Download citation
Download citation
link to html
The structure of 9-phenyl-3,4,4a,9a-tetra­hydro­triptycene, C26H22, (I), exhibits regiochemistry consistent with a stepwise mechanism for its formation from photo­cyclo­addition of 1,3-cyclo­hexa­diene and 9-phenyl­anthracene. Bond distances involving the bridgehead C atoms are similar in (I) and the hydrogenated derivative, 9-phenyl-1,2,3,4,4a,9a-hexa­hydro­triptycene, C26H24, (II), with bonds to the quaternary-C atoms exhibiting significant elongation [1.581 (2) Å in (I) and 1.585 (2) Å in (II)]. The molecular geometry precludes significant σ–π overlap between the phenyl groups and the interannular bonds in both compounds, indicating that the origin of the bond lengthening is steric in nature.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199012056/bk1498sup1.cif
Contains datablocks global, (I), (II)

sft

Structure factor file (SHELXL table format) https://doi.org/10.1107/S0108270199012056/bk1498Isup2.sft
Supplementary material

sft

Structure factor file (SHELXL table format) https://doi.org/10.1107/S0108270199012056/bk1498IIsup3.sft
Supplementary material

CCDC references: 140966; 140967

Comment top

The double bond of (I) is proximal to the phenyl substituent. This regiochemistry is consistent with a stepwise mechanism for formation of (I) which involves the more stable biradical intermediate (Kaupp & Teufel, 1980; Wang et al., 1982). The cyclohexenyl ring in (II) adopts a boat conformation. Two H atoms (determined by NMR decoupling experiments to be attached to C12 and C15) are found to be highly shielded in the NMR spectrum of (II). The endo H atoms H12A and H15A are assigned to these resonances at 0.22 and 0.78 p.p.m., respectively. A single hydrogen (H15A) of (I) appears at a similarly high field (0.84 p.p.m.). The large shieldings of H15A and H12A are ascribed to their positions within the anisotropic shielding regions of two (for H15A) or three (for H12A) neighboring benzene rings.

Bond distances about carbon atoms C9 and C10 are similar in (I) and (II), and indicate the presence of significant steric effects involving the phenyl group attached to C9. Thus, the bond distances involving the bicyclic framework about C9 are observed to be 0.022–0.050 Å longer than the corresponding distances about C10. For example, the interannular C9—C11 bond is 1.581 (2) Å in (I) and 1.585 (2) Å in (II), whereas the related C10—C16 bond distances are 1.559 (2) Å in (I) and 1.550 (2) Å in (II). The phenyl substituents are rotated slightly from the plane defined by the bridgehead carbons (C9, C10, C11 and C16). The dihedral angle between this plane and the plane of the phenyl groups is 12.08 (7) in (I) and 13.39 (8) in (II). This orientation precludes significant hyperconjugation between the phenyl substituent and the C9—C11 σ bond, and discounts σ-π through-bond coupling (Osawa et al., 1983) as contributing to elongation of the bonds in these molecules (Baldridge et al., 1997). One carbon (C12) of the double bond of (I) exhibits a close contact [3.022 (2) Å] with a carbon (C8a) of the subjacent phenyl ring. However, the resulting π-π interactions (Dougherty et al., 1986), if any, do not contribute to lengthening of the C9—C11 bond, which is 0.004 Å longer in (II) (in which this bond is saturated) than in (I).

The cell constant of (I) and (II) are similar. Except for atoms near the double bond of (I), the structures of (I) and (II) are nearly superimposable. The resemblance of the polycyclic frameworks of (I) and (II) apparently allows for similar packing (Figs. 3 and 4).

Experimental top

A Pyrex irradiation vessel equipped with argon inlet and Teflon-coated magnetic stirbar was charged with benzene (56 ml), 9-phenylanthracene (151 mg, 0.59 mmol), and 1,3-cyclohexadiene (5.9 ml, 1.0 M) (Kaupp & Teufel, 1980). The solution was deaerated by purging with argon for 30 min prior to irradiation. Irradiation of the solution was performed with stirring under argon, using a Hanovia 450 W medium pressure mercury lamp housed in a water-cooled quartz immersion well. A cylindrical uranium glass filter was used to cut off light with wavelengths shorter than about 330 nm. The temperature of the solution during irradiation was maintained at 292 + 2 K. Progress of the reaction was monitored by means of thin-layer chromatography and NMR spectroscopic analysis. When complete (3 h), the irradiation was stopped and the solvent was evaporated under reduced pressure. The crude product was chromatographed over Woelm (activity I) alumina. Products eluted fractionally with dichloromethane and petroleum ether. Fractions determined to contain adduct (I) were combined and recrystallized from dichloromethane-ethanol to afford colorless prisms, m.p. 459 K, proton NMR (chloroform-d): 7.56 (m), 7.47 (m), 7.31 (m), 7.11 (m), 6.92 (m), 6.25 (d, 7.7 Hz), 5.78 (m), 5.68 (m), 4.18 (d, 1.9 Hz), 3.07 (bd, 10.0 Hz), 2.42 (m), 1.88 (m), 1.67 (m), 1.23 (m), 0.84 p.p.m. (m). Adduct (I) (100 mg) was dissolved in 50 ml e thyl acetate in a 100 ml round-bottom flask containing a magnetic stirbar, and 25 mg 10% Pd/C powder was added. The stirred suspension was deaerated by repeated evacuation and charging with hydrogen gas. Hydrogenation was effected by allowing the mixture to stir for 24 h at room temperature under a slight positive pressure of hydrogen (although the initial uptake of hydrogen was rapid, suggesting that the reaction probably was complete in about 30 min). The product was collected by filtration through celite, and the solvent was removed at reduced pressure. The crude product was passed through a short column of Woelm alumina (ICN, activity I) eluting with dichloromethane-petroleum ether. Fractions containing product (II) were combined and recrystallized from ethyl acetate to afford 87 mg (86%) of colorless needles, proton NMR (chloroform-d): 7.55 (m), 7.42 (m), 7.32 (m), 7.05–7.19 (m), 6.91 (m), 6.20 (d, 8.1 Hz), 4.06 (d, 8.1), 2.46 (m), 2.04 (m), 1.64 (m), 1.27- 1.53 (m), 0.78 (m), 0.22 (m).

Refinement top

H atoms were were located but not refined; for (I) the temperature factors of hydrogen were refined in the early stages of refinement, but were fixed in the later stages.

Computing details top

For both compounds, data collection: CAD-4-PC (Enraf-Nonius, 1993); cell refinement: SET4 and CELDIM in CAD-4-PC; data reduction: DATRD2 in NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SOLVER in NRCVAX; program(s) used to refine structure: LSTSQ in NRCVAX; molecular graphics: NRCVAX; software used to prepare material for publication: TABLES in NRCVAX (January 94 version).

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) representation of (I) with displacement ellipsoids at 30% probability showing the atom numbering scheme.
[Figure 2] Fig. 2. ORTEPII (Johnson, 1976) of (II) (30% probability) showing the atom numbering scheme.
[Figure 3] Fig. 3. Packing diagram of (I), projection along the c axis.
[Figure 4] Fig. 4. Packing diagram of (II), projection along the c axis.
(I) cis-9-Phenyl-3,4,4a,9,9a,10-hexahydro-9,10[1',2']benzenoanthracene top
Crystal data top
C26H22F(000) = 356.10
Mr = 334.46? #Insert any comments here.
Triclinic, P1Dx = 1.248 Mg m3
a = 9.3991 (7) ÅMo Kα radiation, λ = 0.70930 Å
b = 9.7733 (4) ÅCell parameters from 25 reflections
c = 10.5899 (7) Åθ = 7.9–18.3°
α = 90.376 (4)°µ = 0.07 mm1
β = 71.465 (5)°T = 293 K
γ = 104.463 (5)°Prism, colorless
V = 890.29 (10) Å30.48 × 0.47 × 0.47 mm
Z = 2
Data collection top
Nonius CAD-4
diffractometer
Rint = 0.009
Radiation source: xray tubeθmax = 24.9°, θmin = 0.0°
Graphite monochromatorh = 1110
ω scan b/P/bk = 011
3306 measured reflectionsl = 1212
3120 independent reflections5 standard reflections every 120 min
2527 reflections with Inet > 2.0σ(Inet) intensity decay: 1.5%
Refinement top
Refinement on FH-atom parameters not refined
Least-squares matrix: block diagonal per atom1/[σ2(F) + 0.0003F2]
R[F2 > 2σ(F2)] = 0.042(Δ/σ)max < 0.001
wR(F2) = 0.050Δρmax = 0.16 e Å3
S = 2.03Δρmin = 0.20 e Å3
2526 reflectionsExtinction correction: Larson (1970)
236 parametersExtinction coefficient: 0.79 (11)
Crystal data top
C26H22γ = 104.463 (5)°
Mr = 334.46V = 890.29 (10) Å3
Triclinic, P1Z = 2
a = 9.3991 (7) ÅMo Kα radiation
b = 9.7733 (4) ŵ = 0.07 mm1
c = 10.5899 (7) ÅT = 293 K
α = 90.376 (4)°0.48 × 0.47 × 0.47 mm
β = 71.465 (5)°
Data collection top
Nonius CAD-4
diffractometer
Rint = 0.009
3306 measured reflections5 standard reflections every 120 min
3120 independent reflections intensity decay: 1.5%
2527 reflections with Inet > 2.0σ(Inet)
Refinement top
R[F2 > 2σ(F2)] = 0.042236 parameters
wR(F2) = 0.050H-atom parameters not refined
S = 2.03Δρmax = 0.16 e Å3
2526 reflectionsΔρmin = 0.20 e Å3
Special details top

Experimental. ? #Insert any special details here.

Refinement. ? #Insert any special details here.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.66296 (18)0.78052 (16)0.96484 (16)0.0400 (10)
C20.82338 (19)0.81725 (18)0.93994 (18)0.0486 (10)
C30.88355 (19)0.82162 (18)1.04308 (2)0.0505 (11)
C40.78480 (18)0.79082 (17)1.17357 (18)0.0449 (11)
C4a0.62561 (17)0.75557 (16)1.19930 (16)0.0361 (9)
C50.34789 (19)0.88392 (17)1.45918 (16)0.0432 (10)
C60.2395 (2)0.95896 (19)1.46574 (17)0.0510 (11)
C70.1725 (2)0.95238 (19)1.36688 (18)0.0502 (11)
C80.21343 (18)0.87095 (17)1.25958 (16)0.0406 (10)
C8a0.32545 (16)0.79899 (15)1.24967 (14)0.0332 (8)
C90.38382 (16)0.70242 (15)1.14113 (15)0.0321 (8)
C9a0.56354 (17)0.74977 (15)1.09536 (15)0.0340 (9)
C100.50456 (17)0.71465 (16)1.33420 (15)0.0373 (9)
C10a0.39132 (17)0.80403 (16)1.35164 (15)0.0359 (9)
C110.33687 (17)0.55181 (15)1.21896 (15)0.0337 (9)
C120.16317 (18)0.48710 (17)1.27215 (16)0.0419 (10)
C130.09612 (19)0.39442 (18)1.37731 (18)0.0481 (10)
C140.1827 (2)0.36218 (19)1.46361 (19)0.0546 (11)
C150.30132 (19)0.49778 (18)1.46931 (16)0.0440 (10)
C160.41399 (17)0.55831 (16)1.33088 (15)0.0358 (9)
C170.32674 (16)0.70455 (16)1.02133 (15)0.0336 (8)
C180.26641 (19)0.58167 (16)0.96789 (16)0.0406 (9)
C190.2199 (2)0.58919 (18)0.85687 (17)0.0484 (11)
C200.2345 (2)0.7178 (2)0.79633 (17)0.0499 (11)
C210.2982 (2)0.84099 (18)0.84534 (17)0.0467 (10)
C220.34306 (18)0.83335 (17)0.95686 (16)0.0399 (9)
H10.62180.78000.89040.037*
H20.89170.83670.84870.063*
H30.99840.84661.02530.068*
H40.82330.79241.24940.051*
H50.39400.88401.53110.049*
H60.21251.01571.53920.061*
H70.09321.00691.37010.062*
H80.16470.86891.18760.043*
H100.55150.72421.40910.036*
H110.38050.48861.15320.036*
H120.10300.51171.21950.047*
H130.01480.35541.40390.062*
H14A0.11190.33081.55340.073*
H14B0.24350.29011.42490.073*
H15A0.24530.57131.50660.047*
H15B0.36030.48131.53080.047*
H160.48820.50151.30740.039*
H180.25810.48941.00620.033*
H190.17640.49920.82310.057*
H200.20160.72440.71830.058*
H210.31110.93480.80390.053*
H220.38680.91960.99110.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0409 (9)0.0337 (9)0.0423 (10)0.0094 (7)0.0097 (8)0.0033 (7)
C20.0381 (9)0.0410 (10)0.0539 (11)0.0059 (7)0.0007 (8)0.0018 (8)
C30.0298 (9)0.0449 (10)0.0703 (13)0.0043 (7)0.0116 (9)0.0012 (9)
C40.0342 (9)0.0421 (10)0.0590 (11)0.0055 (7)0.0194 (8)0.0030 (8)
C4a0.0334 (8)0.0310 (8)0.0437 (9)0.0052 (6)0.0147 (7)0.0018 (7)
C50.0464 (10)0.0395 (9)0.0378 (9)0.0005 (8)0.0140 (8)0.0066 (7)
C60.0543 (11)0.0455 (10)0.0459 (10)0.0123 (9)0.0072 (9)0.0157 (8)
C70.0476 (10)0.0487 (10)0.0530 (11)0.0203 (8)0.0089 (9)0.0094 (8)
C80.0374 (9)0.0414 (9)0.0446 (10)0.0123 (7)0.0138 (8)0.0055 (7)
C8a0.0320 (8)0.0295 (8)0.0360 (9)0.0041 (6)0.0110 (7)0.0043 (6)
C90.0311 (8)0.0315 (8)0.0348 (8)0.0074 (6)0.0132 (7)0.0050 (6)
C9a0.0334 (8)0.0268 (8)0.0418 (9)0.0072 (6)0.0131 (7)0.0050 (6)
C100.0356 (8)0.0388 (9)0.0392 (9)0.0045 (7)0.0184 (7)0.0026 (7)
C10a0.0336 (8)0.0326 (8)0.0376 (9)0.0014 (6)0.0119 (7)0.0027 (7)
C110.0331 (8)0.0307 (8)0.0369 (8)0.0067 (6)0.0123 (7)0.0046 (6)
C120.0363 (9)0.0447 (10)0.0444 (10)0.0036 (7)0.0185 (8)0.0045 (8)
C130.0376 (9)0.0487 (10)0.0503 (11)0.0022 (8)0.0142 (8)0.0005 (8)
C140.0482 (11)0.0509 (11)0.0572 (12)0.0012 (9)0.0155 (9)0.0115 (9)
C150.0405 (9)0.0499 (10)0.0414 (9)0.0062 (8)0.0171 (8)0.0052 (8)
C160.0315 (8)0.0363 (9)0.0402 (9)0.0085 (7)0.0131 (7)0.0011 (7)
C170.0305 (8)0.0357 (8)0.0349 (8)0.0083 (6)0.0113 (7)0.0055 (7)
C180.0480 (10)0.0349 (9)0.0411 (9)0.0093 (7)0.0187 (8)0.0049 (7)
C190.0584 (11)0.0463 (10)0.0443 (10)0.0090 (8)0.0256 (9)0.0132 (8)
C200.0558 (11)0.0594 (12)0.0384 (10)0.0125 (9)0.0227 (8)0.0037 (8)
C210.0515 (10)0.0442 (10)0.0444 (10)0.0107 (8)0.0169 (8)0.0044 (8)
C220.0407 (9)0.0374 (9)0.0414 (9)0.0068 (7)0.0159 (8)0.0038 (7)
Geometric parameters (Å, º) top
C1—C21.396 (2)C10—H101.017
C1—C9a1.385 (2)C11—C121.512 (2)
C1—H10.982C11—C161.567 (2)
C2—C31.376 (3)C11—H110.987
C2—H20.964C12—C131.319 (2)
C3—C41.384 (3)C12—H120.979
C3—H31.000C13—C141.484 (3)
C4—C4a1.384 (2)C13—H130.963
C4—H40.979C14—C151.519 (2)
C4a—C9a1.395 (2)C14—H14A0.970
C4a—C101.497 (2)C14—H14B1.019
C5—C61.381 (3)C15—C161.527 (2)
C5—C10a1.388 (2)C15—H15A1.002
C5—H50.989C15—H15B1.017
C6—C71.377 (3)C16—H160.968
C6—H60.957C17—C181.393 (2)
C7—C81.391 (2)C17—C221.386 (2)
C7—H71.011C18—C191.387 (2)
C8—C8a1.383 (2)C18—H180.966
C8—H81.004C19—C201.371 (3)
C8a—C91.535 (2)C19—H190.988
C8a—C10a1.400 (2)C20—C211.380 (2)
C9—C9a1.547 (2)C20—H200.977
C9—C111.581 (2)C21—C221.383 (2)
C9—C171.528 (2)C21—H210.982
C10—C10a1.506 (2)C22—H220.963
C10—C161.559 (2)
C2—C1—C9a119.33 (15)C9—C11—C12113.35 (12)
C2—C1—H1120.0C9—C11—C16110.59 (11)
C9a—C1—H1120.7C9—C11—H11106.3
C1—C2—C3120.91 (16)C12—C11—C16112.22 (12)
C1—C2—H2118.8C12—C11—H11106.5
C3—C2—H2120.3C16—C11—H11107.4
C2—C3—C4120.02 (15)C11—C12—C13122.69 (14)
C2—C3—H3121.0C11—C12—H12116.1
C4—C3—H3119.0C13—C12—H12121.1
C3—C4—C4a119.48 (16)C12—C13—C14122.02 (15)
C3—C4—H4122.4C12—C13—H13118.2
C4a—C4—H4118.2C14—C13—H13119.4
C4—C4a—C9a120.90 (15)C13—C14—C15107.96 (14)
C4—C4a—C10125.64 (14)C13—C14—H14A109.9
C9a—C4a—C10113.40 (13)C13—C14—H14B111.9
C6—C5—C10a119.97 (15)C15—C14—H14A108.6
C6—C5—H5121.2C15—C14—H14B106.7
C10a—C5—H5118.8H14A—C14—H14B111.6
C5—C6—C7120.01 (15)C14—C15—C16112.15 (14)
C5—C6—H6119.2C14—C15—H15A108.8
C7—C6—H6120.8C14—C15—H15B110.5
C6—C7—C8120.53 (15)C16—C15—H15A106.7
C6—C7—H7121.0C16—C15—H15B110.6
C8—C7—H7118.5H15A—C15—H15B107.9
C7—C8—C8a119.99 (15)C10—C16—C11108.69 (12)
C7—C8—H8119.4C10—C16—C15111.02 (13)
C8a—C8—H8120.6C10—C16—H16108.1
C8—C8a—C9127.67 (13)C11—C16—C15114.67 (12)
C8—C8a—C10a119.22 (14)C11—C16—H16108.2
C9—C8a—C10a112.99 (13)C15—C16—H16105.9
C8a—C9—C9a106.65 (11)C9—C17—C18122.85 (13)
C8a—C9—C11104.22 (11)C9—C17—C22119.49 (13)
C8a—C9—C17114.74 (12)C18—C17—C22117.56 (14)
C9a—C9—C11105.42 (11)C17—C18—C19120.70 (15)
C9a—C9—C17110.37 (12)C17—C18—H18120.7
C11—C9—C17114.68 (12)C19—C18—H18118.6
C1—C9a—C4a119.36 (14)C18—C19—C20120.64 (15)
C1—C9a—C9126.40 (13)C18—C19—H19117.9
C4a—C9a—C9114.20 (13)C20—C19—H19121.5
C4a—C10—C10a108.34 (12)C19—C20—C21119.61 (15)
C4a—C10—C16106.18 (12)C19—C20—H20121.3
C4a—C10—H10112.4C21—C20—H20119.0
C10a—C10—C16107.14 (12)C20—C21—C22119.68 (15)
C10a—C10—H10111.5 (8)C20—C21—H21121.7
C16—C10—H10111.1C22—C21—H21118.6
C5—C10a—C8a120.22 (14)C17—C22—C21121.78 (14)
C5—C10a—C10125.27 (14)C17—C22—H22118.8
C8a—C10a—C10114.48 (13)C21—C22—H22119.4
C9a—C1—C2—C30.77 (18)C8a—C9—C11—C1659.1 (2)
C2—C1—C9a—C4a0.25 (18)C9a—C9—C11—C12180.0 (3)
C2—C1—C9a—C9177.8 (4)C9a—C9—C11—C1653.00 (19)
C1—C2—C3—C40.69 (18)C17—C9—C11—C1258.4 (2)
C2—C3—C4—C4a0.08 (18)C17—C9—C11—C16174.6 (3)
C3—C4—C4a—C9a0.44 (18)C8a—C9—C17—C18133.1 (3)
C3—C4—C4a—C10177.6 (4)C8a—C9—C17—C2250.8 (2)
C4—C4a—C9a—C10.35 (18)C9a—C9—C17—C18106.4 (3)
C4—C4a—C9a—C9177.5 (4)C9a—C9—C17—C2269.7 (2)
C10—C4a—C9a—C1177.9 (4)C11—C9—C17—C1812.48 (16)
C10—C4a—C9a—C90.06 (15)C11—C9—C17—C22171.4 (3)
C4—C4a—C10—C10a129.1 (3)C4a—C10—C10a—C5127.5 (3)
C4—C4a—C10—C16116.1 (3)C4a—C10—C10a—C8a54.2 (2)
C9a—C4a—C10—C10a53.5 (2)C16—C10—C10a—C5118.3 (3)
C9a—C4a—C10—C1661.3 (2)C16—C10—C10a—C8a60.0 (2)
C10a—C5—C6—C71.21 (18)C4a—C10—C16—C1160.7 (2)
C6—C5—C10a—C8a0.10 (18)C4a—C10—C16—C15172.3 (3)
C6—C5—C10a—C10178.3 (4)C10a—C10—C16—C1155.0 (2)
C5—C6—C7—C80.26 (18)C10a—C10—C16—C1572.0 (2)
C6—C7—C8—C8a1.83 (18)C9—C11—C12—C13153.8 (4)
C7—C8—C8a—C9178.8 (4)C16—C11—C12—C1327.59 (19)
C7—C8—C8a—C10a2.91 (18)C9—C11—C16—C103.35 (14)
C8—C8a—C9—C9a131.9 (3)C9—C11—C16—C15128.2 (3)
C8—C8a—C9—C11116.9 (3)C12—C11—C16—C10124.3 (3)
C8—C8a—C9—C179.36 (16)C12—C11—C16—C150.59 (16)
C10a—C8a—C9—C9a52.0 (2)C11—C12—C13—C149.18 (17)
C10a—C8a—C9—C1159.2 (2)C12—C13—C14—C1534.6 (2)
C10a—C8a—C9—C17174.5 (3)C13—C14—C15—C1658.5 (2)
C8—C8a—C10a—C51.96 (18)C14—C15—C16—C10165.0 (4)
C8—C8a—C10a—C10176.4 (3)C14—C15—C16—C1141.3 (2)
C9—C8a—C10a—C5178.4 (3)C9—C17—C18—C19178.3 (4)
C9—C8a—C10a—C100.03 (15)C22—C17—C18—C192.11 (18)
C8a—C9—C9a—C1129.7 (3)C9—C17—C22—C21177.8 (4)
C8a—C9—C9a—C4a52.7 (2)C18—C17—C22—C211.47 (18)
C11—C9—C9a—C1119.9 (3)C17—C18—C19—C200.96 (18)
C11—C9—C9a—C4a57.7 (2)C18—C19—C20—C210.92 (18)
C17—C9—C9a—C14.44 (16)C19—C20—C21—C221.56 (18)
C17—C9—C9a—C4a177.9 (3)C20—C21—C22—C170.35 (18)
C8a—C9—C11—C1267.9 (2)
(II) cis-9-Phenyl-1,2,3,4,4a,9,9a,10-octahydro-9,10[1',2']benzenoanthracene top
Crystal data top
C26H24F(000) = 360.10
Mr = 336.47? #Insert any comments here.
Triclinic, P1Dx = 1.243 Mg m3
a = 9.2213 (6) ÅMo Kα radiation, λ = 0.70930 Å
b = 9.8777 (10) ÅCell parameters from 25 reflections
c = 10.7390 (8) Åθ = 8.4–17.6°
α = 90.738 (8)°µ = 0.07 mm1
β = 107.829 (6)°T = 293 K
γ = 104.052 (7)°Needle, colorless
V = 899.28 (13) Å30.30 × 0.30 × 0.30 mm
Z = 2
Data collection top
Nonius CAD-4
diffractometer
Rint = 0.014
Radiation source: xray tubeθmax = 25.0°, θmin = 2.0°
Graphite monochromatorh = 1010
ω scan b/P/bk = 011
3334 measured reflectionsl = 1212
3147 independent reflections3 standard reflections every 120 min
2444 reflections with Inet > 2.0σ(Inet) intensity decay: 1.5%
Refinement top
Refinement on FH-atom parameters not refined
Least-squares matrix: full1/[σ2(F) + 0.0002F2]
R[F2 > 2σ(F2)] = 0.041(Δ/σ)max < 0.001
wR(F2) = 0.044Δρmax = 0.15 e Å3
S = 1.94Δρmin = 0.17 e Å3
2442 reflectionsExtinction correction: Larson (1970)
236 parametersExtinction coefficient: 0.57 (7)
Crystal data top
C26H24γ = 104.052 (7)°
Mr = 336.47V = 899.28 (13) Å3
Triclinic, P1Z = 2
a = 9.2213 (6) ÅMo Kα radiation
b = 9.8777 (10) ŵ = 0.07 mm1
c = 10.7390 (8) ÅT = 293 K
α = 90.738 (8)°0.30 × 0.30 × 0.30 mm
β = 107.829 (6)°
Data collection top
Nonius CAD-4
diffractometer
Rint = 0.014
3334 measured reflections3 standard reflections every 120 min
3147 independent reflections intensity decay: 1.5%
2444 reflections with Inet > 2.0σ(Inet)
Refinement top
R[F2 > 2σ(F2)] = 0.041236 parameters
wR(F2) = 0.044H-atom parameters not refined
S = 1.94Δρmax = 0.15 e Å3
2442 reflectionsΔρmin = 0.17 e Å3
Special details top

Experimental. ? #Insert any special details here.

Refinement. ? #Insert any special details here.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.66684 (19)0.78197 (17)0.02077 (16)0.0381 (11)
C20.8285 (2)0.81943 (19)0.04288 (18)0.0458 (11)
C30.8879 (2)0.82325 (19)0.06063 (19)0.0488 (11)
C40.7860 (2)0.79172 (19)0.18781 (18)0.0429 (11)
C4a0.62543 (18)0.75632 (16)0.21079 (16)0.0350 (9)
C50.34505 (2)0.88662 (18)0.45824 (17)0.0432 (11)
C60.2390 (2)0.96387 (19)0.45991 (19)0.0523 (12)
C70.1731 (2)0.95932 (19)0.3605 (2)0.0513 (12)
C80.2139 (2)0.87746 (18)0.25780 (18)0.0422 (11)
C8a0.32483 (18)0.80348 (16)0.25194 (16)0.0342 (9)
C90.38185 (18)0.70552 (16)0.14901 (15)0.0317 (9)
C9a0.56357 (18)0.75029 (16)0.10652 (16)0.0325 (10)
C100.50039 (19)0.71614 (17)0.34281 (16)0.0371 (10)
C10a0.38867 (18)0.80692 (16)0.35502 (16)0.0363 (10)
C110.32988 (19)0.55663 (16)0.22954 (15)0.0338 (9)
C120.15118 (19)0.50022 (18)0.28968 (17)0.0419 (10)
C130.1079 (2)0.35693 (19)0.36541 (18)0.0502 (11)
C140.1970 (2)0.35330 (19)0.46305 (19)0.0531 (12)
C150.2932 (2)0.49818 (19)0.47310 (17)0.0431 (10)
C160.41032 (19)0.56257 (17)0.33911 (16)0.0361 (9)
C170.32604 (18)0.70707 (16)0.02911 (15)0.0331 (9)
C180.2687 (2)0.58597 (18)0.02368 (17)0.0421 (10)
C190.2249 (2)0.59227 (19)0.13564 (18)0.0508 (12)
C200.2406 (2)0.7187 (2)0.19886 (18)0.0523 (12)
C210.3013 (2)0.84058 (19)0.15060 (18)0.0484 (11)
C220.3436 (2)0.83423 (17)0.03818 (17)0.0400 (10)
H10.6240.7810.0960.038*
H20.9020.8420.1340.060*
H31.0000.8460.0440.053*
H40.8290.7950.2620.048*
H50.3900.8870.5320.049*
H60.2091.0230.5320.066*
H70.0941.0120.3630.067*
H80.1670.8770.1880.042*
H100.5470.7240.4170.036*
H110.3710.4880.1650.036*
H12A0.1100.5700.3490.049*
H12B0.0960.4950.2210.040*
H13A0.0090.3290.4110.070*
H13B0.1310.2870.3010.087*
H14A0.1230.3110.5510.083*
H14B0.2710.2930.4320.073*
H15A0.2230.5600.5090.050*
H15B0.3530.4920.5350.043*
H160.4900.5050.3120.041*
H180.2610.4960.0160.044*
H190.1850.5060.1710.056*
H200.2050.7260.2770.066*
H210.3160.9310.1940.053*
H220.3860.9220.0060.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0395 (10)0.0355 (10)0.0382 (10)0.0074 (8)0.0128 (8)0.0033 (8)
C20.0367 (10)0.0481 (11)0.0445 (11)0.0057 (8)0.0055 (9)0.0005 (9)
C30.0292 (9)0.0527 (12)0.0593 (13)0.0027 (8)0.0133 (9)0.0014 (10)
C40.0337 (10)0.0475 (11)0.0476 (11)0.0042 (8)0.0182 (9)0.0002 (9)
C4a0.0322 (9)0.0327 (9)0.0399 (10)0.0052 (7)0.0139 (8)0.0000 (7)
C50.0456 (11)0.0369 (10)0.0389 (10)0.0019 (8)0.0115 (9)0.0052 (8)
C60.0566 (12)0.0405 (11)0.0494 (12)0.0076 (9)0.0054 (10)0.0117 (9)
C70.0480 (11)0.0435 (11)0.0575 (13)0.0165 (9)0.0063 (10)0.0048 (10)
C80.0392 (10)0.0395 (10)0.0485 (11)0.0104 (8)0.0147 (9)0.0032 (8)
C8a0.0312 (9)0.0310 (9)0.0385 (10)0.0031 (7)0.0123 (8)0.0010 (7)
C90.0302 (8)0.0312 (9)0.0349 (9)0.0058 (7)0.0139 (7)0.0017 (7)
C9a0.0317 (9)0.0283 (9)0.0379 (10)0.0061 (7)0.0129 (8)0.0021 (7)
C100.0354 (9)0.0429 (10)0.0348 (10)0.0051 (8)0.0178 (8)0.0003 (8)
C10a0.0347 (9)0.0332 (9)0.0364 (10)0.0009 (7)0.0109 (8)0.0006 (8)
C110.0347 (9)0.0320 (9)0.0341 (9)0.0057 (7)0.0126 (7)0.0003 (7)
C120.0365 (10)0.0452 (10)0.0420 (10)0.0006 (8)0.0180 (8)0.0050 (8)
C130.0517 (11)0.0441 (11)0.0464 (11)0.0038 (9)0.0168 (9)0.0044 (9)
C140.0507 (12)0.0485 (12)0.0541 (12)0.0028 (9)0.0170 (10)0.0131 (9)
C150.0425 (10)0.0496 (11)0.0372 (10)0.0067 (8)0.0170 (8)0.0049 (8)
C160.0343 (9)0.0381 (10)0.0362 (9)0.0078 (7)0.0129 (8)0.0012 (8)
C170.0298 (8)0.0347 (9)0.0345 (9)0.0063 (7)0.0116 (7)0.0013 (7)
C180.0515 (11)0.0360 (10)0.0413 (10)0.0086 (8)0.0208 (9)0.0004 (8)
C190.0644 (13)0.0467 (11)0.0439 (11)0.0058 (10)0.0277 (10)0.0075 (9)
C200.0580 (12)0.0614 (13)0.0409 (11)0.0094 (10)0.0256 (10)0.0015 (10)
C210.0511 (11)0.0463 (11)0.0475 (11)0.0063 (9)0.0207 (9)0.0109 (9)
C220.0394 (10)0.0362 (10)0.0449 (10)0.0041 (8)0.0187 (8)0.0008 (8)
Geometric parameters (Å, º) top
C1—C21.389 (2)C11—C121.528 (2)
C1—C9a1.386 (2)C11—C161.566 (2)
C1—H11.00C11—H111.03
C2—C31.378 (3)C12—C131.524 (2)
C2—H20.99C12—H12A1.01
C3—C41.381 (3)C12—H12B1.01
C3—H30.96C13—C141.522 (3)
C4—C4a1.378 (2)C13—H13A1.01
C4—H40.98C13—H13B0.99
C4a—C9a1.400 (2)C14—C151.514 (3)
C4a—C101.503 (2)C14—H14A1.00
C5—C61.374 (3)C14—H14B1.00
C5—C10a1.384 (2)C15—C161.527 (2)
C5—H51.00C15—H15A0.99
C6—C71.377 (3)C15—H15B1.00
C6—H60.99C16—H161.01
C7—C81.389 (3)C17—C181.388 (2)
C7—H70.98C17—C221.390 (2)
C8—C8a1.382 (2)C18—C191.386 (2)
C8—H80.97C18—H180.96
C8a—C91.534 (2)C19—C201.368 (3)
C8a—C10a1.401 (2)C19—H190.98
C9—C9a1.542 (2)C20—C211.378 (3)
C9—C111.585 (2)C20—H201.00
C9—C171.527 (2)C21—C221.383 (2)
C10—C10a1.500 (2)C21—H210.96
C10—C161.550 (2)C22—H220.98
C10—H101.01
C2—C1—C9a119.94 (15)C12—C11—C16110.19 (13)
C2—C1—H1120.7C12—C11—H11108.4
C9a—C1—H1119.3C16—C11—H11107.4
C1—C2—C3120.65 (16)C11—C12—C13111.27 (14)
C1—C2—H2119.5C11—C12—H12A108.1
C3—C2—H2119.8C11—C12—H12B112.0
C2—C3—C4119.87 (15)C13—C12—H12A110.9
C2—C3—H3119.8C13—C12—H12B109.9
C4—C3—H3120.3H12A—C12—H12B104.5
C3—C4—C4a119.89 (16)C12—C13—C14113.13 (14)
C3—C4—H4119.7C12—C13—H13A108.3
C4a—C4—H4120.4C12—C13—H13B108.2
C4—C4a—C9a120.84 (15)C14—C13—H13A111.2
C4—C4a—C10126.02 (15)C14—C13—H13B109.1
C9a—C4a—C10113.10 (13)H13A—C13—H13B106.7
C6—C5—C10a120.10 (16)C13—C14—C15111.48 (14)
C6—C5—H5120.3C13—C14—H14A110.6
C10a—C5—H5119.6C13—C14—H14B108.4
C5—C6—C7120.05 (16)C15—C14—H14A110.3
C5—C6—H6120.9C15—C14—H14B108.1
C7—C6—H6119.1H14A—C14—H14B107.9
C6—C7—C8120.26 (17)C14—C15—C16110.77 (15)
C6—C7—H7120.4C14—C15—H15A110.7
C8—C7—H7119.3C14—C15—H15B109.6
C7—C8—C8a120.41 (16)C16—C15—H15A109.9
C7—C8—H8118.8C16—C15—H15B108.6
C8a—C8—H8120.7H15A—C15—H15B107.1
C8—C8a—C9127.93 (14)C10—C16—C11109.19 (12)
C8—C8a—C10a118.66 (15)C10—C16—C15112.30 (14)
C9—C8a—C10a113.24 (13)C10—C16—H16108.4
C8a—C9—C9a106.04 (12)C11—C16—C15112.45 (13)
C8a—C9—C11104.34 (12)C11—C16—H16106.4
C8a—C9—C17115.20 (12)C15—C16—H16107.9
C9a—C9—C11106.01 (12)C9—C17—C18122.99 (14)
C9a—C9—C17110.25 (13)C9—C17—C22119.69 (14)
C11—C9—C17114.25 (12)C18—C17—C22117.12 (14)
C1—C9a—C4a118.81 (14)C17—C18—C19121.13 (15)
C1—C9a—C9126.94 (14)C17—C18—H18120.2
C4a—C9a—C9114.25 (14)C19—C18—H18118.6
C4a—C10—C10a107.87 (13)C18—C19—C20120.66 (16)
C4a—C10—C16105.55 (13)C18—C19—H19119.7
C4a—C10—H10112.2C20—C19—H19119.6
C10a—C10—C16108.35 (13)C19—C20—C21119.38 (16)
C10a—C10—H10111.9C19—C20—H20121.9
C16—C10—H10110.7C21—C20—H20118.6
C5—C10a—C8a120.44 (15)C20—C21—C22119.92 (16)
C5—C10a—C10125.31 (15)C20—C21—H21121.5
C8a—C10a—C10114.24 (14)C22—C21—H21118.6
C9—C11—C12113.48 (13)C17—C22—C21121.72 (15)
C9—C11—C16110.01 (12)C17—C22—H22119.7
C9—C11—H11107.2C21—C22—H22118.6
C9a—C1—C2—C31.09 (14)C2—C1—C9a—C4a0.27 (14)
C2—C1—C9a—C9179.3 (3)C1—C2—C3—C41.01 (14)
C2—C3—C4—C4a0.12 (14)C3—C4—C4a—C9a0.71 (14)
C3—C4—C4a—C10178.4 (3)C4—C4a—C9a—C10.63 (14)
C4—C4a—C9a—C9178.6 (3)C10—C4a—C9a—C1178.6 (3)
C10—C4a—C9a—C90.57 (12)C4—C4a—C10—C10a127.6 (3)
C4—C4a—C10—C16116.7 (3)C9a—C4a—C10—C10a54.54 (17)
C9a—C4a—C10—C1661.13 (18)C10a—C5—C6—C71.65 (15)
C6—C5—C10a—C8a0.41 (15)C6—C5—C10a—C10178.8 (3)
C5—C6—C7—C80.38 (15)C6—C7—C8—C8a2.16 (15)
C7—C8—C8a—C9178.4 (3)C7—C8—C8a—C10a3.35 (15)
C8—C8a—C9—C9a131.7 (3)C8—C8a—C9—C11116.6 (3)
C8—C8a—C9—C179.45 (14)C10a—C8a—C9—C9a53.07 (17)
C10a—C8a—C9—C1158.63 (17)C10a—C8a—C9—C17175.3 (3)
C8—C8a—C10a—C52.08 (15)C8—C8a—C10a—C10176.5 (3)
C9—C8a—C10a—C5177.8 (3)C9—C8a—C10a—C100.71 (12)
C8a—C9—C9a—C1128.2 (3)C8a—C9—C9a—C4a52.70 (17)
C11—C9—C9a—C1121.3 (3)C11—C9—C9a—C4a57.82 (17)
C17—C9—C9a—C12.87 (13)C17—C9—C9a—C4a178.0 (3)
C8a—C9—C11—C1263.59 (18)C8a—C9—C11—C1660.37 (17)
C9a—C9—C11—C12175.3 (3)C9a—C9—C11—C1651.34 (16)
C17—C9—C11—C1263.09 (18)C17—C9—C11—C16173.0 (3)
C8a—C9—C17—C18135.5 (3)C8a—C9—C17—C2249.71 (17)
C9a—C9—C17—C18104.6 (2)C9a—C9—C17—C2270.22 (19)
C11—C9—C17—C1814.70 (14)C11—C9—C17—C22170.5 (3)
C4a—C10—C10a—C5127.3 (3)C4a—C10—C10a—C8a54.23 (17)
C16—C10—C10a—C5118.9 (3)C16—C10—C10a—C8a59.58 (18)
C4a—C10—C16—C1162.58 (18)C4a—C10—C16—C15172.0 (3)
C10a—C10—C16—C1152.76 (16)C10a—C10—C16—C1572.7 (2)
C9—C11—C12—C13179.8 (3)C16—C11—C12—C1356.34 (18)
C9—C11—C16—C106.05 (12)C9—C11—C16—C15131.4 (3)
C12—C11—C16—C10119.8 (2)C12—C11—C16—C155.54 (13)
C11—C12—C13—C1450.58 (18)C12—C13—C14—C156.89 (13)
C13—C14—C15—C1658.09 (19)C14—C15—C16—C10174.8 (3)
C14—C15—C16—C1151.16 (17)C9—C17—C18—C19177.5 (3)
C22—C17—C18—C192.59 (15)C9—C17—C22—C21177.1 (3)
C18—C17—C22—C212.00 (15)C17—C18—C19—C201.49 (15)
C18—C19—C20—C210.33 (15)C19—C20—C21—C220.94 (15)
C20—C21—C22—C170.26 (15)

Experimental details

(I)(II)
Crystal data
Chemical formulaC26H22C26H24
Mr334.46336.47
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)293293
a, b, c (Å)9.3991 (7), 9.7733 (4), 10.5899 (7)9.2213 (6), 9.8777 (10), 10.7390 (8)
α, β, γ (°)90.376 (4), 71.465 (5), 104.463 (5)90.738 (8), 107.829 (6), 104.052 (7)
V3)890.29 (10)899.28 (13)
Z22
Radiation typeMo KαMo Kα
µ (mm1)0.070.07
Crystal size (mm)0.48 × 0.47 × 0.470.30 × 0.30 × 0.30
Data collection
DiffractometerNonius CAD-4
diffractometer
Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [Inet > 2.0σ(Inet)] reflections
3306, 3120, 2527 3334, 3147, 2444
Rint0.0090.014
(sin θ/λ)max1)0.5940.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.050, 2.03 0.041, 0.044, 1.94
No. of reflections25262442
No. of parameters236236
No. of restraints??
H-atom treatmentH-atom parameters not refinedH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.16, 0.200.15, 0.17

Computer programs: CAD-4-PC (Enraf-Nonius, 1993), SET4 and CELDIM in CAD-4-PC, DATRD2 in NRCVAX (Gabe et al., 1989), SOLVER in NRCVAX, LSTSQ in NRCVAX, TABLES in NRCVAX (January 94 version).

Selected bond lengths (Å) for (I) top
C4a—C101.497 (2)C11—C121.512 (2)
C8a—C91.535 (2)C11—C161.567 (2)
C9—C9a1.547 (2)C12—C131.319 (2)
C9—C111.581 (2)C13—C141.484 (3)
C9—C171.528 (2)C14—C151.519 (2)
C10—C10a1.506 (2)C15—C161.527 (2)
C10—C161.559 (2)
Selected geometric parameters (Å, º) for (II) top
C4a—C101.503 (2)C11—C121.528 (2)
C8a—C91.534 (2)C11—C161.566 (2)
C9—C9a1.542 (2)C12—C131.524 (2)
C9—C111.585 (2)C13—C141.522 (3)
C9—C171.527 (2)C14—C151.514 (3)
C10—C10a1.500 (2)C15—C161.527 (2)
C10—C161.550 (2)
C4—C4a—C9a120.84 (15)C4a—C10—C16105.55 (13)
C4—C4a—C10126.02 (15)C10a—C10—C16108.35 (13)
C9a—C4a—C10113.10 (13)C5—C10a—C8a120.44 (15)
C8—C8a—C9127.93 (14)C5—C10a—C10125.31 (15)
C8—C8a—C10a118.66 (15)C8a—C10a—C10114.24 (14)
C9—C8a—C10a113.24 (13)C9—C11—C12113.48 (13)
C8a—C9—C9a106.04 (12)C9—C11—C16110.01 (12)
C8a—C9—C11104.34 (12)C12—C11—C16110.19 (13)
C8a—C9—C17115.20 (12)C11—C12—C13111.27 (14)
C9a—C9—C11106.01 (12)C12—C13—C14113.13 (14)
C9a—C9—C17110.25 (13)C13—C14—C15111.48 (14)
C11—C9—C17114.25 (12)C14—C15—C16110.77 (15)
C1—C9a—C4a118.81 (14)C10—C16—C11109.19 (12)
C1—C9a—C9126.94 (14)C10—C16—C15112.30 (14)
C4a—C9a—C9114.25 (14)C11—C16—C15112.45 (13)
C4a—C10—C10a107.87 (13)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds