Download citation
Download citation
link to html
The title compound, [Cu2(C9H10NO3)2(NO3)2(C10H8N2)(H2O)2]n, contains CuII atoms and L-tyrosinate (L-tyr) and 4,4′-bipyridine (4,4′-bipy) ligands in a 2:2:1 ratio. Each Cu atom is coordinated by one amino N atom and two carboxyl­ate O atoms from two L-tyr ligands, one N atom from a 4,4′-bipy ligand, a monodentate nitrate ion and a water mol­ecule in an elongated octa­hedral geometry. Adjacent Cu atoms are bridged by the bidentate carboxyl­ate groups into a chain. These chains are further linked by the bridging 4,4′-bipy ligands, forming an undulated chiral two-dimensional sheet. O—H...O and N—H...O hydrogen bonds connect the sheets in the [100] direction. This study offers useful information for the engineering of chiral coordination polymers with amino acids and 4,4′-bipy ligands by considering the ratios of the metal ion and organic components.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108038985/bg3088sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108038985/bg3088Isup2.hkl
Contains datablock I

CCDC reference: 718101

Comment top

There is considerable interest in chiral coordination polymers, owing to their potential application in asymmetric catalysis and chiral separation (Kesanli & Lin, 2003). Although these materials can be synthesized from single chiral or achiral organic components, self-assembly based on a mixed-ligand system containing both chiral and achiral ligands is an attractive approach to the construction of chiral framework materials since it allows for facile tuning of structural, topological and functional features derived from different molecular components (Dai et al., 2005; Wang et al., 2008; Zaworotko, 2001). The 4,4'-bipyridine (4,4'-bipy) molecule is a common building block, which has been used extensively as a rigid linear linker between metal centres (Biradha et al., 2006). Amino acids such as L-tyrosine (L-tyr) are good candidates as chiral building blocks, with their amino and carboxylate groups being capable of binding to metal ions in flexible modes (Vaidhyanathan et al., 2006). We report here the title chiral two-dimensional coordination polymer, (I), which is assembled by connecting Cu–L-tyr units with 4,4'-bipy linkers.

The asymmetric unit of (I) consists of two CuII atoms, two deprotonated L-tyr ligands, one 4,4'-bipy ligand, two nitrate ions and two coordinated water molecules (Fig. 1). Each Cu atom is coordinated by one N atom and two carboxylate O atoms from two L-tyr ligands and one N atom from a 4,4'-bipy ligand in the equatorial plane, and by a monodentate nitrate ion and a water molecule in the axial positions. The nitrate ions and water molecules are weakly bonded to the Cu atoms, with Cu—Onitrate distances of 2.565 (5) and 2.808 (7) Å, and Cu—Owater distances of 2.461 (4) and 2.627 (5) Å (Table 1). These axial Cu—O distances are longer than the sum of the ionic radii (Reference?), but they are still within the range of 2.2–2.9 Å known for axial Cu—O bond lengths (Zhang et al., 1996), thus displaying an elongated octahedral geometry around each Cu atom. The L-tyr ligand binds to the Cu atom in a µ-(κ3N,O:O') mode, that is, one carboxylate O atom chelates a Cu atom together with the amino N atom, and the other carboxylate O atom coordinates to another Cu atom. The hydroxyl O atom of the phenol group is uncoordinated. In this way, the L-tyr ligands bridge adjacent Cu atoms to form a chiral [Cu(L-tyr)(NO3)(H2O)]n chain extending in the [001] direction. The separations between the Cu atoms in the chain are 5.180 (1) and 5.193 (1) Å. As shown in Fig. 2, these chains are further connected by the 4,4'-bipy linkers into a two-dimensional undulating sheet. Fig. 3 shows a schematic depiction of the sheet, which has a (6,3) topology (Batten & Robson, 1998), with Cu atoms as the three-connected nodes and with meshes of dimensions 9.82 × 11.06 Å. Moreover, these sheets are arranged in the [100] direction and connected by three types of hydrogen bonds (Table 2). One is formed between a hydroxyl group and a water O atom [O6—H6A···O2Wiii; symmetry code: (iii) 1 - x, 1/2 + y, 1 - z], the second involves the coordinated water molecules and nitrate ions, and the third involves the amino groups and nitrate ions.

It has been observed in the structures of [Cu(L-tyr)(1,10-phenanthroline)(H2O)](ClO4).H2O (Sugimori et al., 1997) and [Cu(L-I2tyr)(2,2'-bipyridine)(NO3)].CH3OH (Zhang et al., 1996) that the phenol ring of the L-tyr ligand folds back to be located over the Cu atom with an intramolecular phenol ring···Cu coordination plane interaction, whereas the two phenol rings in (I) each extend away from the Cu atoms. The phenol ring with hydroxyl atom O3 inserts itself into the mesh of the sheet to form a hydrogen bond between atom O3 and nitrate atom O11(2 - x, y - 1/2, 1 - z) of the opposite chain, while the phenol ring with hydroxyl atom O6 lies between two sheets, stabilized by a ππ interaction with a pyridyl ring of a neighbouring sheet [centroid-to-centroid distance = 3.56 (1) Å]. As a result, the channels along the [100] direction formed by the aligned meshes of the sheets are blocked by the side chains of the L-tyr ligands.

The rational design and controlled synthesis of coordination frameworks have been a challenging subject in crystal engineering. Small changes in the variables of reaction such as stoichiometry, pH value, temperature, solvent and metal source can have a profound influence on the structures of the products. For the CuII–amino acid–4,4'-bipy system, it seems that the ratio of CuII to amino acid to 4,4'-bipy is related to structural architecture. We note that a zero-dimensional dinuclear complex is formed for an L-valinate complex when the ratio is 2:2:3 (Lou & Hong, 2008), while one-dimensional helical chains have been found in L-threoninate and L-alaninate complexes with a ratio of 1:1:1, regardless of a polar or non-polar side chain (Lou et al., 2005). Two-dimensional frameworks are observed in (I), with the polar L-tyr ligand, and in a non-polar L-valinate complex (Lou et al., 2007), both of which have a ratio of 2:2:1. Clearly, despite the observed structural relevance to component ratios, further work is needed for understanding the factors affecting these structural architectures.

In conclusion, we have synthesized a two-dimensional chiral coordination polymer based on a mixed-ligand system, in which the L-tyr ligand provides a chiral source and the 4,4'-bipy ligand is used to extend the framework. This study offers helpful information for engineering this type of chiral coordination polymer by considering the ratios of metal ion and organic components.

Experimental top

Cu(NO3)2.3H2O (0.096 g, 0.4 mmol) and L-tyrosine (0.072 g, 0.4 mmol) were dissolved in hot water (20 ml) with stirring. To this solution was added 4,4'-bipyridine (0.031 g, 0.2 mmol) in methanol (10 ml). The resulting solution was allowed to stand at room temperature and blue crystals of (I) suitable for X-ray diffraction analysis were obtained after two weeks.

Refinement top

H atoms bonded to O atoms were located in a difference Fourier map and fixed in the refinement, with Uiso(H) = 1.2Ueq(O). Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 (aromatic), 0.97 (CH2) or 0.98 (CH) Å and N—H = 0.90 Å, and with Uiso(H) = 1.2Ueq(C,N). The highest residual electron density is 0.94 Å from atom Cu2 and the deepest hole 0.93 Å from atom Cu1.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), together with symmetry-related atoms to complete the coordination unit. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i) x, y, z - 1; (ii) 2 - x, y - 1/2, 1 - z; (vi) 2 - x, y + 1/2, 1 - z.]
[Figure 2] Fig. 2. Ball-and-stick representation of the two-dimensional sheet in (I). H atoms have been omitted for clarity.
[Figure 3] Fig. 3. Schematic view of the (6,3) net in (I). Blue and pink lines represent the L-tyr and 4,4'-bipy ligands, respectively. [Colour will not be visible in the print version of the journal, so cannot be referred to specifically in the caption. Please revise the figure and caption, perhaps using dotted and dashed lines, or pale and dark ones]
Poly[[diaqua-µ-4,4'-bipyridine-dinitratodi-µ-L-tyrosinato-diaquadicopper(II)] top
Crystal data top
[Cu2(C9H10NO3)2(NO3)2(C10H8N2)(H2O)2]F(000) = 824
Mr = 803.68Dx = 1.687 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4737 reflections
a = 7.6075 (13) Åθ = 2.4–26.1°
b = 22.281 (4) ŵ = 1.43 mm1
c = 9.8205 (16) ÅT = 293 K
β = 108.150 (2)°Prism, blue
V = 1581.8 (5) Å30.33 × 0.19 × 0.17 mm
Z = 2
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5584 independent reflections
Radiation source: fine-focus sealed tube5003 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 25.8°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 98
Tmin = 0.652, Tmax = 0.791k = 2724
8422 measured reflectionsl = 129
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.0889P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.006
5584 reflectionsΔρmax = 1.23 e Å3
439 parametersΔρmin = 0.87 e Å3
1 restraintAbsolute structure: Flack (1983), with 2506 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.010 (18)
Crystal data top
[Cu2(C9H10NO3)2(NO3)2(C10H8N2)(H2O)2]V = 1581.8 (5) Å3
Mr = 803.68Z = 2
Monoclinic, P21Mo Kα radiation
a = 7.6075 (13) ŵ = 1.43 mm1
b = 22.281 (4) ÅT = 293 K
c = 9.8205 (16) Å0.33 × 0.19 × 0.17 mm
β = 108.150 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
5584 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5003 reflections with I > 2σ(I)
Tmin = 0.652, Tmax = 0.791Rint = 0.032
8422 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.137Δρmax = 1.23 e Å3
S = 1.08Δρmin = 0.87 e Å3
5584 reflectionsAbsolute structure: Flack (1983), with 2506 Friedel pairs
439 parametersAbsolute structure parameter: 0.010 (18)
1 restraint
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.65447 (8)0.074095 (19)0.03002 (6)0.03088 (18)
Cu20.64748 (9)0.14898 (2)0.52764 (6)0.03256 (19)
O1W0.3519 (6)0.0347 (2)0.0291 (5)0.0537 (11)
H1W0.28660.05160.08600.064*
H2W0.27080.03060.05340.064*
O2W0.3137 (7)0.1796 (2)0.5268 (6)0.0606 (13)
H3W0.24910.16250.57340.073*
H4W0.25020.17490.43680.073*
O10.6762 (5)0.10763 (18)0.2227 (4)0.0334 (8)
O20.5688 (5)0.18057 (17)0.3307 (4)0.0333 (8)
O31.0203 (7)0.4124 (2)0.2408 (6)0.0641 (13)
H30.97910.44930.23260.077*
O40.6594 (6)0.11945 (16)0.7187 (4)0.0341 (9)
O50.6068 (6)0.04034 (17)0.8366 (4)0.0352 (9)
O60.5628 (7)0.22702 (19)0.2812 (5)0.0599 (11)
H6A0.60720.25570.34030.072*
O70.9706 (6)0.1209 (3)0.0535 (5)0.0673 (15)
O81.1001 (8)0.1743 (3)0.2412 (8)0.0839 (19)
O91.1833 (7)0.0821 (2)0.2309 (6)0.0644 (13)
O100.9665 (9)0.0804 (3)0.5561 (7)0.0867 (12)
O111.0682 (9)0.0326 (3)0.7594 (7)0.0867 (12)
O121.1989 (8)0.1120 (4)0.7213 (7)0.099 (2)
N10.7849 (6)0.0017 (2)0.1148 (5)0.0325 (10)
N21.2032 (7)0.2784 (2)0.3938 (5)0.0371 (11)
N30.5382 (6)0.1539 (2)0.0360 (5)0.0310 (9)
H3A0.44610.14960.11920.037*
H3B0.62290.17910.05080.037*
N40.5479 (7)0.0687 (2)0.4656 (4)0.0370 (10)
H4A0.60380.05360.40480.044*
H4B0.42610.07160.41840.044*
N51.0848 (7)0.1252 (3)0.1757 (7)0.0527 (15)
N61.0791 (7)0.0751 (3)0.6782 (6)0.0542 (14)
C10.7881 (13)0.0209 (3)0.2439 (8)0.076 (2)
H10.73750.00380.29830.092*
C20.8616 (13)0.0753 (3)0.3024 (8)0.076 (2)
H20.85810.08650.39270.092*
C30.9385 (7)0.1119 (3)0.2273 (6)0.0333 (12)
C40.9382 (11)0.0923 (3)0.0942 (6)0.0544 (19)
H40.99020.11600.03880.065*
C50.8613 (10)0.0378 (3)0.0432 (6)0.0524 (17)
H50.86320.02570.04690.063*
C61.1788 (10)0.2348 (3)0.4811 (7)0.0469 (15)
H61.22390.24070.57970.056*
C71.0896 (10)0.1815 (3)0.4301 (7)0.0459 (15)
H71.07610.15250.49420.055*
C81.0201 (8)0.1711 (2)0.2842 (6)0.0319 (11)
C91.0389 (8)0.2170 (2)0.1946 (6)0.0421 (13)
H90.99210.21250.09570.050*
C101.1284 (8)0.2700 (2)0.2533 (6)0.0373 (12)
H101.13610.30080.19160.045*
C110.5793 (7)0.1544 (3)0.2209 (5)0.0273 (10)
C120.4648 (7)0.1786 (2)0.0739 (5)0.0295 (10)
H120.34280.16000.05500.035*
C130.4278 (8)0.2456 (3)0.0658 (6)0.0355 (13)
H13A0.35350.25440.12760.043*
H13B0.35270.25480.03140.043*
C140.5901 (7)0.2881 (2)0.1050 (5)0.0347 (11)
C150.5558 (8)0.3495 (3)0.1026 (6)0.0401 (14)
H150.43360.36260.07220.048*
C160.6930 (9)0.3917 (3)0.1429 (6)0.0446 (13)
H160.66380.43230.13700.054*
C170.8755 (9)0.3732 (3)0.1924 (6)0.0461 (13)
C180.9170 (9)0.3136 (3)0.1911 (7)0.0477 (14)
H181.03980.30110.21950.057*
C190.7735 (7)0.2710 (2)0.1467 (6)0.0383 (11)
H190.80300.23060.14550.046*
C200.6144 (7)0.0656 (3)0.7252 (5)0.0292 (11)
C210.5769 (7)0.0273 (2)0.5900 (5)0.0295 (10)
H210.69110.00510.59870.035*
C220.4230 (9)0.0195 (3)0.5660 (7)0.0388 (14)
H22A0.30630.00150.51150.047*
H22B0.41290.03180.65810.047*
C230.4578 (8)0.0741 (2)0.4873 (6)0.0388 (12)
C240.5572 (10)0.1221 (3)0.5660 (6)0.0493 (16)
H240.60090.11950.66550.059*
C250.5922 (10)0.1736 (3)0.4995 (7)0.0515 (15)
H250.65690.20540.55360.062*
C260.5290 (9)0.1770 (2)0.3501 (6)0.0446 (13)
C270.4357 (9)0.1295 (3)0.2729 (6)0.0483 (14)
H270.39660.13140.17340.058*
C280.3982 (8)0.0787 (2)0.3395 (6)0.0427 (13)
H280.33220.04720.28450.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0475 (4)0.0299 (4)0.0149 (3)0.0067 (3)0.0092 (3)0.0019 (3)
Cu20.0539 (4)0.0284 (4)0.0141 (3)0.0070 (3)0.0088 (3)0.0014 (3)
O1W0.050 (2)0.058 (3)0.053 (3)0.0001 (19)0.015 (2)0.003 (2)
O2W0.076 (3)0.054 (3)0.049 (3)0.007 (2)0.015 (2)0.005 (2)
O10.045 (2)0.036 (2)0.0181 (18)0.0086 (17)0.0068 (16)0.0040 (16)
O20.050 (2)0.0305 (18)0.0195 (19)0.0014 (16)0.0107 (15)0.0016 (15)
O30.064 (3)0.052 (3)0.081 (4)0.012 (2)0.029 (3)0.007 (3)
O40.059 (2)0.0252 (19)0.0195 (18)0.0058 (16)0.0135 (17)0.0007 (15)
O50.061 (2)0.0299 (18)0.0149 (18)0.0008 (16)0.0117 (15)0.0028 (15)
O60.092 (3)0.051 (2)0.036 (2)0.010 (2)0.020 (2)0.0082 (19)
O70.051 (3)0.113 (4)0.030 (2)0.009 (3)0.001 (2)0.009 (3)
O80.069 (3)0.071 (4)0.094 (5)0.014 (3)0.001 (3)0.009 (3)
O90.064 (3)0.065 (3)0.053 (3)0.015 (3)0.004 (2)0.000 (3)
O100.094 (3)0.105 (3)0.056 (2)0.012 (2)0.016 (2)0.002 (2)
O110.094 (3)0.105 (3)0.056 (2)0.012 (2)0.016 (2)0.002 (2)
O120.080 (4)0.116 (5)0.076 (4)0.049 (4)0.012 (3)0.033 (4)
N10.046 (3)0.029 (2)0.027 (2)0.005 (2)0.017 (2)0.001 (2)
N20.047 (3)0.042 (3)0.018 (2)0.010 (2)0.005 (2)0.007 (2)
N30.044 (2)0.031 (2)0.018 (2)0.006 (2)0.0098 (17)0.007 (2)
N40.063 (3)0.035 (2)0.012 (2)0.009 (2)0.0101 (19)0.000 (2)
N50.035 (3)0.078 (4)0.047 (3)0.004 (3)0.015 (2)0.001 (3)
N60.050 (3)0.079 (4)0.030 (3)0.004 (3)0.008 (2)0.005 (3)
C10.138 (5)0.064 (3)0.057 (3)0.057 (3)0.071 (4)0.034 (3)
C20.138 (5)0.064 (3)0.057 (3)0.057 (3)0.071 (4)0.034 (3)
C30.032 (3)0.041 (3)0.028 (3)0.002 (2)0.011 (2)0.002 (2)
C40.091 (5)0.049 (4)0.027 (3)0.035 (3)0.024 (3)0.006 (3)
C50.076 (4)0.064 (4)0.018 (3)0.025 (3)0.017 (3)0.013 (3)
C60.083 (4)0.035 (3)0.024 (3)0.024 (3)0.019 (3)0.003 (2)
C70.069 (4)0.045 (3)0.024 (3)0.017 (3)0.014 (3)0.002 (3)
C80.040 (3)0.030 (3)0.026 (3)0.006 (2)0.012 (2)0.003 (2)
C90.054 (3)0.041 (3)0.024 (3)0.009 (2)0.002 (2)0.002 (2)
C100.049 (3)0.037 (3)0.021 (2)0.007 (2)0.004 (2)0.003 (2)
C110.037 (2)0.028 (2)0.017 (2)0.001 (2)0.0077 (19)0.004 (2)
C120.037 (3)0.036 (2)0.014 (2)0.0042 (19)0.0062 (19)0.0007 (18)
C130.040 (3)0.047 (4)0.018 (3)0.011 (2)0.008 (2)0.001 (2)
C140.056 (3)0.035 (2)0.016 (2)0.005 (2)0.016 (2)0.001 (2)
C150.054 (3)0.038 (3)0.031 (3)0.013 (3)0.016 (3)0.003 (2)
C160.066 (4)0.040 (3)0.035 (3)0.001 (3)0.026 (3)0.004 (2)
C170.066 (4)0.049 (3)0.029 (3)0.010 (3)0.022 (3)0.005 (2)
C180.054 (4)0.048 (3)0.041 (4)0.003 (3)0.014 (3)0.002 (3)
C190.050 (3)0.031 (2)0.034 (3)0.006 (2)0.014 (2)0.005 (2)
C200.032 (2)0.034 (3)0.020 (2)0.003 (2)0.0060 (19)0.001 (2)
C210.045 (3)0.026 (2)0.020 (2)0.0045 (19)0.013 (2)0.0011 (18)
C220.058 (4)0.033 (3)0.031 (3)0.007 (2)0.023 (3)0.009 (2)
C230.053 (3)0.036 (2)0.028 (3)0.016 (2)0.013 (2)0.005 (2)
C240.079 (4)0.047 (3)0.018 (3)0.010 (3)0.009 (3)0.007 (2)
C250.075 (4)0.038 (3)0.034 (3)0.002 (3)0.008 (3)0.001 (2)
C260.062 (4)0.041 (3)0.034 (3)0.003 (3)0.019 (3)0.009 (2)
C270.072 (4)0.053 (3)0.020 (3)0.001 (3)0.014 (2)0.007 (2)
C280.064 (4)0.036 (3)0.027 (3)0.005 (2)0.013 (2)0.000 (2)
Geometric parameters (Å, º) top
Cu1—O5i1.968 (4)C3—C41.378 (8)
Cu1—O11.993 (4)C3—C81.489 (6)
Cu1—N32.002 (5)C4—C51.372 (9)
Cu1—N12.004 (4)C4—H40.9300
Cu1—O1W2.461 (4)C5—H50.9300
Cu1—O72.565 (5)C6—C71.381 (8)
Cu2—N41.964 (5)C6—H60.9300
Cu2—O41.964 (4)C7—C81.383 (8)
Cu2—O21.968 (4)C7—H70.9300
Cu2—N2ii1.989 (5)C8—C91.386 (8)
Cu2—O2W2.627 (5)C9—C101.394 (7)
Cu2—O102.808 (7)C9—H90.9300
O1W—H1W0.9347C10—H100.9300
O1W—H2W0.8568C11—C121.532 (6)
O2W—H3W0.8582C12—C131.516 (8)
O2W—H4W0.8712C12—H120.9800
O1—C111.274 (7)C13—C141.508 (8)
O2—C111.251 (6)C13—H13A0.9700
O3—C171.369 (7)C13—H13B0.9700
O3—H30.8749C14—C191.379 (7)
O4—C201.255 (7)C14—C151.393 (8)
O5—C201.248 (6)C15—C161.367 (9)
O5—Cu1iii1.968 (4)C15—H150.9300
O6—C261.369 (7)C16—C171.383 (9)
O6—H6A0.8586C16—H160.9300
O7—N51.247 (7)C17—C181.368 (9)
O8—N51.256 (8)C18—C191.409 (8)
O9—N51.235 (8)C18—H180.9300
O10—N61.243 (8)C19—H190.9300
O11—N61.257 (9)C20—C211.529 (7)
O12—N61.202 (8)C21—C221.530 (7)
N1—C51.316 (8)C21—H210.9800
N1—C11.332 (8)C22—C231.508 (8)
N2—C101.332 (7)C22—H22A0.9700
N2—C61.347 (8)C22—H22B0.9700
N2—Cu2iv1.989 (5)C23—C281.383 (7)
N3—C121.468 (6)C23—C241.396 (9)
N3—H3A0.9000C24—C251.386 (9)
N3—H3B0.9000C24—H240.9300
N4—C211.492 (6)C25—C261.396 (8)
N4—H4A0.9000C25—H250.9300
N4—H4B0.9000C26—C271.365 (8)
C1—C21.382 (9)C27—C281.381 (8)
C1—H10.9300C27—H270.9300
C2—C31.350 (8)C28—H280.9300
C2—H20.9300
O5i—Cu1—O1174.40 (16)C7—C6—H6118.7
O5i—Cu1—N395.56 (17)C6—C7—C8120.4 (6)
O1—Cu1—N382.66 (17)C6—C7—H7119.8
O5i—Cu1—N189.84 (17)C8—C7—H7119.8
O1—Cu1—N192.16 (17)C7—C8—C9116.8 (5)
N3—Cu1—N1174.20 (19)C7—C8—C3121.2 (5)
O5i—Cu1—O1W88.24 (17)C9—C8—C3121.9 (5)
O1—Cu1—O1W86.45 (16)C10—C9—C8119.7 (5)
N3—Cu1—O1W89.85 (17)C10—C9—H9120.1
N1—Cu1—O1W92.44 (17)C8—C9—H9120.1
O5i—Cu1—O797.35 (16)N2—C10—C9123.0 (5)
O1—Cu1—O787.93 (16)N2—C10—H10118.5
N3—Cu1—O788.59 (19)C9—C10—H10118.5
N1—Cu1—O788.62 (18)O2—C11—O1124.2 (4)
O1W—Cu1—O7174.32 (17)O2—C11—C12118.6 (5)
N4—Cu2—O483.68 (16)O1—C11—C12117.2 (4)
N4—Cu2—O292.92 (16)N3—C12—C13115.9 (4)
O4—Cu2—O2165.53 (17)N3—C12—C11109.1 (4)
N4—Cu2—N2ii168.4 (2)C13—C12—C11115.9 (4)
O4—Cu2—N2ii92.94 (17)N3—C12—H12104.9
O2—Cu2—N2ii92.99 (18)C13—C12—H12104.9
N4—Cu2—O2W87.51 (19)C11—C12—H12104.9
O4—Cu2—O2W81.20 (16)C14—C13—C12118.8 (5)
O2—Cu2—O2W84.61 (16)C14—C13—H13A107.6
N2ii—Cu2—O2W102.99 (19)C12—C13—H13A107.6
N4—Cu2—O1076.9 (2)C14—C13—H13B107.6
O4—Cu2—O1086.63 (17)C12—C13—H13B107.6
O2—Cu2—O10106.35 (17)H13A—C13—H13B107.1
N2ii—Cu2—O1091.9 (2)C19—C14—C15116.3 (5)
O2W—Cu2—O10161.19 (17)C19—C14—C13125.1 (5)
H1W—O1W—H2W104.4C15—C14—C13118.6 (5)
H3W—O2W—H4W105.0C16—C15—C14123.2 (6)
C11—O1—Cu1114.6 (3)C16—C15—H15118.4
C11—O2—Cu2126.8 (3)C14—C15—H15118.4
C17—O3—H3109.9C15—C16—C17119.4 (5)
C20—O4—Cu2115.9 (3)C15—C16—H16120.3
C20—O5—Cu1iii129.0 (4)C17—C16—H16120.3
C26—O6—H6A111.5C18—C17—O3117.3 (6)
C5—N1—C1115.6 (5)C18—C17—C16119.7 (6)
C5—N1—Cu1122.5 (4)O3—C17—C16123.0 (5)
C1—N1—Cu1121.8 (4)C17—C18—C19119.9 (6)
C10—N2—C6117.2 (5)C17—C18—H18120.1
C10—N2—Cu2iv121.7 (4)C19—C18—H18120.1
C6—N2—Cu2iv121.1 (4)C14—C19—C18121.4 (5)
C12—N3—Cu1109.0 (3)C14—C19—H19119.3
C12—N3—H3A109.9C18—C19—H19119.3
Cu1—N3—H3A109.9O4—C20—O5124.3 (5)
C12—N3—H3B109.9O4—C20—C21118.0 (5)
Cu1—N3—H3B109.9O5—C20—C21117.6 (5)
H3A—N3—H3B108.3N4—C21—C22112.6 (4)
C21—N4—Cu2111.4 (3)N4—C21—C20107.8 (4)
C21—N4—H4A109.3C22—C21—C20116.2 (4)
Cu2—N4—H4A109.3N4—C21—H21106.5
C21—N4—H4B109.3C22—C21—H21106.5
Cu2—N4—H4B109.3C20—C21—H21106.5
H4A—N4—H4B108.0C23—C22—C21112.4 (5)
O9—N5—O8120.4 (6)C23—C22—H22A109.1
O9—N5—O7120.5 (6)C21—C22—H22A109.1
O8—N5—O7119.0 (7)C23—C22—H22B109.1
O12—N6—O10119.6 (7)C21—C22—H22B109.1
O12—N6—O11119.0 (6)H22A—C22—H22B107.9
O10—N6—O11121.4 (7)C28—C23—C24118.0 (5)
N1—C1—C2124.2 (6)C28—C23—C22123.0 (5)
N1—C1—H1117.9C24—C23—C22119.0 (5)
C2—C1—H1117.9C25—C24—C23121.5 (5)
C3—C2—C1119.4 (6)C25—C24—H24119.2
C3—C2—H2120.3C23—C24—H24119.2
C1—C2—H2120.3C24—C25—C26119.1 (6)
C2—C3—C4116.9 (5)C24—C25—H25120.4
C2—C3—C8122.1 (5)C26—C25—H25120.4
C4—C3—C8121.0 (5)O6—C26—C27120.2 (5)
C5—C4—C3120.1 (6)O6—C26—C25120.5 (5)
C5—C4—H4119.9C27—C26—C25119.3 (5)
C3—C4—H4119.9C26—C27—C28121.4 (5)
N1—C5—C4123.7 (6)C26—C27—H27119.3
N1—C5—H5118.1C28—C27—H27119.3
C4—C5—H5118.1C27—C28—C23120.5 (5)
N2—C6—C7122.6 (6)C27—C28—H28119.7
N2—C6—H6118.7C23—C28—H28119.7
Symmetry codes: (i) x, y, z1; (ii) x+2, y1/2, z+1; (iii) x, y, z+1; (iv) x+2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O11ii0.871.902.761 (9)169
O6—H6A···O2Wv0.861.912.768 (7)175
O1W—H1W···O9vi0.931.952.876 (7)171
O1W—H2W···O11vii0.862.002.849 (8)172
O2W—H4W···O8vi0.871.902.772 (8)173
O2W—H3W···O12vi0.861.972.779 (8)157
N3—H3A···O12vii0.902.203.063 (7)159
N4—H4A···O10.902.362.974 (6)126
N4—H4B···O9vi0.902.183.018 (7)155
Symmetry codes: (ii) x+2, y1/2, z+1; (v) x+1, y+1/2, z+1; (vi) x1, y, z; (vii) x1, y, z1.

Experimental details

Crystal data
Chemical formula[Cu2(C9H10NO3)2(NO3)2(C10H8N2)(H2O)2]
Mr803.68
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)7.6075 (13), 22.281 (4), 9.8205 (16)
β (°) 108.150 (2)
V3)1581.8 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.43
Crystal size (mm)0.33 × 0.19 × 0.17
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.652, 0.791
No. of measured, independent and
observed [I > 2σ(I)] reflections
8422, 5584, 5003
Rint0.032
(sin θ/λ)max1)0.611
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.052, 0.137, 1.08
No. of reflections5584
No. of parameters439
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.23, 0.87
Absolute structureFlack (1983), with 2506 Friedel pairs
Absolute structure parameter0.010 (18)

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SAINT, SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL.

Selected bond lengths (Å) top
Cu1—O5i1.968 (4)Cu2—N41.964 (5)
Cu1—O11.993 (4)Cu2—O41.964 (4)
Cu1—N32.002 (5)Cu2—O21.968 (4)
Cu1—N12.004 (4)Cu2—N2ii1.989 (5)
Cu1—O1W2.461 (4)Cu2—O2W2.627 (5)
Cu1—O72.565 (5)Cu2—O102.808 (7)
Symmetry codes: (i) x, y, z1; (ii) x+2, y1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O11ii0.871.902.761 (9)169
O6—H6A···O2Wiii0.861.912.768 (7)175
O1W—H1W···O9iv0.931.952.876 (7)171
O1W—H2W···O11v0.862.002.849 (8)172
O2W—H4W···O8iv0.871.902.772 (8)173
O2W—H3W···O12iv0.861.972.779 (8)157
N3—H3A···O12v0.902.203.063 (7)159
N4—H4A···O10.902.362.974 (6)126
N4—H4B···O9iv0.902.183.018 (7)155
Symmetry codes: (ii) x+2, y1/2, z+1; (iii) x+1, y+1/2, z+1; (iv) x1, y, z; (v) x1, y, z1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds