Download citation
Download citation
link to html
In the title supramolecular complex, [Ag2Cl2(C4H5N3)(C18H15P)2]n, a one-dimensional chain is formed by dimeric {Ag2Cl2(PPh3)2} units bridged by 2-amino­pyrimidine moieties. The Ag atoms are four-coordinate, with an AgCl2NP core. A crystallographic inversion centre is located in the centre of the Ag2Cl2 chelate ring, while the crystallographic twofold axis bisects the 2-amino­pyrimidine ligand.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102001518/bj1037sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102001518/bj1037Isup2.hkl
Contains datablock I

CCDC reference: 182980

Comment top

Recently, we have obtained a series of d10 metal CuI and AgI complexes containing triphenylphosphine and nitrogenous heterocyclic ligands (Jin, Long et al., 1998; Jin, Xin et al., 1998; Jin, Wang & Xin, 1999; Jin, Xin, Deng & Yu, 1999; Jin, Xin, Zhu & Li, 1999). Here, we report the crystal and molecular structure of [Ag2Cl2(PPh3)2(C4H5N3)]n, (I), which is the first AgI complex containing the bridging ligand 2-aminopyrimidine (AMP). This work complements and extends our structural characterization of this series of compounds. We have also recently reported a similar infinite-chain CuI complex, [Cu2I2(PPh3)2(C4H5N3)]n, (II) (Jin et al., 2000). \sch

Our research objective is to synthesize supramolecular complexes using ligands which have the potential to bridge metal atoms. Until now, supramolecular complexes reported in the literature have used a variety of bridging ligands. Both inorganic anion ligands, such as S2- (Huang et al., 1997) and SO42- (Lumme et al., 1996), and neutral organic ligands, such as 4,4'-bipyridine (Lu et al., 1997), pyrazine (Tong et al., 1998) and AMP (Smith et al., 1985; Jin et al., 2000), have been used to synthesize supramolecular complexes.

The structure of (I) is shown in Fig. 1 and selected geometric parameters are given in Table 1. The compound has a one-dimensional chain structure, formed by two N atoms from the pyrimidine ring of the 2-aminopyrimidine bridging two dimeric {Ag2Cl2(PPh3)2} units. The pyrimidine ring N atoms are related by a crystallographic twofold axis which bisects the pyrimidine ring.

In the [Ag2Cl2(PPh3)2(C4H5N3)] unit of (I), the Ag atom is in the centre of a distorted coordination tetrahedron. Each Ag atom is coordinated to one P atom from PPh3, two Cl atoms and one N atom from the pyrimidine ring in AMP. As a result of the coordination of the N atom to Ag, the electric charge of AMP is transferred and the AMP molecules are isomerized to the carbamamidine structure, as indicated by the C2—N2 bond length of 1.329 (5) Å; this is similar to what is observed in (II). The Ag2Cl2 ring of (I), just like the Cu2I2 ring of (II), is strictly planar.

The Ag—P distance is slightly shorter in (I) than in [AgCl(PPh3)2]2, (III) (2.469 Å; Cassel, 1979) or [AgXP(C6H11)3]2 (X is Cl, Br or I; Bowmaker et al., 1996). The Ag—Cl distances in (I) agree with those in (III) (2.669 Å). The Ag—N distance is slightly shorter in (I) than in [AgCl(C9H7N)]n (2.27 Å; Mills & White, 1984), or [AgI(3-MeC5H4N)], [2.324 (7) Å], [AgI(C9H7N)]2 [2.32 (2) Å] and [AgI(2-MeC5H4N)]2 [2.352 (9) Å; Healy et al., 1983]. Does this reference apply to all of these last three compounds?

The Ag···Ag distance in (I) is significantly shorter than that in (III) [3.840 (2) Å], while the Cl.·Cl distance of 4.210(?)Å Please provide s.u. in (I) is significantly longer than that in (III) [3.710 (2) Å]. This is because PPh3 is much bigger than AMP, so the effect of the additional steric hindrance of having two PPh3 coordinated to Ag in (III), compared with one PPh3 and one AMP in (I), results in the two Cl atoms being forced closer together, resulting in the longer Ag···Ag and shorter Cl···Cl distances, and larger Ag—Cl—Ag and smaller Cl—Ag—Cl angles, in (III) than in (I).

Experimental top

The synthesis of (I) was carried out by the reaction of AgCl (0.143 g, 1 mmol), PPh3 (0.26 g, 1 mmol) and 2-aminopyrimidine (0.10 g, 1 mmol) in CH2Cl2 (20 ml) solution at room temperature for 6 h. The solution was then filtered. It is of interest that white crystals of (I) were obtained from slow evaporation of a pale-red solution.

Refinement top

The coordinates and equivalent isotropic displacement parameters for H atoms were refined by difference Fourier synthesis. The final difference Fourier maps showed highest and lowest electron densities of 0.439 and -0.355 e Å-3, respectively.

Computing details top

Data collection: XSCANS (Siemens, 1991); cell refinement: XSCANS; data reduction: SHELXTL (Siemens, 1994) or XSCANS?; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the structure of (I). Displacement ellipsoids are shown at the 50% probability level and H atoms have been omitted for clarity.
catena-Poly[[di-µ-chloro-bis[(triphenylphosphine)silver(I)]]-µ- 2-aminopyrimidine-κ2N1:N3] top
Crystal data top
[Ag2Cl2(C18H15P)2(C4H5N3)]F(000) = 1816
Mr = 906.29Dx = 1.587 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 17.055 (2) ÅCell parameters from 26 reflections
b = 16.642 (4) Åθ = 2.9–15.8°
c = 15.302 (2) ŵ = 1.29 mm1
β = 119.13 (1)°T = 295 K
V = 3793.9 (11) Å3Prism, white
Z = 40.46 × 0.46 × 0.40 mm
Data collection top
Siemens P-4
diffractometer
2779 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.019
Graphite monochromatorθmax = 25.3°, θmin = 1.8°
ω scansh = 020
Absorption correction: empirical (using intensity measurements)
Please provide reference
k = 019
Tmin = 0.518, Tmax = 0.637l = 1816
3810 measured reflections3 standard reflections every 97 reflections
3429 independent reflections intensity decay: 1.4%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025All H-atom parameters refined
wR(F2) = 0.058 w = 1/[σ2(Fo2) + (0.0295P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3429 reflectionsΔρmax = 0.36 e Å3
294 parametersΔρmin = 0.35 e Å3
18 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00347 (11)
Crystal data top
[Ag2Cl2(C18H15P)2(C4H5N3)]V = 3793.9 (11) Å3
Mr = 906.29Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.055 (2) ŵ = 1.29 mm1
b = 16.642 (4) ÅT = 295 K
c = 15.302 (2) Å0.46 × 0.46 × 0.40 mm
β = 119.13 (1)°
Data collection top
Siemens P-4
diffractometer
2779 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
Please provide reference
Rint = 0.019
Tmin = 0.518, Tmax = 0.6373 standard reflections every 97 reflections
3810 measured reflections intensity decay: 1.4%
3429 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02518 restraints
wR(F2) = 0.058All H-atom parameters refined
S = 1.03Δρmax = 0.36 e Å3
3429 reflectionsΔρmin = 0.35 e Å3
294 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag0.408369 (13)0.478158 (14)0.398313 (15)0.04607 (10)
Cl0.48746 (5)0.38441 (4)0.54771 (5)0.04695 (18)
P0.25461 (4)0.52073 (4)0.31224 (5)0.03521 (16)
N10.48195 (14)0.41581 (13)0.31609 (16)0.0422 (5)
N20.50000.5333 (2)0.25000.0541 (9)
C20.50000.4534 (2)0.25000.0357 (8)
C50.50000.2927 (3)0.25000.0600 (12)
C60.4852 (2)0.33603 (18)0.3164 (2)0.0538 (8)
C70.22927 (15)0.58938 (15)0.20913 (18)0.0347 (6)
C80.26633 (19)0.57086 (19)0.1484 (2)0.0487 (7)
C90.2476 (2)0.6169 (2)0.0656 (2)0.0587 (8)
C100.1912 (2)0.68168 (19)0.0415 (2)0.0534 (8)
C110.1547 (2)0.70060 (19)0.1008 (2)0.0539 (8)
C120.17401 (19)0.65535 (18)0.1844 (2)0.0480 (7)
C130.17024 (16)0.44192 (15)0.25202 (18)0.0359 (6)
C140.19122 (19)0.36443 (17)0.2882 (2)0.0466 (7)
C150.1290 (2)0.30336 (18)0.2451 (2)0.0571 (8)
C160.0457 (2)0.31956 (19)0.1656 (2)0.0551 (8)
C170.02441 (19)0.39624 (19)0.1289 (2)0.0546 (8)
C180.08687 (18)0.45719 (17)0.1714 (2)0.0476 (7)
C190.22025 (16)0.57232 (16)0.39315 (18)0.0371 (6)
C200.2851 (2)0.6129 (2)0.4746 (2)0.0633 (9)
C210.2641 (3)0.6517 (3)0.5405 (3)0.0810 (11)
C220.1788 (2)0.6503 (2)0.5258 (3)0.0680 (9)
C230.1138 (2)0.6107 (2)0.4457 (3)0.0673 (9)
C240.13348 (19)0.5707 (2)0.3794 (2)0.0573 (8)
H2N0.496 (2)0.5620 (15)0.2935 (17)0.056 (9)*
H50.50000.2369 (7)0.25000.064 (13)*
H60.4768 (16)0.3119 (13)0.3661 (14)0.041 (7)*
H80.3045 (16)0.5264 (11)0.169 (2)0.059 (9)*
H90.272 (2)0.6049 (19)0.025 (2)0.080 (11)*
H100.1724 (18)0.7110 (15)0.0170 (13)0.063 (9)*
H110.1176 (17)0.7445 (13)0.086 (2)0.075 (10)*
H120.1479 (16)0.6681 (16)0.2231 (17)0.054 (8)*
H140.2482 (9)0.3545 (16)0.3421 (13)0.053 (8)*
H150.1430 (19)0.2513 (9)0.269 (2)0.072 (10)*
H160.0063 (15)0.2766 (12)0.140 (2)0.061 (9)*
H170.0317 (10)0.4088 (17)0.0758 (14)0.059 (9)*
H180.0696 (17)0.5085 (9)0.1425 (19)0.049 (8)*
H200.3431 (10)0.6157 (19)0.485 (2)0.072 (10)*
H210.3077 (16)0.6807 (18)0.5939 (17)0.085 (11)*
H220.1644 (18)0.6741 (15)0.5706 (17)0.058 (9)*
H230.0548 (10)0.616 (2)0.434 (2)0.086 (11)*
H240.0887 (15)0.5448 (17)0.3231 (15)0.068 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag0.03322 (13)0.05696 (16)0.04458 (14)0.00706 (10)0.01622 (10)0.00312 (11)
Cl0.0634 (4)0.0366 (4)0.0382 (3)0.0044 (3)0.0227 (3)0.0021 (3)
P0.0293 (3)0.0367 (4)0.0365 (3)0.0013 (3)0.0135 (3)0.0006 (3)
N10.0476 (13)0.0450 (14)0.0427 (12)0.0000 (11)0.0287 (11)0.0021 (11)
N20.079 (3)0.045 (2)0.057 (2)0.0000.048 (2)0.000
C20.0315 (18)0.043 (2)0.0341 (19)0.0000.0169 (16)0.000
C50.085 (3)0.038 (2)0.077 (3)0.0000.055 (3)0.000
C60.070 (2)0.0492 (19)0.0591 (19)0.0045 (16)0.0447 (17)0.0037 (16)
C70.0298 (12)0.0358 (14)0.0366 (13)0.0044 (11)0.0146 (11)0.0008 (11)
C80.0511 (17)0.0501 (18)0.0480 (16)0.0091 (15)0.0266 (14)0.0038 (15)
C90.064 (2)0.072 (2)0.0501 (18)0.0040 (18)0.0350 (17)0.0013 (17)
C100.0511 (18)0.0537 (19)0.0475 (18)0.0113 (15)0.0178 (15)0.0094 (15)
C110.0512 (18)0.0448 (18)0.064 (2)0.0091 (15)0.0270 (16)0.0151 (15)
C120.0490 (16)0.0478 (17)0.0559 (18)0.0051 (14)0.0323 (15)0.0059 (14)
C130.0348 (13)0.0371 (14)0.0374 (13)0.0002 (11)0.0190 (11)0.0014 (12)
C140.0479 (17)0.0427 (17)0.0440 (16)0.0003 (14)0.0182 (14)0.0039 (13)
C150.074 (2)0.0373 (17)0.063 (2)0.0046 (16)0.0359 (18)0.0035 (16)
C160.0544 (19)0.052 (2)0.061 (2)0.0200 (16)0.0301 (17)0.0158 (16)
C170.0371 (16)0.0508 (19)0.062 (2)0.0055 (14)0.0133 (15)0.0104 (16)
C180.0379 (15)0.0385 (17)0.0563 (18)0.0017 (12)0.0151 (13)0.0008 (14)
C190.0359 (13)0.0401 (15)0.0360 (13)0.0011 (12)0.0182 (11)0.0023 (12)
C200.0412 (17)0.086 (2)0.063 (2)0.0106 (17)0.0249 (16)0.0277 (18)
C210.067 (2)0.105 (3)0.070 (2)0.021 (2)0.034 (2)0.046 (2)
C220.079 (2)0.080 (3)0.066 (2)0.001 (2)0.052 (2)0.0138 (19)
C230.055 (2)0.088 (3)0.074 (2)0.0105 (19)0.0441 (19)0.019 (2)
C240.0429 (16)0.075 (2)0.0568 (19)0.0137 (16)0.0266 (15)0.0164 (17)
Geometric parameters (Å, º) top
Ag—P2.3981 (7)C11—C121.379 (4)
Ag—N12.402 (2)C11—H110.92 (3)
Ag—Cl2.5451 (8)C12—H120.92 (3)
Ag—Cli2.7643 (8)C13—C181.379 (4)
Ag—Agi3.2424 (7)C13—C141.380 (4)
Cl—Agi2.7643 (8)C14—C151.384 (4)
P—C71.821 (2)C14—H140.933 (10)
P—C191.822 (3)C15—C161.374 (4)
P—C131.830 (3)C15—H150.923 (10)
N1—C61.329 (4)C16—C171.370 (4)
N1—C21.346 (3)C16—H160.926 (10)
N2—C21.329 (5)C17—C181.383 (4)
N2—H2N0.85 (3)C17—H170.929 (10)
C2—N1ii1.346 (3)C18—H180.940 (10)
C5—C61.367 (4)C19—C201.375 (4)
C5—C6ii1.367 (4)C19—C241.390 (4)
C5—H50.929 (10)C20—C211.382 (4)
C6—H60.930 (10)C20—H200.926 (10)
C7—C121.375 (4)C21—C221.361 (5)
C7—C81.389 (4)C21—H210.93 (3)
C8—C91.378 (4)C22—C231.357 (5)
C8—H80.933 (10)C22—H220.92 (3)
C9—C101.372 (5)C23—C241.386 (4)
C9—H90.92 (3)C23—H230.935 (10)
C10—C111.362 (4)C24—H240.932 (10)
C10—H100.929 (10)
P—Ag—N1123.39 (6)C10—C11—C12120.8 (3)
P—Ag—Cl129.36 (3)C10—C11—H11120 (2)
N1—Ag—Cl91.26 (6)C12—C11—H11119 (2)
P—Ag—Cli106.96 (3)C7—C12—C11120.9 (3)
N1—Ag—Cli95.18 (6)C7—C12—H12119.2 (18)
Cl—Ag—Cli104.85 (2)C11—C12—H12119.9 (18)
P—Ag—Agi138.28 (2)C18—C13—C14119.0 (2)
N1—Ag—Agi95.41 (5)C18—C13—P122.3 (2)
Cl—Ag—Agi55.50 (2)C14—C13—P118.74 (19)
Cli—Ag—Agi49.354 (16)C13—C14—C15120.4 (3)
Ag—Cl—Agi75.15 (2)C13—C14—H14118.3 (17)
C7—P—C19105.90 (11)C15—C14—H14121.3 (17)
C7—P—C13102.50 (11)C16—C15—C14120.1 (3)
C19—P—C13104.23 (11)C16—C15—H15119.3 (19)
C7—P—Ag113.33 (8)C14—C15—H15121 (2)
C19—P—Ag113.17 (8)C17—C16—C15120.0 (3)
C13—P—Ag116.51 (8)C17—C16—H16123.7 (18)
C6—N1—C2116.3 (2)C15—C16—H16116.3 (18)
C6—N1—Ag117.44 (17)C16—C17—C18120.0 (3)
C2—N1—Ag124.15 (19)C16—C17—H17121.6 (18)
C2—N2—H2N124 (2)C18—C17—H17118.4 (18)
N2—C2—N1117.71 (17)C13—C18—C17120.6 (3)
N2—C2—N1ii117.71 (17)C13—C18—H18122.6 (17)
N1—C2—N1ii124.6 (3)C17—C18—H18116.8 (17)
C6—C5—C6ii116.3 (4)C20—C19—C24118.3 (3)
C6—C5—H5121.9 (2)C20—C19—P117.7 (2)
C6ii—C5—H5121.9 (2)C24—C19—P123.9 (2)
N1—C6—C5123.2 (3)C19—C20—C21120.8 (3)
N1—C6—H6114.3 (16)C19—C20—H20120 (2)
C5—C6—H6122.5 (16)C21—C20—H20119 (2)
C12—C7—C8117.9 (2)C22—C21—C20120.4 (3)
C12—C7—P125.5 (2)C22—C21—H21119 (2)
C8—C7—P116.6 (2)C20—C21—H21120 (2)
C9—C8—C7121.0 (3)C23—C22—C21119.7 (3)
C9—C8—H8124.1 (19)C23—C22—H22118.9 (18)
C7—C8—H8114.9 (19)C21—C22—H22121.3 (18)
C10—C9—C8120.1 (3)C22—C23—C24120.8 (3)
C10—C9—H9118 (2)C22—C23—H23117 (2)
C8—C9—H9122 (2)C24—C23—H23121 (2)
C11—C10—C9119.4 (3)C23—C24—C19120.0 (3)
C11—C10—H10117.8 (18)C23—C24—H24121.1 (19)
C9—C10—H10122.6 (19)C19—C24—H24118.9 (19)
P—Ag—Cl—Agi127.42 (3)P—C7—C8—C9176.8 (2)
N1—Ag—Cl—Agi95.70 (5)C7—C8—C9—C100.5 (5)
N1—Ag—P—C755.30 (11)C8—C9—C10—C110.8 (5)
Cl—Ag—P—C7179.62 (9)C9—C10—C11—C120.0 (5)
Cli—Ag—P—C753.00 (9)C8—C7—C12—C111.3 (4)
Agi—Ag—P—C7100.05 (9)P—C7—C12—C11175.8 (2)
N1—Ag—P—C19175.89 (11)C10—C11—C12—C71.0 (5)
Cl—Ag—P—C1959.03 (10)C7—P—C13—C1830.3 (2)
Cli—Ag—P—C1967.59 (9)C19—P—C13—C1880.0 (2)
Agi—Ag—P—C1920.54 (10)Ag—P—C13—C18154.6 (2)
N1—Ag—P—C1363.29 (11)C7—P—C13—C14149.2 (2)
Cl—Ag—P—C1361.78 (9)C19—P—C13—C14100.5 (2)
Cli—Ag—P—C13171.59 (9)Ag—P—C13—C1424.9 (2)
Agi—Ag—P—C13141.36 (9)C18—C13—C14—C150.9 (4)
P—Ag—N1—C695.9 (2)P—C13—C14—C15179.6 (2)
Cl—Ag—N1—C644.8 (2)C13—C14—C15—C160.1 (5)
Cli—Ag—N1—C6149.9 (2)C14—C15—C16—C170.2 (5)
Agi—Ag—N1—C6100.3 (2)C15—C16—C17—C180.3 (5)
P—Ag—N1—C266.99 (17)C14—C13—C18—C171.5 (4)
Cl—Ag—N1—C2152.27 (16)P—C13—C18—C17179.0 (2)
Cli—Ag—N1—C247.24 (16)C16—C17—C18—C131.2 (5)
Agi—Ag—N1—C296.82 (16)C7—P—C19—C2096.5 (3)
C6—N1—C2—N2177.97 (19)C13—P—C19—C20155.7 (2)
Ag—N1—C2—N218.97 (17)Ag—P—C19—C2028.2 (3)
C6—N1—C2—N1ii2.03 (19)C7—P—C19—C2485.8 (3)
Ag—N1—C2—N1ii161.03 (17)C13—P—C19—C2421.9 (3)
C2—N1—C6—C54.2 (4)Ag—P—C19—C24149.5 (2)
Ag—N1—C6—C5160.02 (19)C24—C19—C20—C210.7 (5)
C6ii—C5—C6—N12.2 (2)P—C19—C20—C21178.4 (3)
C19—P—C7—C1215.9 (3)C19—C20—C21—C220.2 (6)
C13—P—C7—C1293.1 (2)C20—C21—C22—C230.3 (7)
Ag—P—C7—C12140.5 (2)C21—C22—C23—C240.9 (6)
C19—P—C7—C8167.0 (2)C22—C23—C24—C191.4 (6)
C13—P—C7—C884.1 (2)C20—C19—C24—C231.3 (5)
Ag—P—C7—C842.3 (2)P—C19—C24—C23178.9 (3)
C12—C7—C8—C90.5 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···Cli0.85 (1)2.47 (1)3.2954 (17)164 (3)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ag2Cl2(C18H15P)2(C4H5N3)]
Mr906.29
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)17.055 (2), 16.642 (4), 15.302 (2)
β (°) 119.13 (1)
V3)3793.9 (11)
Z4
Radiation typeMo Kα
µ (mm1)1.29
Crystal size (mm)0.46 × 0.46 × 0.40
Data collection
DiffractometerSiemens P-4
diffractometer
Absorption correctionEmpirical (using intensity measurements)
Please provide reference
Tmin, Tmax0.518, 0.637
No. of measured, independent and
observed [I > 2σ(I)] reflections
3810, 3429, 2779
Rint0.019
(sin θ/λ)max1)0.600
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.058, 1.03
No. of reflections3429
No. of parameters294
No. of restraints18
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.36, 0.35

Computer programs: XSCANS (Siemens, 1991), SHELXTL (Siemens, 1994) or XSCANS?, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
Ag—P2.3981 (7)Ag—Agi3.2424 (7)
Ag—N12.402 (2)Cl—Agi2.7643 (8)
Ag—Cl2.5451 (8)N2—C21.329 (5)
Ag—Cli2.7643 (8)N2—H2N0.85 (3)
P—Ag—N1123.39 (6)Cl—Ag—Cli104.85 (2)
P—Ag—Cl129.36 (3)P—Ag—Agi138.28 (2)
N1—Ag—Cl91.26 (6)N1—Ag—Agi95.41 (5)
P—Ag—Cli106.96 (3)Cl—Ag—Agi55.50 (2)
N1—Ag—Cli95.18 (6)Cli—Ag—Agi49.354 (16)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2N···Cli0.849 (10)2.472 (13)3.2954 (17)164 (3)
Symmetry code: (i) x+1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds