Download citation
Download citation
link to html
The structure of the title compound, C30H30N4O4S2, is highly conditioned in the solid state by two strong N—H...N interactions. The values of the distances between the aminic N atoms [5.865 (3) Å] and the iminic N atoms [2.930 (4) Å], in conjunction with the long distance between the S atoms of the two tosyl groups [7.673 (1) Å], suggest that when the molecule acts as a ligand it will provide a single cavity for N4 coordination to the metal centre.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827019901519X/bm1378sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827019901519X/bm1378Isup2.hkl
Contains datablock I

CCDC reference: 143252

Comment top

The development of Schiff base ligands has received considerable interest since Zhang et al. (1990) and Irie et al. (1990) had success in the asymmetric epoxidation of unfunctionalized olefins with MnIII complexes containing salen-type ligands as catalysts. These ligands yield complexes which seem rather promising for other one-O-atom transfer processes (epoxidation of enolates, oxidation of sulfide to sulfoxide, catalase reaction, water photolysis, etc) and other catalytic asymmetric reactions such as azidination of olefins, Diels-Alder cycloaddition, enantioselective cyclopropanation of styrenes and ring opening of epoxides. During our search of new metal catalysts containing salen-type ligands, we have determined the crystal structure of the title compound, (I). \scheme

Previously, some non-planar N4 Schiff bases similar to (I) have been reported (Mahía, Maestro, Vázquez, Bermejo, Sanmartín & Maneiro, 1999; Bailey et al., 1974; Bailey & McKenzie, 1980). As previously seen for N,N'-bis-(2-tosylaminobenzylidene)-1,3-propanediamine (PTS) (Mahía, Maestro, Vázquez, Bermejo, Sanmartín & Maneiro, 1999), the structure of (I) is highly conditioned by two strong N—H···N interactions, N1—H1A···N2 and N4—H4A···N3 (Fig. 1). Due to these, the atoms H1A, N1, C8, C13, C14 and N2, and H4A, N4, C23, C18, C17 and N3 form two six-membered rings, with r.m.s. deviations of 0.0296 and 0.0354 Å, respectively. This interaction also involves the opening of the bond angles C8—N1—S1 and C23—N4—S2 to 123.9 (2) and 124.2 (2)°, respectively, close to the expected value for an sp2 central atom. There are also two weak intermolecular C—H···O interactions, namely C10—H10A···O1i and C17—H17A···O1ii [symmetry codes: (i) x - 1, y, z; (ii) x + 1, y, z].

The angle between the least-squares planes of the C8—C13 and C18—C23 rings is 82.76 (8)°, and the value of the C14—N2—C15—C16 torsion angle is -109.1 (3)°. However, the two members of the methylene chain are coplanar with the conjugated system formed by the C18—C23 ring and its imino group, as the C17—N3—C16—C15 torsion angle confirms [179.3 (3)°].

The bond angles C5—S1—N1 and C24—S2—N4 and the torsion angles C8—N1—S1—C5 and C23—N4—S2—C24 indicate that both tosyl groups adopt a similar conformation in the molecule. They appear in opposite positions, probably to minimize the steric repulsion.

Finally, there are some structural differences between the molecules of (I) and PTS. The spatial disposition of the tosyl groups with respect to their benzylidene rings is similar for both ligands, but the conformation of the tosyl groups with respect to each other is completely different for the two compounds. Both aromatic rings of the tosyl groups are practically perpendicular in PTS, forming an angle of 82.5 (1)°, while the same aromatic rings adopt a semi-parallel conformation in (I) [17.1 (2)°]. The distance between the iminic N atoms N2···N3 is longer in PTS [4.413 (3) Å] than in (I) [2.930 (4) Å]. Additionally, the distance between the aminic N atoms N1···N4 is shorter in (I) [5.865 (3) Å] than in PTS [7.724 (3) Å]. Consequently, the distance between the S atoms is longer in the PTS molecule [9.007 (1), versus 7.673 (1) Å in (I)]. These distances suggest a monocompartmental N4 behaviour of (I) in its complexes. Clearly, rotation about the C15—C16 bond to give a near eclipsed or gauche conformation would achieve quasi square-planar coordination environments.

Experimental top

The title Schiff base was synthesized by condensation of 2-tosylaminobenzaldehyde (Chernova et al., 1971; Mahía, Maestro, Vázquez, Bermejo, González & Maneiro, 1999) and 1,2-ethanediamine. To a solution of 2-tosylaminobenzaldehyde (1 g, 3.58 mmol) in chloroform (150 ml) was added 1,2-ethanediamine (0.12 ml, 1.79 mmol). The mixture was heated to 343 K and stirred for 3 h. The resultant yellow solution was filtered and then concentrated. Yellow crystals of (I) were formed after one night of slow evaporation at room temperature (yield: 0.8 g, 77.7%; b.p: 480–487 K). Elemental analysis for C30H30N4O4S2, calculated (found): C 62.72 (62.65), H 5.05 (5.14), N 9.75 (9.59), S 10.76 (10.38)%; mass spectroscopy, M+, calculated (found): 574.8 (575.3); 1H NMR (CDCl3, p.p.m.): 13.0 (s, 2H), 8.5 (s, 2H), 7.5–6.7 (m, 16H), 4.1 (s, 4H), 2.1 (s, 6H); IR spectroscopy (KBr, cm-1): ν(CN) 1635 (s), ν(C—N) 1334 (s), νasy(SO2) 1284 (s), νsym(SO2) 1156 (s).

Refinement top

The positions of all H atoms were calculated geometrically and a riding model was used in their refinement, except for those involved in the intramolecular hydrogen bonds (H1A and H4A), which were found in a difference electron density map and then refined with their coordinates riding on the corresponding carrier heteroatom.

Computing details top

Data collection: SMART (Siemens, 1995); cell refinement: SMART; data reduction: SAINT (Siemens, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing 30% probability displacement ellipsoids. H atoms (except for those involved in the intramolecular hydrogen bonds) are omitted for clarity.
N,N'-bis-(2-tosylaminobenzylidene)-1,2-ethanediamine top
Crystal data top
C30H30N4O4S2F(000) = 2416
Mr = 574.70Dx = 1.324 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 8.5144 (1) ÅCell parameters from 7195 reflections
b = 22.7900 (3) Åθ = 3–28°
c = 29.9046 (3) ŵ = 0.23 mm1
β = 96.600 (1)°T = 298 K
V = 5764.33 (12) Å3Plate, yellow
Z = 80.30 × 0.20 × 0.05 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
5078 independent reflections
Radiation source: fine-focus sealed tube3207 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: empirical (using intensity measurements)
SADABS (Sheldrick, 1996)
h = 109
Tmin = 0.715, Tmax = 1.000k = 2626
11944 measured reflectionsl = 2535
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0432P)2 + 4.8618P]
where P = (Fo2 + 2Fc2)/3
5078 reflections(Δ/σ)max = 0.001
365 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C30H30N4O4S2V = 5764.33 (12) Å3
Mr = 574.70Z = 8
Monoclinic, C2/cMo Kα radiation
a = 8.5144 (1) ŵ = 0.23 mm1
b = 22.7900 (3) ÅT = 298 K
c = 29.9046 (3) Å0.30 × 0.20 × 0.05 mm
β = 96.600 (1)°
Data collection top
Bruker SMART CCD area detector
diffractometer
5078 independent reflections
Absorption correction: empirical (using intensity measurements)
SADABS (Sheldrick, 1996)
3207 reflections with I > 2σ(I)
Tmin = 0.715, Tmax = 1.000Rint = 0.053
11944 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.127H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.18 e Å3
5078 reflectionsΔρmin = 0.29 e Å3
365 parameters
Special details top

Experimental. Data were collected using a Bruker SMART CCD based diffractometer operating at room temperature. Data were measured using ω scans of 0.3 degrees per frame for 60 s. A total of 1420 frames were collected. At the end of each set of frames the first 50 were recollected: analysis of these indicated no significant crystal decay.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.81348 (10)0.66496 (4)0.17771 (3)0.0538 (3)
S20.39195 (9)0.38542 (4)0.08494 (3)0.0456 (2)
O10.9772 (3)0.66413 (12)0.17160 (9)0.0771 (8)
O20.7476 (3)0.71657 (10)0.19534 (8)0.0701 (7)
O30.3648 (3)0.43409 (9)0.05474 (8)0.0625 (7)
O40.2736 (2)0.36971 (10)0.11312 (8)0.0586 (6)
N10.7245 (3)0.65178 (11)0.12729 (8)0.0469 (7)
H1A0.77850.62260.11140.078 (12)*
N20.7618 (3)0.56358 (11)0.06893 (8)0.0464 (7)
N30.8384 (3)0.44369 (11)0.09948 (9)0.0445 (6)
N40.5563 (3)0.40220 (11)0.11620 (8)0.0443 (6)
H4A0.63190.43120.10410.094 (13)*
C10.6918 (6)0.4571 (2)0.29482 (17)0.1200 (19)
H1B0.74980.42390.28580.180*
H1C0.58090.44820.29150.180*
H1D0.72620.46630.32570.180*
C20.7211 (5)0.5094 (2)0.26556 (14)0.0743 (11)
C30.7728 (7)0.50191 (19)0.22435 (16)0.1049 (17)
H3A0.79100.46420.21430.126*
C40.7986 (6)0.54884 (18)0.19739 (14)0.0924 (15)
H4B0.83380.54260.16950.111*
C50.7727 (4)0.60489 (14)0.21139 (10)0.0478 (8)
C60.7199 (5)0.61279 (18)0.25242 (13)0.0759 (12)
H6A0.70030.65040.26250.091*
C70.6957 (5)0.5647 (2)0.27893 (14)0.0881 (13)
H7A0.66080.57070.30690.106*
C80.5592 (4)0.64177 (13)0.11772 (10)0.0420 (7)
C90.4498 (4)0.67798 (14)0.13484 (11)0.0538 (9)
H9A0.48430.70910.15360.065*
C100.2901 (4)0.66817 (17)0.12421 (13)0.0654 (10)
H10A0.21760.69280.13580.078*
C110.2369 (4)0.62251 (17)0.09672 (13)0.0647 (10)
H11A0.12890.61590.09010.078*
C120.3435 (4)0.58654 (15)0.07902 (11)0.0561 (9)
H12A0.30680.55560.06040.067*
C130.5064 (4)0.59554 (13)0.08852 (10)0.0437 (8)
C140.6129 (4)0.55779 (13)0.06615 (10)0.0461 (8)
H14A0.56770.52720.04850.055*
C150.8511 (4)0.52186 (14)0.04454 (11)0.0549 (9)
H15A0.92180.54300.02700.066*
H15B0.77880.49910.02390.066*
C160.9460 (4)0.48118 (14)0.07738 (11)0.0514 (8)
H16A1.01530.45710.06150.062*
H16B1.01090.50400.09980.062*
C170.8966 (3)0.40648 (14)0.12770 (11)0.0445 (8)
H17A1.00620.40420.13280.053*
C180.8062 (3)0.36662 (13)0.15313 (10)0.0394 (7)
C190.8894 (4)0.33052 (14)0.18526 (11)0.0537 (9)
H19A0.99930.33220.18930.064*
C200.8128 (4)0.29273 (15)0.21101 (12)0.0585 (9)
H20A0.87040.26910.23240.070*
C210.6506 (4)0.28978 (15)0.20521 (11)0.0547 (9)
H21A0.59880.26370.22240.066*
C220.5640 (4)0.32503 (14)0.17412 (11)0.0496 (8)
H22A0.45420.32310.17090.059*
C230.6398 (3)0.36329 (12)0.14772 (9)0.0379 (7)
C240.4328 (3)0.32313 (13)0.05380 (10)0.0384 (7)
C250.3791 (4)0.26814 (14)0.06448 (11)0.0483 (8)
H25A0.32070.26350.08870.058*
C260.4128 (4)0.22043 (14)0.03897 (12)0.0550 (9)
H26A0.37770.18350.04650.066*
C270.4978 (4)0.22610 (15)0.00233 (11)0.0496 (8)
C280.5495 (4)0.28157 (16)0.00783 (11)0.0561 (9)
H28A0.60660.28650.03230.067*
C290.5179 (4)0.32923 (15)0.01746 (11)0.0506 (8)
H29A0.55410.36610.01010.061*
C300.5301 (5)0.17372 (17)0.02567 (14)0.0790 (12)
H30A0.56050.18660.05400.119*
H30B0.43630.15010.03090.119*
H30C0.61390.15090.01010.119*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0531 (5)0.0523 (6)0.0570 (5)0.0145 (4)0.0103 (4)0.0112 (4)
S20.0323 (4)0.0447 (5)0.0573 (5)0.0055 (4)0.0055 (3)0.0051 (4)
O10.0487 (15)0.095 (2)0.0881 (19)0.0287 (14)0.0122 (13)0.0095 (16)
O20.0953 (19)0.0458 (14)0.0704 (17)0.0079 (13)0.0149 (14)0.0215 (13)
O30.0613 (15)0.0433 (13)0.0762 (16)0.0122 (11)0.0209 (12)0.0046 (12)
O40.0291 (11)0.0769 (17)0.0712 (15)0.0006 (11)0.0112 (11)0.0181 (13)
N10.0501 (16)0.0462 (16)0.0465 (16)0.0080 (13)0.0149 (13)0.0073 (13)
N20.0596 (18)0.0401 (15)0.0422 (15)0.0049 (14)0.0170 (13)0.0009 (12)
N30.0382 (14)0.0396 (15)0.0566 (17)0.0018 (12)0.0096 (12)0.0043 (14)
N40.0337 (14)0.0408 (15)0.0562 (16)0.0038 (12)0.0042 (12)0.0029 (13)
C10.156 (5)0.104 (4)0.100 (4)0.003 (3)0.011 (3)0.053 (3)
C20.086 (3)0.075 (3)0.059 (3)0.001 (2)0.002 (2)0.013 (2)
C30.186 (5)0.055 (3)0.080 (3)0.025 (3)0.041 (3)0.005 (2)
C40.163 (5)0.061 (3)0.062 (3)0.016 (3)0.049 (3)0.000 (2)
C50.0498 (19)0.051 (2)0.0427 (18)0.0031 (16)0.0050 (15)0.0074 (16)
C60.106 (3)0.064 (3)0.061 (2)0.000 (2)0.029 (2)0.014 (2)
C70.119 (4)0.094 (4)0.056 (3)0.001 (3)0.032 (2)0.002 (3)
C80.0472 (19)0.0410 (18)0.0396 (17)0.0007 (15)0.0124 (14)0.0049 (15)
C90.059 (2)0.049 (2)0.057 (2)0.0017 (17)0.0201 (18)0.0090 (17)
C100.058 (2)0.068 (3)0.073 (3)0.009 (2)0.020 (2)0.001 (2)
C110.045 (2)0.070 (3)0.079 (3)0.000 (2)0.0080 (19)0.005 (2)
C120.058 (2)0.053 (2)0.057 (2)0.0060 (18)0.0004 (18)0.0001 (17)
C130.0518 (19)0.0359 (17)0.0444 (18)0.0003 (15)0.0099 (15)0.0039 (15)
C140.064 (2)0.0359 (18)0.0381 (18)0.0015 (17)0.0060 (16)0.0002 (14)
C150.073 (2)0.046 (2)0.049 (2)0.0050 (18)0.0250 (18)0.0021 (17)
C160.0484 (19)0.0428 (19)0.066 (2)0.0026 (16)0.0215 (17)0.0036 (17)
C170.0286 (16)0.0483 (19)0.057 (2)0.0025 (15)0.0049 (14)0.0042 (17)
C180.0322 (16)0.0406 (18)0.0446 (17)0.0027 (14)0.0011 (13)0.0026 (15)
C190.0367 (18)0.056 (2)0.066 (2)0.0039 (16)0.0057 (16)0.0119 (19)
C200.057 (2)0.058 (2)0.056 (2)0.0016 (18)0.0123 (17)0.0144 (19)
C210.062 (2)0.052 (2)0.049 (2)0.0091 (18)0.0046 (17)0.0088 (17)
C220.0368 (18)0.053 (2)0.059 (2)0.0057 (16)0.0086 (16)0.0024 (17)
C230.0406 (17)0.0342 (16)0.0378 (16)0.0005 (14)0.0004 (13)0.0042 (14)
C240.0324 (16)0.0412 (18)0.0414 (17)0.0029 (14)0.0029 (13)0.0027 (14)
C250.0479 (19)0.047 (2)0.051 (2)0.0013 (16)0.0128 (16)0.0020 (16)
C260.060 (2)0.0385 (19)0.066 (2)0.0044 (17)0.0053 (18)0.0017 (18)
C270.0445 (19)0.049 (2)0.053 (2)0.0087 (16)0.0043 (16)0.0081 (17)
C280.058 (2)0.066 (3)0.046 (2)0.0004 (19)0.0131 (16)0.0025 (19)
C290.053 (2)0.046 (2)0.054 (2)0.0047 (17)0.0091 (17)0.0046 (17)
C300.072 (3)0.079 (3)0.084 (3)0.010 (2)0.001 (2)0.032 (2)
Geometric parameters (Å, º) top
S1—O11.427 (2)C5—C61.366 (5)
S1—O21.430 (2)C6—C71.382 (5)
S1—N11.636 (3)C8—C91.386 (4)
S1—C51.758 (3)C8—C131.409 (4)
S1—S27.6731 (11)C9—C101.379 (5)
S2—O41.431 (2)C10—C111.370 (5)
S2—O31.432 (2)C11—C121.374 (5)
S2—N41.636 (2)C12—C131.398 (4)
S2—C241.754 (3)C13—C141.466 (4)
N1—C81.421 (4)C15—C161.514 (4)
N1—N22.705 (3)C17—C181.460 (4)
N1—N45.865 (3)C18—C191.395 (4)
N2—C141.268 (4)C18—C231.409 (4)
N2—C151.463 (4)C19—C201.370 (4)
N2—N32.930 (4)C20—C211.373 (4)
N3—C171.257 (4)C21—C221.377 (4)
N3—C161.465 (4)C22—C231.385 (4)
N3—N42.681 (3)C24—C291.381 (4)
N4—C231.423 (4)C24—C251.384 (4)
C1—C21.515 (5)C25—C261.377 (4)
C2—C71.347 (5)C26—C271.387 (5)
C2—C31.366 (5)C27—C281.384 (4)
C3—C41.372 (5)C27—C301.502 (4)
C4—C51.370 (5)C28—C291.368 (4)
O1—S1—O2119.27 (16)C7—C2—C3117.6 (4)
O1—S1—N1103.62 (14)C7—C2—C1121.4 (4)
O2—S1—N1109.34 (15)C3—C2—C1121.0 (4)
O1—S1—C5108.87 (16)C2—C3—C4121.5 (4)
O2—S1—C5108.52 (15)C5—C4—C3120.3 (4)
N1—S1—C5106.50 (14)C6—C5—C4118.6 (3)
O1—S1—S2111.46 (11)C6—C5—S1121.3 (3)
O2—S1—S2128.99 (11)C4—C5—S1120.1 (3)
N1—S1—S250.67 (9)C5—C6—C7119.8 (4)
C5—S1—S256.32 (10)C2—C7—C6122.2 (4)
O4—S2—O3119.42 (14)C9—C8—C13119.6 (3)
O4—S2—N4109.62 (14)C9—C8—N1121.4 (3)
O3—S2—N4104.18 (13)C13—C8—N1118.9 (3)
O4—S2—C24107.82 (14)C10—C9—C8120.3 (3)
O3—S2—C24108.62 (14)C11—C10—C9120.7 (3)
N4—S2—C24106.47 (13)C10—C11—C12119.8 (3)
O4—S2—S1109.06 (9)C11—C12—C13121.2 (3)
O3—S2—S167.67 (9)C12—C13—C8118.3 (3)
N4—S2—S142.75 (9)C12—C13—C14118.2 (3)
C24—S2—S1138.64 (10)C8—C13—C14123.5 (3)
C8—N1—S1123.9 (2)N2—C14—C13125.1 (3)
C8—N1—N286.44 (17)N2—C15—C16110.1 (3)
S1—N1—N2130.91 (15)N3—C16—C15109.6 (3)
C8—N1—N466.64 (16)N3—C17—C18125.3 (3)
S1—N1—N4108.33 (11)C19—C18—C23118.2 (3)
N2—N1—N444.67 (7)C19—C18—C17118.0 (3)
C14—N2—C15118.2 (3)C23—C18—C17123.9 (3)
C14—N2—N185.91 (19)C20—C19—C18121.4 (3)
C15—N2—N1155.6 (2)C19—C20—C21119.8 (3)
C14—N2—N396.22 (19)C20—C21—C22120.6 (3)
C15—N2—N355.94 (16)C21—C22—C23120.3 (3)
N1—N2—N3122.02 (11)C22—C23—C18119.8 (3)
C17—N3—C16118.5 (3)C22—C23—N4122.7 (3)
C17—N3—N485.95 (19)C18—C23—N4117.5 (3)
C16—N3—N4155.5 (2)C29—C24—C25119.4 (3)
C17—N3—N2153.4 (2)C29—C24—S2119.4 (2)
C16—N3—N256.21 (15)C25—C24—S2121.3 (2)
N4—N3—N2102.43 (11)C26—C25—C24119.4 (3)
C23—N4—S2124.2 (2)C25—C26—C27121.7 (3)
C23—N4—N387.32 (17)C28—C27—C26117.8 (3)
S2—N4—N3134.54 (15)C28—C27—C30121.4 (3)
C23—N4—N1117.82 (16)C26—C27—C30120.8 (3)
S2—N4—N1116.49 (10)C29—C28—C27121.1 (3)
N3—N4—N156.66 (7)C28—C29—C24120.6 (3)
O1—S1—S2—O4144.59 (16)O2—S1—C5—C613.5 (3)
O2—S1—S2—O441.59 (17)N1—S1—C5—C6131.1 (3)
N1—S1—S2—O4125.13 (16)S2—S1—C5—C6138.6 (3)
C5—S1—S2—O445.64 (16)O1—S1—C5—C460.1 (4)
O1—S1—S2—O3100.58 (17)O2—S1—C5—C4168.6 (3)
O2—S1—S2—O373.24 (18)N1—S1—C5—C451.0 (4)
N1—S1—S2—O310.30 (16)S2—S1—C5—C443.6 (3)
C5—S1—S2—O3160.47 (17)C4—C5—C6—C70.8 (6)
O1—S1—S2—N445.99 (19)S1—C5—C6—C7177.1 (3)
O2—S1—S2—N4140.2 (2)C3—C2—C7—C60.2 (7)
N1—S1—S2—N4136.27 (19)C1—C2—C7—C6179.2 (4)
C5—S1—S2—N452.96 (19)C5—C6—C7—C20.6 (7)
O1—S1—S2—C247.4 (2)S1—N1—C8—C947.2 (4)
O2—S1—S2—C24166.4 (2)N2—N1—C8—C9174.3 (3)
N1—S1—S2—C2482.91 (19)N4—N1—C8—C9144.2 (3)
C5—S1—S2—C24106.32 (19)S1—N1—C8—C13135.7 (2)
O1—S1—N1—C8172.5 (2)N2—N1—C8—C132.8 (3)
O2—S1—N1—C859.3 (3)N4—N1—C8—C1338.7 (2)
C5—S1—N1—C857.8 (3)C13—C8—C9—C101.4 (5)
S2—S1—N1—C865.8 (2)N1—C8—C9—C10178.5 (3)
O1—S1—N1—N253.6 (2)C8—C9—C10—C110.2 (5)
O2—S1—N1—N2178.23 (17)C9—C10—C11—C120.9 (6)
C5—S1—N1—N261.2 (2)C10—C11—C12—C130.0 (5)
S2—S1—N1—N253.16 (14)C11—C12—C13—C81.5 (5)
O1—S1—N1—N498.83 (13)C11—C12—C13—C14176.1 (3)
O2—S1—N1—N4132.99 (12)C9—C8—C13—C122.2 (4)
C5—S1—N1—N415.93 (15)N1—C8—C13—C12179.4 (3)
S2—S1—N1—N47.93 (3)C9—C8—C13—C14175.3 (3)
C8—N1—N2—C143.7 (2)N1—C8—C13—C141.9 (4)
S1—N1—N2—C14129.6 (2)C15—N2—C14—C13179.8 (3)
N4—N1—N2—C1456.11 (17)N1—N2—C14—C133.5 (3)
C8—N1—N2—C15175.8 (5)N3—N2—C14—C13125.3 (3)
S1—N1—N2—C1542.5 (5)C12—C13—C14—N2174.6 (3)
N4—N1—N2—C15115.9 (5)C8—C13—C14—N22.9 (5)
C8—N1—N2—N398.53 (19)C14—N2—C15—C16109.1 (3)
S1—N1—N2—N334.8 (2)N1—N2—C15—C1661.9 (6)
N4—N1—N2—N338.67 (9)N3—N2—C15—C1631.50 (19)
C14—N2—N3—C17115.5 (5)C17—N3—C16—C15179.3 (3)
C15—N2—N3—C17124.5 (5)N4—N3—C16—C151.1 (6)
N1—N2—N3—C1726.4 (5)N2—N3—C16—C1531.24 (18)
C14—N2—N3—C16157.6 (3)N2—C15—C16—N366.8 (3)
C15—N2—N3—C1637.6 (3)C16—N3—C17—C18178.9 (3)
N1—N2—N3—C16113.3 (2)N4—N3—C17—C181.8 (3)
C14—N2—N3—N49.3 (2)N2—N3—C17—C18108.1 (5)
C15—N2—N3—N4129.3 (2)N3—C17—C18—C19176.0 (3)
N1—N2—N3—N479.79 (16)N3—C17—C18—C232.7 (5)
O4—S2—N4—C2358.9 (3)C23—C18—C19—C200.0 (5)
O3—S2—N4—C23172.2 (2)C17—C18—C19—C20178.8 (3)
C24—S2—N4—C2357.5 (3)C18—C19—C20—C210.3 (5)
S1—S2—N4—C23156.1 (3)C19—C20—C21—C220.8 (5)
O4—S2—N4—N3175.00 (17)C20—C21—C22—C231.1 (5)
O3—S2—N4—N346.1 (2)C21—C22—C23—C180.8 (5)
C24—S2—N4—N368.6 (2)C21—C22—C23—N4177.7 (3)
S1—S2—N4—N377.82 (18)C19—C18—C23—C220.3 (4)
O4—S2—N4—N1106.78 (13)C17—C18—C23—C22178.5 (3)
O3—S2—N4—N122.12 (15)C19—C18—C23—N4177.3 (3)
C24—S2—N4—N1136.84 (12)C17—C18—C23—N41.4 (4)
S1—S2—N4—N19.59 (4)S2—N4—C23—C2238.0 (4)
C17—N3—N4—C230.9 (2)N3—N4—C23—C22177.2 (3)
C16—N3—N4—C23179.4 (5)N1—N4—C23—C22127.5 (2)
N2—N3—N4—C23153.58 (17)S2—N4—C23—C18145.0 (2)
C17—N3—N4—S2137.1 (2)N3—N4—C23—C180.2 (3)
C16—N3—N4—S241.4 (6)N1—N4—C23—C1849.5 (3)
N2—N3—N4—S268.4 (2)O4—S2—C24—C29166.6 (2)
C17—N3—N4—N1127.1 (2)O3—S2—C24—C2935.8 (3)
C16—N3—N4—N154.5 (5)N4—S2—C24—C2975.8 (3)
N2—N3—N4—N127.42 (7)S1—S2—C24—C2941.2 (3)
C8—N1—N4—C23140.4 (2)O4—S2—C24—C2512.3 (3)
S1—N1—N4—C2320.6 (2)O3—S2—C24—C25143.0 (2)
N2—N1—N4—C23109.6 (2)N4—S2—C24—C25105.3 (3)
C8—N1—N4—S226.2 (2)S1—S2—C24—C25139.9 (2)
S1—N1—N4—S2146.02 (15)C29—C24—C25—C260.7 (5)
N2—N1—N4—S283.73 (16)S2—C24—C25—C26179.5 (2)
C8—N1—N4—N3153.80 (19)C24—C25—C26—C270.9 (5)
S1—N1—N4—N386.38 (13)C25—C26—C27—C280.5 (5)
N2—N1—N4—N343.87 (12)C25—C26—C27—C30178.6 (3)
C7—C2—C3—C40.1 (8)C26—C27—C28—C290.1 (5)
C1—C2—C3—C4179.5 (5)C30—C27—C28—C29179.1 (3)
C2—C3—C4—C50.0 (8)C27—C28—C29—C240.2 (5)
C3—C4—C5—C60.5 (7)C25—C24—C29—C280.1 (5)
C3—C4—C5—S1177.4 (4)S2—C24—C29—C28179.0 (2)
O1—S1—C5—C6117.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N20.961.842.705 (3)147
N4—H4A···N31.021.802.681 (3)142
C10—H10A···O1i0.932.503.159 (4)128
C17—H17A···O4ii0.932.543.394 (3)153
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC30H30N4O4S2
Mr574.70
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)8.5144 (1), 22.7900 (3), 29.9046 (3)
β (°) 96.600 (1)
V3)5764.33 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.23
Crystal size (mm)0.30 × 0.20 × 0.05
Data collection
DiffractometerBruker SMART CCD area detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
SADABS (Sheldrick, 1996)
Tmin, Tmax0.715, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
11944, 5078, 3207
Rint0.053
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.127, 1.04
No. of reflections5078
No. of parameters365
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.18, 0.29

Computer programs: SMART (Siemens, 1995), SMART, SAINT (Siemens, 1995), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b), SHELXTL.

Selected geometric parameters (Å, º) top
N2—C141.268 (4)C15—C161.514 (4)
N3—C171.257 (4)
N1—S1—C5106.50 (14)C8—N1—S1123.9 (2)
N4—S2—C24106.47 (13)C23—N4—S2124.2 (2)
C5—S1—N1—C857.8 (3)C14—N2—C15—C16109.1 (3)
C24—S2—N4—C2357.5 (3)C17—N3—C16—C15179.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N20.961.842.705 (3)147
N4—H4A···N31.021.802.681 (3)142
C10—H10A···O1i0.932.503.159 (4)128
C17—H17A···O4ii0.932.543.394 (3)153
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds