otwinowski & Minor, 1996); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEX (McArdle, 1995); software used to prepare material for publication: local program.

Figures top
[Figure 1] Fig. 1. Molecular structure of the complex cation with 50% probability displacement ellipsoids, showing the atom-numbering scheme employed. H atoms have been removed for clarity.
Bis-[N,N'-{2,4,6-trimethylphenyl}-1,2-ethanediylidenediamine]copper(I) tetrafluoroborate top
Crystal data top
[Cu(C20H24N2)2]BF4Dx = 1.333 Mg m3
Mr = 735.17Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 50861 reflections
a = 14.1107 (2) Åθ = 1.0–26.4°
b = 15.5953 (2) ŵ = 0.65 mm1
c = 16.6469 (2) ÅT = 150 K
V = 3663.33 (8) Å3Square prism, dark green
Z = 40.40 × 0.33 × 0.27 mm
F(000) = 1544
Data collection top
Nonius KappaCCD area detector
diffractometer
7500 independent reflections
Radiation source: fine-focus sealed tube7151 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 9.091 pixels mm-1θmax = 26.4°, θmin = 2.0°
Area detector scans (see text)h = 1717
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1919
Tmin = 0.781, Tmax = 0.844l = 2020
50861 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0385P)2 + 1.2582P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.002
7500 reflectionsΔρmax = 0.20 e Å3
497 parametersΔρmin = 0.36 e Å3
20 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.013 (7)
Crystal data top
[Cu(C20H24N2)2]BF4V = 3663.33 (8) Å3
Mr = 735.17Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 14.1107 (2) ŵ = 0.65 mm1
b = 15.5953 (2) ÅT = 150 K
c = 16.6469 (2) Å0.40 × 0.33 × 0.27 mm
Data collection top
Nonius KappaCCD area detector
diffractometer
7500 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
7151 reflections with I > 2σ(I)
Tmin = 0.781, Tmax = 0.844Rint = 0.052
50861 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.073Δρmax = 0.20 e Å3
S = 1.01Δρmin = 0.36 e Å3
7500 reflectionsAbsolute structure: Flack (1983)
497 parametersAbsolute structure parameter: 0.013 (7)
20 restraints
Special details top

Experimental. The unit cell was refined using all data.#

Detector set at 30 mm from sample with different 2θ offsets 1° ϕ exposures for χ = 0° settings 1° ω exposures for χ = 90° settings

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The BF4- anion is disordered over two orientations: B46—F50, occupancy 0.6 B51—F55, occupancy 0.4 A l l B-F distances were restrained to 1.38 (2) Å, and F···F distances to 2.25 (2) Å.

All non-H atoms were refined anisotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.029369 (14)0.794186 (13)0.207145 (13)0.02148 (6)
N20.01712 (11)0.89231 (10)0.27587 (9)0.0247 (3)
C30.09365 (14)0.92550 (13)0.24556 (12)0.0291 (4)
H30.13000.96630.27460.035*
C40.12163 (14)0.89806 (14)0.16582 (12)0.0289 (4)
H40.16880.92800.13630.035*
N50.07975 (11)0.83118 (10)0.13648 (9)0.0240 (3)
C60.00832 (13)0.90691 (11)0.35781 (11)0.0237 (4)
C70.05732 (13)0.89809 (13)0.42084 (12)0.0271 (4)
C80.02452 (16)0.90592 (13)0.49939 (12)0.0304 (4)
H80.06840.90000.54230.036*
C90.07013 (15)0.92201 (13)0.51743 (12)0.0296 (4)
C100.13314 (14)0.93045 (13)0.45378 (12)0.0278 (4)
H100.19790.94180.46500.033*
C110.10446 (13)0.92280 (12)0.37433 (12)0.0252 (4)
C120.16118 (15)0.87762 (17)0.40851 (14)0.0395 (5)
H12A0.18580.84790.45600.059*
H12B0.16840.84070.36130.059*
H12C0.19660.93100.40030.059*
C130.10330 (18)0.92698 (17)0.60337 (13)0.0412 (5)
H13A0.04900.93790.63860.062*
H13B0.14940.97360.60890.062*
H13C0.13310.87260.61850.062*
C140.17573 (14)0.93350 (14)0.30753 (12)0.0307 (4)
H14A0.17600.88190.27390.046*
H14B0.23890.94220.33060.046*
H14C0.15850.98330.27470.046*
C150.09437 (12)0.80413 (12)0.05549 (10)0.0229 (4)
C160.10161 (12)0.71574 (13)0.04280 (11)0.0252 (4)
C170.10701 (13)0.68499 (13)0.03540 (12)0.0279 (4)
H170.11380.62510.04410.033*
C180.10270 (13)0.73989 (14)0.10133 (12)0.0288 (4)
C190.09557 (14)0.82737 (14)0.08681 (12)0.0282 (4)
H190.09270.86530.13140.034*
C200.09241 (13)0.86201 (13)0.00959 (12)0.0259 (4)
C210.10379 (16)0.65368 (13)0.11176 (12)0.0309 (4)
H21A0.11520.59570.09130.046*
H21B0.15470.66970.14890.046*
H21C0.04290.65520.14000.046*
C220.10297 (16)0.70462 (18)0.18561 (12)0.0401 (5)
H22A0.10380.75210.22410.060*
H22B0.15930.66890.19340.060*
H22C0.04590.66990.19410.060*
C230.08194 (17)0.95787 (14)0.00172 (14)0.0368 (5)
H23A0.05180.98080.05020.055*
H23B0.04260.97110.04520.055*
H23C0.14460.98400.00500.055*
N240.07986 (10)0.70144 (10)0.28056 (9)0.0228 (3)
C250.15379 (13)0.66542 (13)0.24949 (12)0.0257 (4)
H250.19150.62660.27970.031*
C260.17743 (13)0.68643 (13)0.16646 (11)0.0261 (4)
H260.22220.65360.13700.031*
N270.13460 (11)0.75201 (10)0.13445 (9)0.0229 (3)
C280.05997 (13)0.68924 (12)0.36452 (10)0.0227 (4)
C290.03333 (14)0.66883 (12)0.38599 (11)0.0255 (4)
C300.05526 (14)0.66072 (13)0.46705 (12)0.0295 (4)
H300.11790.64520.48200.035*
C310.01149 (15)0.67464 (13)0.52675 (12)0.0313 (4)
C320.10252 (14)0.69623 (13)0.50353 (11)0.0301 (4)
H320.14850.70640.54410.036*
C330.12997 (13)0.70369 (13)0.42346 (11)0.0253 (4)
C340.10793 (15)0.65411 (16)0.32289 (13)0.0350 (5)
H34A0.16610.63330.34850.052*
H34B0.08530.61130.28430.052*
H34C0.12100.70810.29480.052*
C350.01495 (19)0.66913 (18)0.61478 (13)0.0477 (6)
H35A0.03130.63320.64310.072*
H35B0.07820.64380.62000.072*
H35C0.01500.72680.63820.072*
C360.23112 (14)0.72921 (14)0.40429 (13)0.0326 (4)
H36A0.25960.75690.45130.049*
H36B0.23140.76930.35890.049*
H36C0.26780.67800.39020.049*
C370.14559 (13)0.77028 (12)0.05085 (11)0.0236 (4)
C380.14232 (13)0.70600 (15)0.00825 (11)0.0277 (4)
C390.14409 (14)0.73149 (15)0.08899 (12)0.0324 (5)
H390.14180.68870.12950.039*
C400.14906 (14)0.81637 (15)0.11177 (12)0.0339 (5)
C410.15434 (14)0.87877 (14)0.05192 (13)0.0314 (4)
H410.15970.93740.06680.038*
C420.15190 (13)0.85711 (13)0.02911 (12)0.0263 (4)
C430.13104 (17)0.61161 (14)0.00855 (13)0.0360 (5)
H43A0.19350.58590.01750.054*
H43B0.10050.58380.03750.054*
H43C0.09180.60370.05660.054*
C440.14486 (17)0.84192 (18)0.19917 (14)0.0454 (6)
H44A0.15870.79190.23280.068*
H44B0.19180.88690.20960.068*
H44C0.08140.86360.21180.068*
C450.15826 (16)0.92677 (14)0.09182 (13)0.0326 (4)
H45A0.16710.98230.06540.049*
H45B0.21220.91540.12740.049*
H45C0.09970.92780.12340.049*
B460.3561 (5)0.5165 (5)0.2796 (5)0.0368 (16)0.60
F470.2963 (5)0.5220 (4)0.3462 (5)0.0463 (11)0.60
F480.3003 (7)0.5127 (6)0.2121 (6)0.0544 (19)0.60
F490.4044 (2)0.5945 (2)0.27946 (17)0.0729 (9)0.60
F500.4170 (3)0.4509 (2)0.2872 (2)0.0928 (12)0.60
B510.3470 (7)0.4891 (6)0.2562 (7)0.035 (2)0.40
F520.3373 (3)0.4027 (2)0.2581 (2)0.0555 (10)0.40
F530.4414 (2)0.5121 (3)0.2442 (3)0.0632 (12)0.40
F540.2917 (9)0.5241 (8)0.1951 (7)0.0327 (16)0.40
F550.3165 (9)0.5210 (8)0.3305 (7)0.072 (3)0.40
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02117 (10)0.02301 (11)0.02024 (10)0.00212 (9)0.00065 (8)0.00040 (8)
N20.0265 (8)0.0249 (7)0.0227 (8)0.0005 (6)0.0001 (6)0.0004 (6)
C30.0312 (10)0.0282 (10)0.0280 (10)0.0080 (8)0.0006 (8)0.0011 (8)
C40.0268 (10)0.0324 (11)0.0276 (10)0.0071 (8)0.0026 (7)0.0013 (8)
N50.0228 (7)0.0260 (8)0.0233 (8)0.0025 (7)0.0007 (6)0.0004 (6)
C60.0283 (9)0.0203 (8)0.0225 (9)0.0006 (7)0.0022 (7)0.0019 (7)
C70.0268 (10)0.0270 (10)0.0274 (10)0.0014 (8)0.0018 (7)0.0022 (8)
C80.0347 (10)0.0308 (10)0.0257 (10)0.0034 (9)0.0056 (9)0.0009 (7)
C90.0403 (11)0.0263 (10)0.0221 (10)0.0000 (9)0.0017 (8)0.0004 (7)
C100.0306 (10)0.0278 (10)0.0251 (10)0.0031 (8)0.0038 (8)0.0001 (8)
C110.0276 (9)0.0221 (9)0.0258 (10)0.0013 (8)0.0001 (7)0.0013 (7)
C120.0291 (11)0.0549 (14)0.0346 (12)0.0044 (10)0.0033 (9)0.0043 (10)
C130.0483 (13)0.0509 (14)0.0243 (11)0.0034 (11)0.0045 (9)0.0000 (9)
C140.0295 (10)0.0359 (11)0.0267 (11)0.0044 (8)0.0009 (8)0.0019 (8)
C150.0178 (8)0.0298 (10)0.0211 (9)0.0001 (8)0.0026 (6)0.0001 (7)
C160.0214 (8)0.0282 (10)0.0261 (9)0.0020 (8)0.0017 (7)0.0010 (8)
C170.0278 (9)0.0294 (10)0.0264 (10)0.0004 (8)0.0034 (7)0.0030 (8)
C180.0235 (9)0.0405 (11)0.0224 (10)0.0006 (8)0.0022 (7)0.0019 (8)
C190.0243 (9)0.0373 (11)0.0231 (10)0.0010 (8)0.0022 (7)0.0066 (8)
C200.0224 (9)0.0288 (10)0.0265 (10)0.0015 (8)0.0048 (7)0.0064 (8)
C210.0390 (11)0.0284 (10)0.0252 (10)0.0070 (9)0.0057 (8)0.0036 (8)
C220.0405 (11)0.0555 (13)0.0243 (11)0.0006 (11)0.0013 (8)0.0053 (10)
C230.0441 (12)0.0303 (11)0.0361 (12)0.0036 (10)0.0088 (9)0.0055 (9)
N240.0234 (7)0.0234 (7)0.0218 (8)0.0013 (6)0.0002 (6)0.0014 (6)
C250.0251 (9)0.0270 (9)0.0251 (10)0.0026 (8)0.0000 (7)0.0010 (8)
C260.0245 (9)0.0286 (10)0.0252 (10)0.0022 (8)0.0014 (7)0.0017 (7)
N270.0220 (7)0.0256 (8)0.0213 (8)0.0019 (6)0.0005 (6)0.0017 (6)
C280.0259 (9)0.0243 (9)0.0180 (9)0.0036 (7)0.0003 (7)0.0033 (7)
C290.0268 (9)0.0245 (8)0.0253 (9)0.0001 (8)0.0006 (8)0.0025 (7)
C300.0312 (10)0.0285 (10)0.0286 (10)0.0013 (8)0.0083 (8)0.0028 (8)
C310.0411 (11)0.0303 (10)0.0224 (10)0.0083 (9)0.0057 (8)0.0018 (7)
C320.0345 (10)0.0330 (10)0.0229 (9)0.0080 (9)0.0047 (8)0.0001 (8)
C330.0248 (9)0.0249 (9)0.0262 (9)0.0035 (8)0.0012 (7)0.0022 (8)
C340.0282 (10)0.0477 (13)0.0290 (11)0.0090 (9)0.0000 (8)0.0022 (9)
C350.0566 (15)0.0645 (15)0.0220 (11)0.0107 (13)0.0079 (10)0.0017 (10)
C360.0282 (10)0.0383 (11)0.0314 (11)0.0001 (8)0.0057 (8)0.0003 (8)
C370.0207 (8)0.0303 (10)0.0199 (9)0.0010 (7)0.0033 (7)0.0023 (7)
C380.0227 (9)0.0342 (10)0.0261 (10)0.0007 (9)0.0039 (7)0.0013 (9)
C390.0261 (9)0.0469 (13)0.0243 (10)0.0006 (9)0.0017 (8)0.0048 (9)
C400.0246 (9)0.0543 (14)0.0227 (10)0.0044 (9)0.0001 (7)0.0049 (9)
C410.0273 (10)0.0381 (11)0.0287 (11)0.0035 (9)0.0002 (8)0.0091 (9)
C420.0231 (9)0.0313 (10)0.0244 (10)0.0036 (8)0.0003 (7)0.0056 (8)
C430.0423 (12)0.0325 (11)0.0331 (12)0.0008 (10)0.0027 (9)0.0056 (9)
C440.0399 (11)0.0727 (17)0.0236 (11)0.0061 (11)0.0002 (9)0.0105 (11)
C450.0362 (11)0.0294 (10)0.0323 (11)0.0046 (9)0.0013 (8)0.0044 (8)
B460.031 (3)0.044 (4)0.035 (5)0.002 (3)0.001 (3)0.015 (3)
F470.039 (2)0.044 (2)0.056 (3)0.0040 (16)0.0060 (19)0.0022 (17)
F480.048 (2)0.069 (5)0.047 (4)0.002 (3)0.013 (2)0.004 (3)
F490.0752 (18)0.082 (2)0.0616 (18)0.0413 (17)0.0144 (15)0.0261 (16)
F500.091 (2)0.097 (3)0.090 (2)0.062 (2)0.006 (2)0.013 (2)
B510.027 (4)0.045 (6)0.033 (6)0.006 (4)0.001 (4)0.003 (4)
F520.082 (3)0.0317 (18)0.053 (2)0.0170 (19)0.010 (2)0.0166 (16)
F530.0197 (16)0.106 (4)0.064 (3)0.0115 (18)0.0028 (15)0.023 (3)
F540.033 (3)0.027 (2)0.038 (4)0.0017 (19)0.006 (2)0.011 (2)
F550.067 (7)0.104 (6)0.045 (5)0.019 (4)0.000 (4)0.016 (4)
Geometric parameters (Å, º) top
Cu1—N22.0202 (15)C25—C261.459 (3)
Cu1—N242.0232 (15)C26—N271.302 (2)
Cu1—N52.0219 (16)N27—C371.429 (2)
Cu1—N272.0253 (15)C28—C291.401 (3)
N2—C31.299 (3)C28—C331.410 (3)
N2—C61.429 (2)C29—C301.390 (3)
C3—C41.450 (3)C29—C341.505 (3)
C4—N51.294 (3)C30—C311.386 (3)
N5—C151.428 (2)C31—C321.383 (3)
C6—C111.406 (3)C31—C351.515 (3)
C6—C71.406 (3)C32—C331.393 (3)
C7—C81.392 (3)C33—C361.516 (3)
C7—C121.514 (3)C37—C421.405 (3)
C8—C91.392 (3)C37—C381.405 (3)
C9—C101.389 (3)C38—C391.402 (3)
C9—C131.507 (3)C38—C431.507 (3)
C10—C111.388 (3)C39—C401.379 (3)
C11—C141.509 (3)C40—C411.395 (3)
C15—C161.398 (3)C40—C441.510 (3)
C15—C201.410 (3)C41—C421.391 (3)
C16—C171.389 (3)C42—C451.509 (3)
C16—C211.502 (3)B46—F501.342 (7)
C17—C181.393 (3)B46—F481.374 (9)
C18—C191.389 (3)B46—F491.394 (7)
C18—C221.507 (3)B46—F471.395 (8)
C19—C201.395 (3)B51—F521.354 (10)
C20—C231.508 (3)B51—F531.393 (10)
N24—C251.293 (2)B51—F541.393 (11)
N24—C281.438 (2)B51—F551.402 (12)
N2—Cu1—N24108.29 (6)N24—C25—C26117.77 (17)
N2—Cu1—N582.30 (6)N27—C26—C25117.26 (18)
N24—Cu1—N5145.46 (6)C26—N27—C37120.32 (16)
N2—Cu1—N27145.34 (6)C26—N27—Cu1110.54 (13)
N24—Cu1—N2782.56 (6)C37—N27—Cu1126.64 (12)
N5—Cu1—N27107.66 (6)C29—C28—C33121.12 (16)
C3—N2—C6121.07 (16)C29—C28—N24117.49 (15)
C3—N2—Cu1110.59 (13)C33—C28—N24121.22 (16)
C6—N2—Cu1125.44 (12)C30—C29—C28118.53 (18)
N2—C3—C4117.67 (18)C30—C29—C34120.53 (18)
N5—C4—C3117.33 (18)C28—C29—C34120.93 (17)
C4—N5—C15121.91 (17)C31—C30—C29122.03 (18)
C4—N5—Cu1110.98 (13)C32—C31—C30117.95 (18)
C15—N5—Cu1125.11 (12)C32—C31—C35120.9 (2)
C11—C6—C7120.44 (17)C30—C31—C35121.2 (2)
C11—C6—N2117.21 (16)C31—C32—C33123.10 (19)
C7—C6—N2122.09 (16)C32—C33—C28117.24 (17)
C8—C7—C6118.24 (18)C32—C33—C36119.03 (17)
C8—C7—C12117.87 (18)C28—C33—C36123.71 (17)
C6—C7—C12123.86 (18)C42—C37—C38120.63 (18)
C7—C8—C9122.51 (19)C42—C37—N27116.75 (17)
C10—C9—C8117.81 (19)C38—C37—N27122.41 (17)
C10—C9—C13121.35 (19)C39—C38—C37117.9 (2)
C8—C9—C13120.81 (19)C39—C38—C43117.18 (19)
C9—C10—C11122.14 (19)C37—C38—C43124.78 (18)
C10—C11—C6118.86 (18)C40—C39—C38122.5 (2)
C10—C11—C14119.90 (17)C39—C40—C41118.43 (19)
C6—C11—C14121.22 (17)C39—C40—C44121.1 (2)
C16—C15—C20121.09 (17)C41—C40—C44120.4 (2)
C16—C15—N5116.39 (16)C40—C41—C42121.5 (2)
C20—C15—N5122.24 (17)C41—C42—C37119.05 (19)
C17—C16—C15119.06 (18)C41—C42—C45119.64 (18)
C17—C16—C21119.52 (18)C37—C42—C45121.30 (17)
C15—C16—C21121.43 (17)F50—B46—F48114.2 (7)
C16—C17—C18121.58 (19)F50—B46—F49110.7 (5)
C19—C18—C17118.01 (18)F48—B46—F49108.4 (6)
C19—C18—C22121.4 (2)F50—B46—F47111.1 (6)
C17—C18—C22120.6 (2)F48—B46—F47107.8 (7)
C18—C19—C20122.88 (18)F49—B46—F47104.1 (6)
C19—C20—C15117.34 (18)F52—B51—F53110.9 (8)
C19—C20—C23117.85 (18)F52—B51—F54110.5 (8)
C15—C20—C23124.73 (18)F53—B51—F54109.3 (9)
C25—N24—C28119.26 (15)F52—B51—F55107.5 (9)
C25—N24—Cu1110.68 (12)F53—B51—F55109.2 (9)
C28—N24—Cu1127.80 (12)F54—B51—F55109.5 (10)

Experimental details

Crystal data
Chemical formula[Cu(C20H24N2)2]BF4
Mr735.17
Crystal system, space groupOrthorhombic, P212121
Temperature (K)150
a, b, c (Å)14.1107 (2), 15.5953 (2), 16.6469 (2)
V3)3663.33 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.65
Crystal size (mm)0.40 × 0.33 × 0.27
Data collection
DiffractometerNonius KappaCCD area detector
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.781, 0.844
No. of measured, independent and
observed [I > 2σ(I)] reflections
50861, 7500, 7151
Rint0.052
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.073, 1.01
No. of reflections7500
No. of parameters497
No. of restraints20
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.36
Absolute structureFlack (1983)
Absolute structure parameter0.013 (7)

Computer programs: COLLECT (Nonius, 1999), DENZO-SMN (Otwinowski & Minor, 1996), DENZO-SMN, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEX (McArdle, 1995), local program.

Selected geometric parameters (Å, º) top
Cu1—N22.0202 (15)Cu1—N52.0219 (16)
Cu1—N242.0232 (15)Cu1—N272.0253 (15)
N2—Cu1—N24108.29 (6)N2—Cu1—N27145.34 (6)
N2—Cu1—N582.30 (6)N24—Cu1—N2782.56 (6)
N24—Cu1—N5145.46 (6)N5—Cu1—N27107.66 (6)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds