Download citation
Download citation
link to html
The violet pigment methylbenzimidazolonodioxazine, C22H12Cl2N6O4 (systematic name: 6,14-dichloro-3,11-dimethyl-1,3,9,11-tetrahydro-5,13-dioxa-7,15-diazadiimidazo-[4,5-b:4′,5′-m]pentacene-2,10-dione), shows an X-ray powder diagram consisting of only ca 12 broad peaks. Indexing was not possible. The structure was solved by global lattice energy minimizations. The program CRYSCA [Schmidt & Kalkhof (1999), CRYSCA. Clariant GmbH, Pigments Research, Frankfurt am Main, Germany] was used to predict the possible crystal structures in different space groups. By comparing simulated and experimental powder diagrams, the correct structure was identified among the predicted structures. Owing to the low quality of the experimental powder diagram the Rietveld refinements gave no distinctive results and it was difficult to prove the correctness of the crystal structure. Finally, the structure was confirmed to be correct by refining the crystal structure of an isostructural mixed crystal having a better X-ray powder diagram. The compound crystallizes in P\bar 1, Z = 1. The crystal structure consists of a very dense packing of molecules, which are connected by hydrogen bridges of the type N—H...O=C. This packing explains the observed insolubility. The work shows that crystal structures of molecular compounds may be solved by lattice energy minimization from diffraction data of limited quality, even when indexing is not possible.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010876810402693X/av5015sup1.cif
Contains datablocks global, I, calc

rtv

Rietveld powder data file (CIF format) https://doi.org/10.1107/S010876810402693X/av5015sup2.rtv
Contains datablock I

CCDC reference: 208781

Computing details top

Cell refinement: Fullprof for (I). Data reduction: Fullprof for (I). For both compounds, program(s) used to solve structure: CRYSCA (Energy minimization, M.U. Schmidt and H. Kalkhof, 1999). Program(s) used to refine structure: Fullprof for (I).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
(I) 6,14-Dichlor-1,9-dimethyl-1,3,9,11-tetrahydro-diimidazo[4,5 − b:4',5'-m] triphendioxazin-2,10-dion top
Crystal data top
C22H12Cl2N6O4Z = 1
Mr = 495.3F(000) = 252
Triclinic, P1Unit cell determined by Rietveld refinement
a = 4.2753 (15) ÅDx = 1.742 Mg m3
b = 8.311 (3) ÅCu Kα radiation, λ = 1.54059 Å
c = 14.092 (5) Åθ = 1.5–17°
α = 107.23 (3)°T = 293 K
β = 93.53 (2)°Powder, dark violet
γ = 97.17 (3)° × × mm
V = 472.0 (3) Å3
Data collection top
STOE Stadi-P, 0.7mm Capillary
diffractometer
109 independent reflections
Radiation source: X-rayθmax = 17°, θmin = 1.5°
Ge-111 monochromatorh = ??
Transmission scansk = ??
109 measured reflectionsl = ??
Refinement top
wR(F2) = 0.212Primary atom site location: energy minimization
S = 11.5Secondary atom site location: energy minimization
109 reflectionsHydrogen site location: energy minimization
9 parametersCalc
3 restraints
Crystal data top
C22H12Cl2N6O4β = 93.53 (2)°
Mr = 495.3γ = 97.17 (3)°
Triclinic, P1V = 472.0 (3) Å3
a = 4.2753 (15) ÅZ = 1
b = 8.311 (3) ÅCu Kα radiation
c = 14.092 (5) ÅT = 293 K
α = 107.23 (3)° × × mm
Data collection top
STOE Stadi-P, 0.7mm Capillary
diffractometer
109 independent reflections
109 measured reflectionsθmax = 17°
Refinement top
wR(F2) = 0.2129 parameters
S = 11.53 restraints
109 reflectionsCalc
Special details top

Experimental. Structure determined from X-ray powder data. Synchrotron data Structure solution: by energy minimization using the program CRYSCA (Martin U. Schmidt & Holger Kalkhof, 1999). Rietveld refinement: Program GSAS, 3 rigid bodies

Geometry. Rigid body Rietveld refinement. Geometry of molecule taken from crystal structures of other compounds, and not further refined

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.05795 (1)0.14104 (1)0.03130 (1)0.0*
C20.23043 (1)0.02443 (1)0.08370 (1)0.0*
C30.15843 (1)0.16338 (1)0.04733 (1)0.0*
O40.31404 (1)0.32352 (1)0.09386 (1)0.0*
C50.53528 (1)0.34715 (1)0.17420 (1)0.0*
C60.59515 (1)0.20735 (1)0.20612 (1)0.0*
N70.43886 (1)0.04392 (1)0.15959 (1)0.0*
Cl80.13283 (1)0.31079 (1)0.07087 (1)0.0*
C90.68490 (1)0.51019 (1)0.21830 (1)0.0*
C100.90776 (1)0.53398 (1)0.29924 (1)0.0*
C110.97645 (1)0.39784 (1)0.33418 (1)0.0*
C120.81955 (1)0.23540 (1)0.28733 (1)0.0*
N131.21072 (1)0.46936 (1)0.41602 (1)0.0*
C141.27974 (1)0.64470 (1)0.42939 (1)0.0*
O151.47337 (1)0.74718 (1)0.49401 (1)0.0*
N161.09234 (1)0.68229 (1)0.35732 (1)0.0*
C171.09366 (1)0.85003 (1)0.34613 (1)0.0*
H180.63464 (1)0.61043 (1)0.19270 (1)0.0*
H190.86889 (1)0.13472 (1)0.31263 (1)0.0*
H201.31373 (1)0.40765 (1)0.45849 (1)0.0*
H211.10320 (1)0.93834 (1)0.41628 (1)0.0*
H220.89605 (1)0.84880 (1)0.29907 (1)0.0*
H231.29311 (1)0.87929 (1)0.31237 (1)0.0*
Geometric parameters (Å, º) top
C1—C21.4349 (1)C10—N161.3756 (1)
C1—Cl81.7207 (1)C11—C121.3785 (1)
C2—C31.4529 (1)C11—N131.4106 (1)
C2—N71.3070 (1)C12—H191.0408 (1)
C3—O41.3611 (1)N13—C141.4034 (1)
O4—C51.3803 (1)N13—H201.0104 (1)
C5—C61.4098 (1)C14—O151.2296 (1)
C5—C91.3666 (1)C14—N161.3861 (1)
C6—N71.3833 (1)N16—C171.4481 (1)
C6—C121.3912 (1)C17—H211.0370 (1)
C9—C101.3905 (1)C17—H221.0385 (1)
C9—H181.0409 (1)C17—H231.0389 (1)
C10—C111.4157 (1)
C2—C1—Cl8118.4468 (1)C10—C11—N13106.2138 (1)
C1—C2—C3116.2728 (1)C12—C11—N13134.0398 (1)
C1—C2—N7120.1458 (1)C6—C12—C11119.4672 (1)
C3—C2—N7123.5814 (1)C6—C12—H19120.3846 (1)
C2—C3—O4119.1306 (1)C11—C12—H19120.1482 (1)
C3—O4—C5118.3039 (1)C11—N13—C14107.9976 (1)
O4—C5—C6120.0153 (1)C11—N13—H20127.0901 (1)
O4—C5—C9116.0361 (1)C14—N13—H20124.9123 (1)
C6—C5—C9123.9486 (1)N13—C14—O15125.7657 (1)
C5—C6—N7122.3299 (1)N13—C14—N16108.2848 (1)
C5—C6—C12118.612 (1)O15—C14—N16125.9495 (1)
N7—C6—C12119.0580 (1)C10—N16—C14108.3808 (1)
C2—N7—C6116.6389 (1)C10—N16—C17126.4254 (1)
C5—C9—C10116.0303 (1)C14—N16—C17125.1939 (1)
C5—C9—H18121.8652 (1)N16—C17—H21108.8894 (1)
C10—C9—H18122.1045 (1)N16—C17—H22109.3328 (1)
C9—C10—C11122.1954 (1)N16—C17—H23108.8735 (1)
C9—C10—N16128.6816 (1)H21—C17—H22112.9502 (1)
C11—C10—N16109.1231 (1)H21—C17—H23109.2285 (1)
C10—C11—C12119.7465 (1)H22—C17—H23107.4900 (1)
(calc) 6,14-Dichlor-1,9-dimethyl-1,3,9,11-tetrahydro-diimidazo[4,5 − b:4',5'-m] triphendioxazin-2,10-dion top
Crystal data top
C22H12Cl2N6O4γ = 95.1180 (1)°
Mr = 495.3V = 481.93 (1) Å3
Triclinic, P1Z = 1
a = 4.3346 (1) ÅCrystal structure calculated by lattice energy minimization without reference to experimental data.
b = 8.4193 (1) ÅCu Kα radiation, λ = 1.54059 Å
c = 13.9057 (1) ÅT = 293 K
α = 106.9467 (1)°Powder, dark violet
β = 92.9106 (1)° × × mm
Data collection top
STOE Stadi-P, 0.7mm Capillary
diffractometer
θmax = 17°, θmin = 1.5°
Radiation source: X-rayh = ??
Ge-111 monochromatork = ??
Transmission scansl = ??
Refinement top
Primary atom site location: lattice energy minimizationCalc
Secondary atom site location: lattice energy minimization
Hydrogen site location: lattice energy minimization
Crystal data top
C22H12Cl2N6O4β = 92.9106 (1)°
Mr = 495.3γ = 95.1180 (1)°
Triclinic, P1V = 481.93 (1) Å3
a = 4.3346 (1) ÅZ = 1
b = 8.4193 (1) ÅCu Kα radiation
c = 13.9057 (1) ÅT = 293 K
α = 106.9467 (1)° × × mm
Data collection top
STOE Stadi-P, 0.7mm Capillary
diffractometer
θmax = 17°
Refinement top
Calc
Special details top

Experimental. Crystal structure calculated by lattice energy minimization using the program CRYSCA (Martin U. Schmidt & Holger Kalkhof, 1999). without any reference to experimental data. The simulated powder diagram of the calculated structure is similar to the experimental X-ray powder diagram (no fit). No Rietveld refinement.

Geometry. Rigid molecule. Geometry of molecule taken from crystal structures of other compounds, and not further optimized

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.06106 (1)0.13993 (1)0.03139 (1)0.0*
C30.22942 (1)0.02065 (1)0.08267 (1)0.0*
C20.15438 (1)0.15873 (1)0.04628 (1)0.0*
O10.30602 (1)0.31430 (1)0.09177 (1)0.0*
C50.52628 (1)0.33430 (1)0.17113 (1)0.0*
C40.58923 (1)0.19557 (1)0.20313 (1)0.0*
N10.43699 (1)0.03676 (1)0.15764 (1)0.0*
Cl10.13968 (1)0.30841 (1)0.07105 (1)0.0*
C60.67187 (1)0.49282 (1)0.21421 (1)0.0*
C70.89375 (1)0.51295 (1)0.29416 (1)0.0*
C80.96542 (1)0.37770 (1)0.32913 (1)0.0*
C90.81254 (1)0.21988 (1)0.28333 (1)0.0*
N101.19759 (1)0.44472 (1)0.40982 (1)0.0*
C111.26246 (1)0.61657 (1)0.42248 (1)0.0*
O111.45336 (1)0.71473 (1)0.48604 (1)0.0*
N21.07457 (1)0.65643 (1)0.35111 (1)0.0*
C161.07205 (1)0.82180 (1)0.33951 (1)0.0*
H60.61942 (1)0.59240 (1)0.18858 (1)0.0*
H90.86409 (1)0.11987 (1)0.30866 (1)0.0*
H101.30181 (1)0.38234 (1)0.45200 (1)0.0*
H1611.08264 (1)0.90885 (1)0.41051 (1)0.0*
H1620.87597 (1)0.82358 (1)0.29368 (1)0.0*
H1631.26595 (1)0.84749 (1)0.30325 (1)0.0*

Experimental details

(I)(calc)
Crystal data
Chemical formulaC22H12Cl2N6O4C22H12Cl2N6O4
Mr495.3495.3
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)293293
a, b, c (Å)4.2753 (15), 8.311 (3), 14.092 (5)4.3346 (1), 8.4193 (1), 13.9057 (1)
α, β, γ (°)107.23 (3), 93.53 (2), 97.17 (3)106.9467 (1), 92.9106 (1), 95.1180 (1)
V3)472.0 (3)481.93 (1)
Z11
Radiation typeCu KαCu Kα
µ (mm1)??
Crystal size (mm) × × × ×
Data collection
DiffractometerSTOE Stadi-P, 0.7mm Capillary
diffractometer
STOE Stadi-P, 0.7mm Capillary
diffractometer
Absorption correction
No. of measured, independent and
observed (?) reflections
109, 109, ? ?, ?, ?
Rint??
θmax (°)1717
(sin θ/λ)max1)0.1900.190
Refinement
R[F2 > 2σ(F2)], wR(F2), S ?, 0.212, 11.5 ?, ?, ?
No. of reflections109?
No. of parameters9?
No. of restraints3?
H-atom treatmentCalcCalc
Δρmax, Δρmin (e Å3)?, ??, ?

Computer programs: Fullprof, CRYSCA (Energy minimization, M.U. Schmidt and H. Kalkhof, 1999).

 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds