Download citation
Download citation
link to html
The title compound, C6H13NO5, adopts a zwitterionic form where the carboxylic acid H atom is transferred to the amino group. The methyl-glycine backbone is planar. The tris(hydroxy­methyl)­methyl group is rotated as a rigid group around the amino-methyl bond by 22 (1)° and the carboxylic acid plane is rotated by 19.76 (12)° from the plane of the main skeleton. Apart from their H atoms, the three hydroxy­methyl groups adopt a propeller-like conformation around the amino-methyl bond, close to C3 symmetry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100020266/bj1011sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100020266/bj1011Isup2.hkl
Contains datablock I

CCDC reference: 163909

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: HELENA (Spek, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97; molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

N-[tris(hydroxymethyl)methyl]glycine or N-(2-hydroxy-1,1-bis[hydroxymethyl]ethyl)glycine top
Crystal data top
C6H13NO5Dx = 1.523 Mg m3
Mr = 179.18Melting point: 459(2) K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.2806 (16) ÅCell parameters from 25 reflections
b = 13.5616 (13) Åθ = 9.7–14.1°
c = 9.6165 (10) ŵ = 0.13 mm1
β = 107.488 (11)°T = 293 K
V = 781.2 (2) Å3Prism, colourless
Z = 40.49 × 0.20 × 0.12 mm
F(000) = 384
Data collection top
Enraf-Nonius CAD-4
diffractometer
Rint = 0.020
Radiation source: fine-focus sealed tubeθmax = 30.0°, θmin = 3.0°
Graphite monochromatorh = 08
profile data from ω–2θ scansk = 019
2434 measured reflectionsl = 1312
2255 independent reflections3 standard reflections every 180 min
1920 reflections with I > 2σ(I) intensity decay: 1.1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030Only H-atom coordinates refined
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0479P)2 + 0.1832P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2255 reflectionsΔρmax = 0.39 e Å3
149 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.069 (6)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.56659 (13)0.09470 (6)0.61101 (8)0.02764 (18)
O20.73866 (14)0.11426 (6)0.84884 (8)0.02991 (19)
O30.04126 (12)0.10578 (5)0.42452 (7)0.02200 (16)
H30.012 (3)0.1509 (12)0.3772 (17)0.033*
O40.08633 (14)0.07186 (6)0.86253 (8)0.0321 (2)
H40.128 (3)0.0723 (13)0.955 (2)0.048*
O50.52284 (12)0.25370 (5)0.73708 (8)0.02664 (18)
H50.601 (3)0.2944 (12)0.7037 (17)0.040*
N10.32148 (12)0.05764 (5)0.65388 (8)0.01638 (16)
H1A0.362 (2)0.0642 (9)0.5727 (14)0.020*
H1B0.229 (2)0.0034 (9)0.6388 (13)0.020*
C10.61573 (15)0.06833 (7)0.74002 (10)0.01924 (18)
C20.52084 (16)0.02846 (7)0.77614 (10)0.0230 (2)
H2A0.631 (2)0.0780 (11)0.7941 (15)0.028*
H2B0.472 (2)0.0191 (10)0.8634 (15)0.028*
C30.19535 (14)0.15021 (6)0.67019 (9)0.01603 (17)
C40.04097 (15)0.13842 (7)0.56471 (10)0.01931 (18)
H4A0.121 (2)0.2010 (10)0.5605 (14)0.023*
H4B0.119 (2)0.0884 (9)0.6017 (14)0.023*
C50.17907 (17)0.15926 (7)0.82451 (10)0.02172 (19)
H5A0.083 (2)0.2180 (10)0.8285 (15)0.026*
H5B0.323 (2)0.1727 (10)0.8919 (15)0.026*
C60.31037 (16)0.24088 (7)0.63172 (10)0.02139 (19)
H6A0.212 (2)0.2996 (10)0.6324 (14)0.026*
H6B0.329 (2)0.2318 (10)0.5356 (15)0.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0325 (4)0.0312 (4)0.0196 (3)0.0082 (3)0.0084 (3)0.0005 (3)
O20.0363 (4)0.0299 (4)0.0211 (3)0.0148 (3)0.0050 (3)0.0046 (3)
O30.0247 (3)0.0230 (3)0.0168 (3)0.0050 (2)0.0038 (2)0.0011 (2)
O40.0386 (4)0.0375 (4)0.0213 (4)0.0138 (3)0.0109 (3)0.0009 (3)
O50.0249 (4)0.0259 (4)0.0271 (4)0.0103 (3)0.0048 (3)0.0002 (3)
N10.0169 (3)0.0154 (3)0.0154 (3)0.0010 (2)0.0027 (3)0.0010 (2)
C10.0186 (4)0.0199 (4)0.0201 (4)0.0027 (3)0.0072 (3)0.0021 (3)
C20.0222 (4)0.0223 (4)0.0197 (4)0.0058 (3)0.0011 (3)0.0020 (3)
C30.0174 (4)0.0142 (3)0.0160 (3)0.0003 (3)0.0042 (3)0.0012 (3)
C40.0171 (4)0.0216 (4)0.0183 (4)0.0009 (3)0.0039 (3)0.0001 (3)
C50.0263 (4)0.0221 (4)0.0175 (4)0.0010 (3)0.0077 (3)0.0028 (3)
C60.0245 (4)0.0170 (4)0.0211 (4)0.0038 (3)0.0046 (3)0.0002 (3)
Geometric parameters (Å, º) top
O1—C11.2379 (11)C1—C21.5241 (13)
O2—C11.2623 (11)C2—H2A0.944 (15)
O3—C41.4184 (11)C2—H2B0.985 (14)
O3—H30.816 (16)C3—C51.5229 (12)
O4—C51.4163 (12)C3—C61.5268 (12)
O4—H40.851 (19)C3—C41.5338 (12)
O5—C61.4230 (12)C4—H4A0.981 (13)
O5—H50.862 (17)C4—H4B0.966 (13)
N1—C21.4906 (11)C5—H5A1.005 (14)
N1—C31.5175 (11)C5—H5B0.960 (14)
N1—H1A0.896 (13)C6—H6A1.009 (14)
N1—H1B0.923 (13)C6—H6B0.974 (13)
C4—O3—H3111.1 (11)N1—C3—C4106.07 (7)
C5—O4—H4104.1 (12)C5—C3—C4108.53 (7)
C6—O5—H5109.3 (11)C6—C3—C4110.98 (7)
C2—N1—C3118.62 (7)O3—C4—C3112.69 (7)
C2—N1—H1A108.7 (8)O3—C4—H4A112.1 (8)
C3—N1—H1A107.6 (8)C3—C4—H4A108.6 (8)
C2—N1—H1B104.7 (8)O3—C4—H4B106.0 (8)
C3—N1—H1B110.5 (8)C3—C4—H4B109.1 (8)
H1A—N1—H1B106.0 (11)H4A—C4—H4B108.2 (11)
O1—C1—O2126.47 (9)O4—C5—C3109.72 (7)
O1—C1—C2118.71 (8)O4—C5—H5A110.9 (8)
O2—C1—C2114.82 (8)C3—C5—H5A108.5 (8)
N1—C2—C1110.01 (7)O4—C5—H5B111.3 (8)
N1—C2—H2A110.6 (9)C3—C5—H5B110.3 (8)
C1—C2—H2A109.8 (9)H5A—C5—H5B106.1 (11)
N1—C2—H2B107.6 (8)O5—C6—C3109.67 (7)
C1—C2—H2B109.0 (8)O5—C6—H6A110.1 (8)
H2A—C2—H2B109.7 (12)C3—C6—H6A107.4 (8)
N1—C3—C5110.94 (7)O5—C6—H6B109.7 (8)
N1—C3—C6109.97 (7)C3—C6—H6B109.2 (8)
C5—C3—C6110.27 (7)H6A—C6—H6B110.8 (11)
C3—N1—C2—C1177.57 (7)C6—C3—C4—O373.02 (9)
O1—C1—C2—N119.76 (12)N1—C3—C5—O453.88 (10)
O2—C1—C2—N1159.87 (9)C6—C3—C5—O4175.96 (8)
C2—N1—C3—C539.57 (11)C4—C3—C5—O462.28 (10)
C2—N1—C3—C682.69 (10)N1—C3—C6—O566.90 (9)
C2—N1—C3—C4157.24 (8)C5—C3—C6—O555.75 (10)
N1—C3—C4—O346.39 (9)C4—C3—C6—O5176.05 (7)
C5—C3—C4—O3165.66 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.896 (13)1.991 (13)2.8830 (11)173.0 (12)
N1—H1B···O3ii0.923 (13)1.876 (13)2.7894 (11)170.3 (11)
O3—H3···O5iii0.816 (16)1.928 (16)2.7347 (11)170.2 (15)
O4—H4···O2iv0.851 (19)1.904 (19)2.7220 (11)160.9 (17)
O5—H5···O2v0.862 (17)1.764 (17)2.6224 (11)174.0 (16)
C2—H2A···O50.944 (15)2.494 (14)3.0781 (13)120.2 (10)
C2—H2B···O40.985 (14)2.523 (14)3.1380 (15)120.4 (10)
C4—H4B···O40.966 (13)2.462 (13)2.8775 (12)105.7 (9)
C5—H5B···O50.960 (14)2.473 (13)2.8460 (13)103.0 (9)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z+1; (iii) x1/2, y+1/2, z1/2; (iv) x+1, y, z+2; (v) x+3/2, y+1/2, z+3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds