organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

Cocrystals composed of 4,4′-(fluorene-9,9-di­yl)diphenol and 6-methyl-2H-pyridone

CROSSMARK_Color_square_no_text.svg

aSchulich Faculty of Chemistry, Technion – Israel Institute of Technology, Haifa 32000, Israel, and bUniversity of Durham, South Road, Durham DH1 3LE, England
*Correspondence e-mail: kaftory@tx.technion.ac.il

(Received 10 September 2006; accepted 26 October 2006; online 13 January 2007)

The crystal structures of two cocrystals composed of 4,4′-(fluorene-9,9-di­yl)diphenol (C25H18O2) and 6-methyl-2H-pyridone (C6H7NO) are reported, namely 4,4′-(fluorene-9,9-di­yl)diphenol–6-methyl-2H-pyridone (1/2), C25H18O2·2C6H7NO, (I), and 4,4′-(fluorene-9,9-di­yl)diphenol–6-methyl-2H-pyridone–water (1/3/3), C25H18O2·3C6H7NO·3H2O, (II). In both cocrystals, the mutual orientation between two 6-methyl-2H-pyridone mol­ecules in principle enables photodimerization, yet in both cases no photodimerization occurs. In cocrystal (I) this is probably due to poor orbital overlap, while in the case of cocrystal (II) it is suggested that the lack of reaction is due to the highly complex hydrogen-bonding network that exists in the structure.

Comment

Among the numerous uses of solid inclusion compounds (Tanaka & Toda, 2002[Tanaka, K. & Toda, F. (2002). Organic Solid State Reactions, pp. 109-158. Dordrecht: Kluwer Academic Publishers.]; Toda et al., 2001[Toda, F., Tanaka, K. & Miyamoto, H. (2001). Mol. Supramol. Photochem. 8, 385-425.]; Toda, 1995[Toda, F. (1995). Supramol. Chem. 6, 159-163.], 1996[Toda, F. (1996). Supramol. Sci. 3, 139-148.], 1988[Toda, F. (1988). Top. Curr. Chem. 149, 211-238.]; Toda & Tanaka, 1984[Toda, F. & Tanaka, K. (1984). J. Inclusion Phenom. 2, 91-98.]), those consisting of light-stable host mol­ecules and light-sensitive guest mol­ecules can be used for monitoring photochemical reactions in the solid state provided that the integrity of the single crystal is preserved throughout the reaction. The reaction of the guest mol­ecules takes place in a cavity formed by the host; therefore, in the cases where the volume of the cavity is sufficient to accommodate the product, single-crystal-to-single-crystal transformations can occur (Lavy et al., 2004[Lavy, T., Sheinin, Y. & Kaftory, M. (2004). Eur. J. Org. Chem. pp. 4802-4808.]; Tanaka et al., 2000[Tanaka, K., Mochzuki, E., Yasui, N., Kai, Y., Miyahara, I., Hirotsu, K. & Toda, F. (2000). Tetrahedron, 56, 6853-6865.]; Hosomi et al., 2000[Hosomi, H., Ohba, S., Tanaka, K. & Toda, F. (2000). J. Am. Chem. Soc. 122, 1818-1819.]; Tanaka, Mizutani et al., 1999[Tanaka, K., Mizutani, H., Miyahara, I., Hirotsu, K. & Toda, F. (1999). CrystEngComm, 3, 8-11.]; Tanaka, Toda et al., 1999[Tanaka, K., Toda, F., Mochizuki, E., Yasui, N., Kai, Y., Miyahara, I. & Hirotsu, K. (1999). Angew. Chem. Int. Ed. 38, 3523-3525.]). 4,4′-(Fluorene-9,9-di­yl)diphenol (A) was found to be an effective clathrate host and a useful construction element to form rigid macrocyclic host compounds (Apel et al., 2001[Apel, S., Nitsche, S., Beketov, K., Seichter, W., Seidel, J. & Weber, E. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 1212-1218.]). However, only two cocrystals containing A were found in the Cambridge Structural Database [Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]; refcodes ABUCIJ and ABUCUV (Apel et al., 2001[Apel, S., Nitsche, S., Beketov, K., Seichter, W., Seidel, J. & Weber, E. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 1212-1218.])]. We report here the structures of two new cocrystals containing A and the photosensitive mol­ecule 6-methyl-2H-pyridone (B). These cocrystals were crystallized in an attempt to achieve single-crystal-to-single-crystal photodimerization in inclusion compounds. Cocrystal (I) (Fig. 1[link]) crystallizes in the monoclinic space group C2/c. The asymmetric unit contains one mol­ecule of A and two mol­ecules of B. Cocrystal (II) (Fig. 2[link]) also crystallizes in the monoclinic space group C2/c. In this case, the asymmetric unit contains one mol­ecule of A, three mol­ecules of B (Ba, Bb and Bc) and three water mol­ecules.

[Scheme 1]

In cocrystal (I), pairs of mol­ecules of B form hydrogen-bonded dimers, as in many structures of pyridone derivatives (Lavy & Kaftory, 2006[Lavy, T. & Kaftory, M. (2006). Acta Cryst. E62, o3977-o3978.]; Lavy et al., 2006[Lavy, T., Kaganovich, M. & Kaftory, M. (2006). Acta Cryst. E62, o3979-o3980.]). Each dimer is connected via hydrogen bonding to two mol­ecules of A, creating infinite chains (Fig. 3[link] and Table 1[link]). The mutual relationship between two adjacent mol­ecules of B in different chains has been examined with respect to their potential to undergo photodimerization in the solid state. The distances between the potentially reactive atoms for a head-to-head photodimerization are 4.160 (3) Å [C30(Ba)⋯C36(Bb)] and 4.735 (3) Å [C27(Ba)⋯C33(Bb)] (Fig. 4[link]); the former separation distance falls just within the literature limit of 4.2 Å for solid-state photodimerization (Schmidt, 1971[Schmidt, G. M. (1971). Pure Appl. Chem. 27, 647-678.]). The angle between the mean planes of the two mol­ecules of B is 39.02 (8)°, which deviates significantly from parallelism. The long distances and large angle result in poor orbital overlap efficiency, according to the definition given by Kearsley (1987[Kearsley, S. K. (1987). Organic Solid State Chemistry, edited by G. R. Desiraju, pp. 69-115. Amsterdam: Elsevier Science Publishers.]). Nonetheless, a single crystal of (I) was irradiated for 15 h, after which there was no evidence of photodimerization having occurred.

In cocrystal (II), the three methyl­pyridone mol­ecules in the asymmetric unit are arranged in an anti­parallel manner. The methyl group of mol­ecule Ba faces in the opposite direction to that of Bc but has the same direction as the methyl group of Bb (Fig. 5[link]). The structure consists of a complex hydrogen-bonded network (Fig. 6[link] and Table 2[link]), with pairs of methyl­pyridone mol­ecules forming hydrogen-bonded dimers, which are stacked in parallel above one another. Each methyl­pyridone dimer is hydrogen bonded to two water mol­ecules, one on each side of the dimer. In turn, each water mol­ecule is also hydrogen bonded to the host mol­ecule A and another water mol­ecule in an adjacent layer. For a possible head-to-tail photodimerization, the distances between potentially reacting atoms in the case of reaction between mol­ecules Ba and Bc are 3.773 (3) Å [C27(Ba)⋯C42(Bc)] and 3.780 (3) Å [C30(Ba)⋯C39(Bc)], and the distances between potentially reacting atoms in the case of head-to-tail reaction between mol­ecules Bb and Bc are 3.879 (3) Å [C33(Bb)⋯C42(Bc)] and 3.755 (3) Å [C36(Bb)⋯C39(Bc)]. The distances between potentially reacting atoms in the case of head-to-head reaction between Ba and Bb are 3.752 (3) Å [C30(Ba)⋯C36(Bb)] and 3.677 (3) Å [C27(Ba)⋯C33(Bb)]. In principle, all of these distances enable photodimerization; however, no photodimerization occurred after irradiation of a single crystal of (II) for 17 h.

In the case of (I), we believe that the unfavourable orientation of two 6-methyl-2H-pyridone mol­ecules with respect to each other for photodimerization explains the lack of reaction. However, in the case of (II) the situation is different. The mutual orientation between the potentially reacting mol­ecules in (II) would seem to permit photodimerization in a manner seen previously (Lavy & Kaftory, 2007[Lavy, T. & Kaftory, M. (2007). CrystEngComm. In the press.]). We suggest that the complex hydrogen bonding described above prevents photodimerization, as any such reaction would require disruption of the hydrogen-bonding network, which is probably energetically unfavourable.

[Figure 1]
Figure 1
The asymmetric unit of cocrystal (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The asymmetric unit of cocrystal (II). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3]
Figure 3
The hydrogen-bond network in (I) (hydrogen bonds are shown as dotted lines).
[Figure 4]
Figure 4
The mutual relationship between two adjacent dimers of 6-methyl-2H-pyridone in (I) (hydrogen bonds are shown as dotted lines). [Symmetry code: (i) [-x, y+1, -z+{1\over2}].]
[Figure 5]
Figure 5
The mutual relationship between B mol­ecules in cocrystal (II). [Symmetry codes: (i) [x+{1\over2}], [-y+{3\over2}, z-{1\over2}]; (ii) [x+1, -y+1, z-{1\over2}]; (iii) -x+2, -y+1, -z.]
[Figure 6]
Figure 6
The hydrogen-bond network in cocrystal (II) (hydrogen bonds are shown as dotted lines). [Symmetry codes: (i) [-x+{3\over2}, y+{1\over2}, -z+{1\over2}]; (ii) [-x+1, y, -z+{1\over2}]; (iii) [x-{1\over2}, -y+{3\over2}, z+{1\over2}]; (iv) [x, -y+2, z+{1\over2}]; (v) -x+1, -y+2, -z+1; (vi) [-x+{1\over2}, -y+{3\over2}, -z+1].]

Experimental

The component substances were purchased from Sigma. The cocrystals were obtained from ethyl acetate solutions of mixtures of the components (typical quantities 0.005 g). The solution was left to evaporate at room temperature and, after a week, crystals were obtained. Two types of crystals were found in the same vial and were selected by their different morphological forms.

Cocrystal (I)[link]

Crystal data
  • C25H18O2·2C6H7NO

  • Mr = 568.65

  • Monoclinic, C 2/c

  • a = 17.480 (4) Å

  • b = 11.114 (2) Å

  • c = 29.698 (6) Å

  • β = 93.894 (8)°

  • V = 5756 (2) Å3

  • Z = 8

  • Dx = 1.312 Mg m−3

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 120 (2) K

  • Prism, colourless

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART 6K CCD diffractometer

  • ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.]) Tmin = 0.975, Tmax = 0.992

  • 23891 measured reflections

  • 5129 independent reflections

  • 3823 reflections with I > 2σ(I)

  • Rint = 0.056

  • θmax = 25.1°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.147

  • S = 1.16

  • 5129 reflections

  • 390 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.064P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O3 0.84 1.89 2.672 (2) 155
O2—H2A⋯O4 0.84 1.89 2.646 (2) 149
N1—H1B⋯O3i 0.88 1.88 2.755 (2) 174
N2—H2B⋯O4ii 0.88 2.18 2.940 (2) 145
Symmetry codes: (i) -x, -y, -z+1; (ii) -x, -y-1, -z.

Cocrystal (II)[link]

Crystal data
  • C25H18O2·3C6H7NO·3H2O

  • Mr = 731.82

  • Monoclinic, C 2/c

  • a = 14.432 (4) Å

  • b = 14.665 (5) Å

  • c = 35.675 (10) Å

  • β = 90.133 (14)°

  • V = 7550 (4) Å3

  • Z = 8

  • Dx = 1.288 Mg m−3

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.35 × 0.25 × 0.15 mm

Data collection
  • Bruker SMART 6K CCD diffractometer

  • ω scans

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.]) Tmin = 0.970, Tmax = 0.987

  • 24437 measured reflections

  • 6729 independent reflections

  • 5287 reflections with I > 2σ(I)

  • Rint = 0.048

  • θmax = 25.1°

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.113

  • S = 1.28

  • 6729 reflections

  • 515 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • w = 1/[σ2(Fo2) + (0.0401P)2] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max = 0.005

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.21 e Å−3

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O7 0.84 1.84 2.680 (2) 174
O2—H2A⋯O8 0.84 1.77 2.605 (2) 178
O6—H6A⋯O5 0.95 (3) 1.80 (3) 2.738 (2) 170 (2)
O6—H6B⋯O1i 0.88 (3) 2.11 (3) 2.962 (2) 165 (3)
O7—H7A⋯O3 0.92 (3) 1.80 (3) 2.708 (2) 168 (3)
O7—H7B⋯O2ii 0.86 (3) 2.20 (3) 3.020 (3) 161 (3)
O8—H8A⋯O6 0.91 (3) 1.87 (3) 2.778 (3) 175 (2)
O8—H8B⋯O4iii 0.90 (3) 1.79 (3) 2.685 (2) 174 (3)
N1—H1B⋯O4 0.88 1.88 2.755 (2) 179
N2—H2B⋯O3 0.88 1.93 2.805 (2) 176
N3—H3B⋯O5ii 0.88 1.90 2.777 (2) 176
Symmetry codes: (i) [-x+1, y, z+{1\over2}]; (ii) [-x+{3\over 2}, y-{1\over2}, -z+{1\over2}]; (iii) [x-{1\over2}], [-y+{3\over2}], [z-{3\over2}].

The water H atoms in (II) were found in a difference Fourier map and then freely refined. All other H atoms were positioned geometrically (aromatic C—H = 0.95 Å, N—H = 0.88 Å, methyl C—H = 0.98 Å and O—H = 0.84 Å) and refined using a riding model [Uiso(H) = 1.2Ueq(aromatic C and N) and 1.5Ueq(methyl C and O)].

For both cocrystals, data collection: SMART-NT (Bruker, 2000[Bruker (2000). SMART-NT (Version 6.1), SAINT-NT (Version 6.45A) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-NT (Bruker, 2000[Bruker (2000). SMART-NT (Version 6.1), SAINT-NT (Version 6.45A) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a[Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and MERCURY (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b[Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.]).

Supporting information


Comment top

Among the numerous uses of solid inclusion compounds (Tanaka & Toda, 2002; Toda et al., 2001; Toda, 1995, 1996, 1988; Toda & Tanaka, 1984), those consisting of light-stable host molecules and light-sensitive guest molecules can be used for monitoring photochemical reactions in the solid state, provided that the integrity of the single-crystal is preserved throughout the reaction. The reaction of the guest molecules takes place in a cavity formed by the host; therefore, in the cases where the volume of the cavity is sufficient to accommodate the product, single-crystal-to-single-crystal transformations can occur (Lavy et al., 2004; Tanaka et al., 2000; Hosomi et al., 2000; Tanaka, Mizutani et al., 1999; Tanaka, Toda et al., 1999). 4,4'-(Fluorene-9,9-diyl)diphenol, (1), was found to be an effective clathrate host and a useful construction element to form rigid macrocyclic host compounds (Apel et al., 2001). However, only two cocrystals containing (1) were found in the Cambridge Structural Database (Allen, 2002; refcodes ABUCIJ and ABUCUV). We report here the structures of two new cocrystals containing the molecule (1) and photosensitive molecule, 6-methyl-2H-pyridone, (2). These cocrystals were crystallized in an attempt to achieve single-crystal-to-single-crystal photodimerization in inclusion compounds. Cocrystal (I) (Fig. 1) crystallizes in the monoclinic space group C2/c. The asymmetric unit contains one molecule of 4,4'-(fluorene-9,9-diyl)diphenol and two molecules of 6-methyl-2H-pyridone. Cocrystal (II) (Fig. 2) also crystallizes in the monoclinic space group C2/c. In this case, the asymmetric unit contains one molecule of (1), three molecules of (2) [(2a), (2b) and (2c)] and three water molecules.

In cocrystal (I), pairs of molecules of (2) form hydrogen-bonded dimers, as in many structures of pyridone derivatives (Lavy & Kaftory, 2006a; Lavy et al., 2006). Each dimer is connected via hydrogen bonding to two molecules of (1), creating infinite chains (Fig. 3 and Table 1). The mutual relationship between two adjacent molecules of (2) in different chains has been examined with respect to their potential to undergo photodimerization in the solid state. The distances between the potentially reactive atoms for a head-to-head photodimerization are 4.160 (3) Å [C30(2a)—C36(2b)] and 4.735 (3) Å [C27(2a)—C33(2b)] (Fig. 4); the former separation distance falls just within the literature limit of 4.2 Å for solid-state photodimerization (Schmidt, 1971). The angle between the mean planes of the two molecules of (2) is 39.02 (8)°, which deviates significantly from parallelism. The long distances and large angle result in poor orbital overlap efficiency, according to the definition given by Kearsley (Kearsley, 1987). Nonetheless, a single-crystal of (I) was irradiated for 15 h, after which there was no evidence of photodimerization having occurred.

In cocrystal (II), the three methylpyridone molecules in the asymmetric unit are arranged in an antiparallel manner. The methyl group of molecule (2a) faces in the opposite direction to that of (2c) but has the same direction as the methyl group of (2b) (Fig. 5). The structure consists of a complex hydrogen-bonded network (Fig. 6 and Table 2), with pairs of methylpyridone molecules forming hydrogen-bonded dimers, which are stacked in parallel above one another. Each methylpyridone dimer is hydrogen bonded to two water molecules, one on each side of the dimer. In turn, each water molecule is also hydrogen bonded to the host molecule (1) and another water molecule in an adjacent layer. For a possible head-to-tail photodimerization, the distances between potentially reacting atoms in the case of reaction between molecules (2a) and (2c) are 3.773 (3) Å [C27(2a)—C42(2c)] and 3.780 (3) Å [C30(2a)—C39(2c)], and the distances between potentially reacting atoms in case of head-to-tail reaction between molecules (2b) and (2c) are 3.879 (3) Å [C33(2b)—C42(2c)] and 3.755 (3) Å [C36(2b)—C39(2c)]. The distances between potentially reacting atoms in the case of head-to-head reaction between (2a) and (2b) are 3.752 (3) Å [C30(2a)—C36(2b)] and 3.677 (3) Å [C27(2a)—C33(2b)]. In principle, all of these distances enable photodimerization; however, no photodimerization occurred after irradiation of a single-crystal of (II) for 17 h.

In the case of (I), we believe that the unfavourable orientation of two 6-methyl-2H-pyridone molecules with respect to each other for photodimerization explains the lack of reaction. However, in the case of (II) the situation is different. The mutual orientation between the potentially reacting molecules in cocrystal (II) would seem to permit photodimerization in a manner seen previously (Lavy & Kaftory, 2006b). We suggest that the complex hydrogen bonding described above prevents the photodimerization, as any such reaction would require disruption of the hydrogen-bonding network, which is probably energetically unfavourable.

Related literature top

For related literature, see: Allen (2002); Apel et al. (2001); Hosomi et al. (2000); Kearsley (1987); Lavy & Kaftory (2006a, 2006b); Lavy et al. (2004, 2006); Schmidt (1971); Tanaka & Toda (2002); Tanaka et al. (2000); Tanaka, Mizutani, Miyahara, Hirotsu & Toda (1999); Tanaka, Toda, Mochizuki, Yasui, Kai, Miyahara & Hirotsu (1999); Toda (1988, 1995, 1996); Toda & Tanaka (1984); Toda et al. (2001).

Experimental top

The component substances were purchased from Sigma. The cocrystals were obtained from an ethylacetate solution of a mixture of the components (quantities of reagents?). The solution was left for evaporation at room temperature and after a week crystals were obtained. In the same vial, two kind of crystals were found. They were selected from the sample vial by their different morphological form.

Refinement top

The water H atoms in (II) were found in a difference Fourier map and then freely refined. All other H atoms were postioned geometrically (Caromatic—H = 0.95 Å, N—H = 0.88 Å, Cmethyl—H = 0.98 Å and O—H = 0.84 Å) and refined using a riding model [Uiso(H) = 1.2Ueq(Caromatic,N) and 1.5Ueq(Cmethyl,O)].

Computing details top

For both compounds, data collection: SMART-NT (Bruker, 2000); cell refinement: SAINT-NT ?? (Bruker, 2000); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: ORTEP (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. Assymetric unit of cocrystal (I). Ellipsoids are drawn in 50% probability level.
[Figure 2] Fig. 2. Assymetric unit of cocrystal (II)·Ellipsoids are drawn in 50% probability level.
[Figure 3] Fig. 3. Hydrogen bond network in cocrystal (I) (hydrogen bonds are in doted lines). (i) x, y, z; (ii) -x, 1 + y, 1/2 - z.
[Figure 4] Fig. 4. Mutual relationship between two adjacent dimers of 6-methyl-2H-pyridone in cocrystals (I) (hydrogen bonds are in Blue doted lines).
[Figure 5] Fig. 5. Mutual relationship between molecules of (2) in cocrystal (II). The symmetry codes are: (i) x, y, z; (ii) 1/2 + x, 3/2 - y, -1/2 + z; (iii) 1 + x, 1 - y, -1/2 + z; (iv) 2 - x, 1 - y, -z.
[Figure 6] Fig. 6. Hydrogen bond network in cocrystal (II) (hydrogen bonds are in doted lines). The symmetry codes are: (i) x, y, z; (ii) 3/2 - x, 1/2 + y, 1/2 - z; (iii) 1 - x, y, 1/2 - z; (iv) -1/2 + x, 3/2 - y, 1/2 + z; (v) x, 2 - y, 1/2 + z; (vi) 1 - x, 2 - y, 1 - z; (vii) 1/2 - x, 3/2 - y, 1 - z..
(I) 4,4'-(fluorene-9,9-diyl)diphenol–6-methyl-2H-pyridone (1/2) top
Crystal data top
C25H18O2·2C6H7NOF(000) = 2400
Mr = 568.65Dx = 1.312 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4017 reflections
a = 17.480 (4) Åθ = 2.3–28.7°
b = 11.114 (2) ŵ = 0.09 mm1
c = 29.698 (6) ÅT = 120 K
β = 93.894 (8)°Prism, colourless
V = 5756 (2) Å30.30 × 0.10 × 0.10 mm
Z = 8
Data collection top
Bruker SMART 6K CCD
diffractometer
5129 independent reflections
Radiation source: fine-focus sealed tube3823 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
Detector resolution: 8 pixels mm-1θmax = 25.1°, θmin = 1.4°
ω scansh = 2020
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
k = 1313
Tmin = 0.975, Tmax = 0.992l = 3535
23891 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147H-atom parameters constrained
S = 1.16 w = 1/[σ2(Fo2) + (0.064P)2]
where P = (Fo2 + 2Fc2)/3
5129 reflections(Δ/σ)max < 0.001
390 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C25H18O2·2C6H7NOV = 5756 (2) Å3
Mr = 568.65Z = 8
Monoclinic, C2/cMo Kα radiation
a = 17.480 (4) ŵ = 0.09 mm1
b = 11.114 (2) ÅT = 120 K
c = 29.698 (6) Å0.30 × 0.10 × 0.10 mm
β = 93.894 (8)°
Data collection top
Bruker SMART 6K CCD
diffractometer
5129 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
3823 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.992Rint = 0.056
23891 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.147H-atom parameters constrained
S = 1.16Δρmax = 0.32 e Å3
5129 reflectionsΔρmin = 0.23 e Å3
390 parameters
Special details top

Experimental. The irradiation was carried out by using BENTHAM Xenon light source, model IL7 with OSRAM lamp, model XBO 150 W/ CR OFR.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.12775 (8)0.16495 (13)0.40423 (4)0.0351 (4)
H1O10.08450.14110.41110.042*
O20.04369 (8)0.33117 (11)0.12825 (4)0.0320 (4)
H2O20.04220.32470.10000.038*
O30.01403 (8)0.07280 (13)0.44912 (5)0.0366 (4)
O40.03808 (9)0.39918 (14)0.04273 (5)0.0456 (4)
N10.06682 (9)0.12544 (15)0.50253 (5)0.0295 (4)
H1N10.04800.06530.51910.035*
N20.09197 (10)0.43701 (15)0.02313 (6)0.0359 (4)
H1N20.04610.45660.03490.043*
C10.16138 (10)0.09378 (16)0.26851 (6)0.0229 (4)
C20.21342 (11)0.15990 (16)0.29649 (6)0.0246 (4)
H20.25880.18940.28440.030*
C30.20124 (11)0.18368 (17)0.34087 (6)0.0276 (4)
H30.23750.23020.35870.033*
C40.13646 (11)0.14019 (17)0.35979 (6)0.0262 (4)
C50.08336 (11)0.07404 (17)0.33288 (6)0.0279 (4)
H50.03870.04320.34530.033*
C60.09571 (11)0.05303 (17)0.28761 (6)0.0259 (4)
H60.05830.00980.26940.031*
C70.13606 (10)0.02561 (16)0.19367 (6)0.0227 (4)
C80.12677 (10)0.13441 (17)0.21587 (6)0.0252 (4)
H80.14150.14010.24720.030*
C90.09655 (10)0.23465 (17)0.19333 (6)0.0254 (4)
H90.09070.30770.20940.030*
C100.07482 (10)0.22937 (17)0.14759 (6)0.0248 (4)
C110.08499 (11)0.12262 (17)0.12451 (6)0.0264 (4)
H110.07150.11790.09300.032*
C120.11500 (11)0.02275 (17)0.14762 (6)0.0263 (4)
H120.12140.04990.13150.032*
C130.17656 (10)0.08037 (16)0.21795 (6)0.0232 (4)
C140.26345 (10)0.07036 (16)0.21239 (6)0.0223 (4)
C150.31190 (11)0.02301 (17)0.22542 (6)0.0254 (4)
H150.29270.09340.23890.030*
C160.38942 (11)0.01197 (18)0.21843 (6)0.0276 (4)
H160.42350.07590.22690.033*
C170.41776 (11)0.09145 (18)0.19921 (6)0.0285 (4)
H170.47110.09820.19530.034*
C180.36896 (11)0.18469 (17)0.18578 (6)0.0264 (4)
H180.38840.25520.17250.032*
C190.29106 (10)0.17373 (16)0.19201 (6)0.0223 (4)
C200.15923 (10)0.20267 (16)0.19544 (6)0.0235 (4)
C210.09003 (11)0.26290 (17)0.19045 (6)0.0262 (4)
H210.04450.22710.20000.031*
C220.08834 (11)0.37734 (17)0.17115 (6)0.0281 (4)
H220.04100.41920.16690.034*
C230.15508 (12)0.43069 (17)0.15814 (6)0.0294 (5)
H230.15290.50930.14550.035*
C240.22479 (11)0.37146 (17)0.16322 (6)0.0270 (4)
H240.27040.40850.15430.032*
C250.22647 (11)0.25596 (16)0.18174 (6)0.0241 (4)
C260.03796 (11)0.14287 (18)0.46153 (6)0.0299 (5)
C270.06994 (12)0.23983 (19)0.43560 (7)0.0359 (5)
H270.05200.25720.40680.043*
C280.12603 (13)0.30756 (19)0.45194 (7)0.0383 (5)
H280.14760.37170.43410.046*
C290.15317 (12)0.28576 (19)0.49433 (7)0.0371 (5)
H290.19260.33460.50520.044*
C300.12257 (12)0.19391 (18)0.51987 (7)0.0324 (5)
C310.14416 (13)0.1618 (2)0.56605 (7)0.0434 (6)
H31A0.09910.16890.58740.065*
H31B0.16320.07890.56610.065*
H31C0.18440.21650.57500.065*
C320.09792 (13)0.40152 (19)0.02122 (7)0.0390 (5)
C330.17391 (14)0.3748 (2)0.03879 (7)0.0432 (6)
H330.18260.34950.06930.052*
C340.23378 (14)0.3849 (2)0.01256 (8)0.0450 (6)
H340.28410.36880.02520.054*
C350.22320 (13)0.4189 (2)0.03311 (8)0.0430 (6)
H350.26570.42380.05140.052*
C360.15141 (13)0.44439 (18)0.05059 (7)0.0377 (5)
C370.13046 (14)0.4803 (2)0.09828 (8)0.0468 (6)
H37A0.09710.55130.09870.056*
H37B0.17710.49940.11340.056*
H37C0.10340.41390.11410.056*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0401 (8)0.0426 (9)0.0230 (8)0.0009 (7)0.0062 (6)0.0039 (6)
O20.0413 (8)0.0287 (8)0.0257 (8)0.0076 (6)0.0006 (6)0.0036 (6)
O30.0434 (9)0.0375 (8)0.0303 (8)0.0072 (7)0.0120 (7)0.0039 (6)
O40.0531 (10)0.0521 (10)0.0317 (9)0.0120 (8)0.0027 (7)0.0112 (7)
N10.0353 (10)0.0285 (9)0.0248 (9)0.0044 (7)0.0020 (7)0.0031 (7)
N20.0414 (11)0.0374 (10)0.0283 (10)0.0037 (8)0.0027 (8)0.0053 (8)
C10.0234 (10)0.0220 (9)0.0232 (10)0.0025 (8)0.0002 (7)0.0020 (8)
C20.0242 (10)0.0223 (10)0.0275 (11)0.0001 (8)0.0034 (8)0.0014 (8)
C30.0297 (11)0.0265 (10)0.0263 (11)0.0011 (8)0.0012 (8)0.0022 (8)
C40.0299 (11)0.0268 (10)0.0221 (10)0.0055 (8)0.0034 (8)0.0010 (8)
C50.0245 (10)0.0327 (11)0.0267 (11)0.0003 (8)0.0042 (8)0.0044 (8)
C60.0216 (10)0.0311 (11)0.0244 (10)0.0012 (8)0.0015 (8)0.0009 (8)
C70.0206 (10)0.0246 (10)0.0230 (10)0.0018 (8)0.0019 (7)0.0003 (8)
C80.0237 (10)0.0293 (10)0.0223 (10)0.0004 (8)0.0001 (7)0.0015 (8)
C90.0264 (10)0.0232 (10)0.0268 (10)0.0009 (8)0.0029 (8)0.0036 (8)
C100.0230 (10)0.0260 (10)0.0256 (10)0.0004 (8)0.0029 (8)0.0045 (8)
C110.0322 (11)0.0280 (11)0.0190 (10)0.0018 (8)0.0007 (8)0.0006 (8)
C120.0293 (10)0.0240 (10)0.0259 (11)0.0012 (8)0.0049 (8)0.0031 (8)
C130.0226 (10)0.0237 (10)0.0233 (10)0.0010 (8)0.0018 (7)0.0024 (8)
C140.0239 (10)0.0249 (10)0.0181 (9)0.0024 (8)0.0007 (7)0.0021 (7)
C150.0294 (11)0.0267 (10)0.0203 (10)0.0003 (8)0.0033 (8)0.0013 (8)
C160.0279 (11)0.0310 (11)0.0240 (10)0.0039 (8)0.0028 (8)0.0015 (8)
C170.0243 (10)0.0359 (11)0.0255 (10)0.0022 (9)0.0031 (8)0.0036 (8)
C180.0292 (11)0.0293 (11)0.0213 (10)0.0034 (8)0.0057 (8)0.0029 (8)
C190.0280 (10)0.0227 (10)0.0161 (9)0.0018 (8)0.0014 (7)0.0037 (7)
C200.0298 (11)0.0228 (10)0.0177 (9)0.0003 (8)0.0001 (8)0.0023 (7)
C210.0262 (10)0.0282 (11)0.0239 (10)0.0000 (8)0.0000 (8)0.0038 (8)
C220.0331 (11)0.0265 (11)0.0242 (10)0.0056 (9)0.0016 (8)0.0037 (8)
C230.0418 (12)0.0223 (10)0.0238 (10)0.0014 (9)0.0006 (9)0.0003 (8)
C240.0338 (11)0.0253 (10)0.0222 (10)0.0019 (9)0.0036 (8)0.0004 (8)
C250.0302 (10)0.0254 (10)0.0168 (9)0.0018 (8)0.0012 (7)0.0026 (7)
C260.0352 (11)0.0324 (11)0.0223 (10)0.0015 (9)0.0031 (8)0.0025 (8)
C270.0468 (13)0.0366 (12)0.0239 (11)0.0029 (10)0.0008 (9)0.0023 (9)
C280.0472 (13)0.0318 (12)0.0347 (12)0.0042 (10)0.0061 (10)0.0008 (9)
C290.0367 (12)0.0339 (11)0.0404 (13)0.0066 (10)0.0010 (9)0.0034 (10)
C300.0323 (11)0.0338 (12)0.0311 (11)0.0002 (9)0.0024 (9)0.0064 (9)
C310.0465 (14)0.0473 (14)0.0378 (13)0.0077 (11)0.0138 (10)0.0006 (11)
C320.0483 (14)0.0369 (12)0.0310 (12)0.0081 (10)0.0027 (10)0.0022 (9)
C330.0591 (16)0.0395 (13)0.0296 (12)0.0171 (11)0.0087 (11)0.0022 (10)
C340.0454 (14)0.0398 (13)0.0485 (15)0.0131 (11)0.0070 (11)0.0056 (11)
C350.0462 (14)0.0361 (13)0.0466 (14)0.0086 (10)0.0030 (11)0.0006 (10)
C360.0476 (14)0.0294 (12)0.0362 (12)0.0031 (10)0.0034 (10)0.0009 (9)
C370.0568 (16)0.0465 (14)0.0377 (14)0.0076 (12)0.0080 (11)0.0110 (11)
Geometric parameters (Å, º) top
O1—C41.367 (2)C16—C171.389 (3)
O1—H1O10.8400C16—H160.9500
O2—C101.365 (2)C17—C181.384 (3)
O2—H2O20.8400C17—H170.9500
O3—C261.270 (2)C18—C191.392 (3)
O4—C321.262 (3)C18—H180.9500
N1—C261.363 (2)C19—C251.468 (3)
N1—C301.365 (2)C20—C211.382 (3)
N1—H1N10.8800C20—C251.401 (3)
N2—C361.366 (3)C21—C221.395 (3)
N2—C321.372 (3)C21—H210.9500
N2—H1N20.8800C22—C231.387 (3)
C1—C61.390 (3)C22—H220.9500
C1—C21.398 (3)C23—C241.384 (3)
C1—C131.549 (2)C23—H230.9500
C2—C31.375 (3)C24—C251.396 (3)
C2—H20.9500C24—H240.9500
C3—C41.385 (3)C26—C271.417 (3)
C3—H30.9500C27—C281.352 (3)
C4—C51.393 (3)C27—H270.9500
C5—C61.396 (3)C28—C291.396 (3)
C5—H50.9500C28—H280.9500
C6—H60.9500C29—C301.360 (3)
C7—C121.392 (3)C29—H290.9500
C7—C81.392 (3)C30—C311.490 (3)
C7—C131.530 (3)C31—H31A0.9800
C8—C91.386 (3)C31—H31B0.9800
C8—H80.9500C31—H31C0.9800
C9—C101.387 (3)C32—C331.425 (3)
C9—H90.9500C33—C341.351 (3)
C10—C111.388 (3)C33—H330.9500
C11—C121.389 (3)C34—C351.408 (3)
C11—H110.9500C34—H340.9500
C12—H120.9500C35—C361.355 (3)
C13—C201.536 (3)C35—H350.9500
C13—C141.543 (2)C36—C371.493 (3)
C14—C151.378 (3)C37—H37A0.9800
C14—C191.400 (2)C37—H37B0.9800
C15—C161.390 (3)C37—H37C0.9800
C15—H150.9500
C4—O1—H1O1109.5C19—C18—H18120.5
C10—O2—H2O2109.5C18—C19—C14119.90 (17)
C26—N1—C30125.10 (17)C18—C19—C25131.55 (17)
C26—N1—H1N1117.4C14—C19—C25108.54 (16)
C30—N1—H1N1117.4C21—C20—C25120.65 (17)
C36—N2—C32125.38 (19)C21—C20—C13128.37 (17)
C36—N2—H1N2117.3C25—C20—C13110.86 (15)
C32—N2—H1N2117.3C20—C21—C22118.68 (18)
C6—C1—C2116.77 (17)C20—C21—H21120.7
C6—C1—C13124.37 (16)C22—C21—H21120.7
C2—C1—C13118.62 (16)C23—C22—C21120.64 (18)
C3—C2—C1122.27 (17)C23—C22—H22119.7
C3—C2—H2118.9C21—C22—H22119.7
C1—C2—H2118.9C24—C23—C22121.16 (18)
C2—C3—C4120.39 (18)C24—C23—H23119.4
C2—C3—H3119.8C22—C23—H23119.4
C4—C3—H3119.8C23—C24—C25118.36 (18)
O1—C4—C3117.99 (17)C23—C24—H24120.8
O1—C4—C5123.13 (17)C25—C24—H24120.8
C3—C4—C5118.88 (17)C24—C25—C20120.50 (17)
C4—C5—C6120.02 (18)C24—C25—C19130.49 (17)
C4—C5—H5120.0C20—C25—C19108.96 (15)
C6—C5—H5120.0O3—C26—N1119.18 (18)
C1—C6—C5121.65 (18)O3—C26—C27124.89 (18)
C1—C6—H6119.2N1—C26—C27115.93 (18)
C5—C6—H6119.2C28—C27—C26119.81 (19)
C12—C7—C8116.97 (17)C28—C27—H27120.1
C12—C7—C13121.91 (16)C26—C27—H27120.1
C8—C7—C13120.71 (16)C27—C28—C29121.7 (2)
C9—C8—C7121.49 (17)C27—C28—H28119.1
C9—C8—H8119.3C29—C28—H28119.1
C7—C8—H8119.3C30—C29—C28119.2 (2)
C8—C9—C10120.61 (17)C30—C29—H29120.4
C8—C9—H9119.7C28—C29—H29120.4
C10—C9—H9119.7C29—C30—N1118.17 (19)
O2—C10—C9116.86 (16)C29—C30—C31125.36 (19)
O2—C10—C11124.17 (17)N1—C30—C31116.47 (18)
C9—C10—C11118.97 (17)C30—C31—H31A109.5
C10—C11—C12119.73 (17)C30—C31—H31B109.5
C10—C11—H11120.1H31A—C31—H31B109.5
C12—C11—H11120.1C30—C31—H31C109.5
C11—C12—C7122.20 (17)H31A—C31—H31C109.5
C11—C12—H12118.9H31B—C31—H31C109.5
C7—C12—H12118.9O4—C32—N2118.70 (19)
C7—C13—C20113.89 (15)O4—C32—C33126.4 (2)
C7—C13—C14108.76 (14)N2—C32—C33114.8 (2)
C20—C13—C14100.58 (14)C34—C33—C32120.7 (2)
C7—C13—C1115.26 (14)C34—C33—H33119.6
C20—C13—C1107.16 (14)C32—C33—H33119.6
C14—C13—C1110.20 (14)C33—C34—C35121.4 (2)
C15—C14—C19121.08 (17)C33—C34—H34119.3
C15—C14—C13127.94 (16)C35—C34—H34119.3
C19—C14—C13110.97 (15)C36—C35—C34118.9 (2)
C14—C15—C16118.57 (17)C36—C35—H35120.6
C14—C15—H15120.7C34—C35—H35120.6
C16—C15—H15120.7C35—C36—N2118.8 (2)
C17—C16—C15120.85 (18)C35—C36—C37125.5 (2)
C17—C16—H16119.6N2—C36—C37115.8 (2)
C15—C16—H16119.6C36—C37—H37A109.5
C18—C17—C16120.53 (18)C36—C37—H37B109.5
C18—C17—H17119.7H37A—C37—H37B109.5
C16—C17—H17119.7C36—C37—H37C109.5
C17—C18—C19119.05 (18)H37A—C37—H37C109.5
C17—C18—H18120.5H37B—C37—H37C109.5
C6—C1—C2—C30.3 (3)C15—C14—C19—C181.8 (3)
C13—C1—C2—C3175.03 (16)C13—C14—C19—C18177.20 (15)
C1—C2—C3—C41.2 (3)C15—C14—C19—C25179.55 (16)
C2—C3—C4—O1179.04 (16)C13—C14—C19—C251.5 (2)
C2—C3—C4—C51.2 (3)C7—C13—C20—C2165.0 (2)
O1—C4—C5—C6179.49 (17)C14—C13—C20—C21178.85 (18)
C3—C4—C5—C60.3 (3)C1—C13—C20—C2163.7 (2)
C2—C1—C6—C51.8 (3)C7—C13—C20—C25119.06 (16)
C13—C1—C6—C5176.18 (16)C14—C13—C20—C252.93 (18)
C4—C5—C6—C11.8 (3)C1—C13—C20—C25112.24 (16)
C12—C7—C8—C91.2 (3)C25—C20—C21—C220.5 (3)
C13—C7—C8—C9174.05 (16)C13—C20—C21—C22176.11 (17)
C7—C8—C9—C100.3 (3)C20—C21—C22—C231.4 (3)
C8—C9—C10—O2178.30 (16)C21—C22—C23—C241.1 (3)
C8—C9—C10—C111.1 (3)C22—C23—C24—C250.2 (3)
O2—C10—C11—C12177.94 (16)C23—C24—C25—C201.0 (3)
C9—C10—C11—C121.4 (3)C23—C24—C25—C19178.40 (17)
C10—C11—C12—C70.4 (3)C21—C20—C25—C240.7 (3)
C8—C7—C12—C110.9 (3)C13—C20—C25—C24175.62 (16)
C13—C7—C12—C11173.64 (17)C21—C20—C25—C19178.56 (16)
C12—C7—C13—C2026.8 (2)C13—C20—C25—C192.3 (2)
C8—C7—C13—C20160.77 (16)C18—C19—C25—C241.3 (3)
C12—C7—C13—C1484.5 (2)C14—C19—C25—C24177.12 (18)
C8—C7—C13—C1488.0 (2)C18—C19—C25—C20178.95 (18)
C12—C7—C13—C1151.21 (17)C14—C19—C25—C200.5 (2)
C8—C7—C13—C136.3 (2)C30—N1—C26—O3180.00 (18)
C6—C1—C13—C726.5 (2)C30—N1—C26—C270.5 (3)
C2—C1—C13—C7159.20 (16)O3—C26—C27—C28179.0 (2)
C6—C1—C13—C20101.37 (19)N1—C26—C27—C280.5 (3)
C2—C1—C13—C2072.9 (2)C26—C27—C28—C290.8 (3)
C6—C1—C13—C14150.06 (17)C27—C28—C29—C300.1 (3)
C2—C1—C13—C1435.7 (2)C28—C29—C30—N10.8 (3)
C7—C13—C14—C1558.6 (2)C28—C29—C30—C31178.4 (2)
C20—C13—C14—C15178.49 (17)C26—N1—C30—C291.2 (3)
C1—C13—C14—C1568.7 (2)C26—N1—C30—C31178.10 (18)
C7—C13—C14—C19122.52 (16)C36—N2—C32—O4179.8 (2)
C20—C13—C14—C192.62 (18)C36—N2—C32—C332.0 (3)
C1—C13—C14—C19110.25 (16)O4—C32—C33—C34177.5 (2)
C19—C14—C15—C160.8 (3)N2—C32—C33—C340.0 (3)
C13—C14—C15—C16177.98 (17)C32—C33—C34—C351.8 (4)
C14—C15—C16—C170.7 (3)C33—C34—C35—C361.5 (3)
C15—C16—C17—C181.3 (3)C34—C35—C36—N20.4 (3)
C16—C17—C18—C190.4 (3)C34—C35—C36—C37179.3 (2)
C17—C18—C19—C141.2 (3)C32—N2—C36—C352.3 (3)
C17—C18—C19—C25179.48 (18)C32—N2—C36—C37177.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O30.841.892.672 (2)156
O2—H2A···O40.841.892.646 (2)149
N1—H1B···O3i0.881.882.755 (2)174
N2—H2B···O4ii0.882.182.940 (2)145
Symmetry codes: (i) x, y, z+1; (ii) x, y1, z.
(II) 4,4'-(fluorene-9,9-diyl)diphenol–6-methyl-2H-pyridone–water (1/3/3) top
Crystal data top
C25H18O2·3C6H7NO·3H2OF(000) = 3104
Mr = 731.82Dx = 1.288 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4069 reflections
a = 14.432 (4) Åθ = 2.3–2.6°
b = 14.665 (5) ŵ = 0.09 mm1
c = 35.675 (10) ÅT = 120 K
β = 90.133 (14)°Block, colourless
V = 7550 (4) Å30.35 × 0.25 × 0.15 mm
Z = 8
Data collection top
Bruker SMART 6K CCD
diffractometer
6729 independent reflections
Radiation source: 60W microfocus Bede Microsource with glass polycapillary optics5287 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
Detector resolution: 8 pixels mm-1θmax = 25.1°, θmin = 2.1°
ω scansh = 1716
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
k = 1717
Tmin = 0.970, Tmax = 0.987l = 4242
24437 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.28 w = 1/[σ2(Fo2) + (0.0401P)2]
where P = (Fo2 + 2Fc2)/3
6729 reflections(Δ/σ)max = 0.007
515 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C25H18O2·3C6H7NO·3H2OV = 7550 (4) Å3
Mr = 731.82Z = 8
Monoclinic, C2/cMo Kα radiation
a = 14.432 (4) ŵ = 0.09 mm1
b = 14.665 (5) ÅT = 120 K
c = 35.675 (10) Å0.35 × 0.25 × 0.15 mm
β = 90.133 (14)°
Data collection top
Bruker SMART 6K CCD
diffractometer
6729 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
5287 reflections with I > 2σ(I)
Tmin = 0.970, Tmax = 0.987Rint = 0.048
24437 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.28Δρmax = 0.25 e Å3
6729 reflectionsΔρmin = 0.21 e Å3
515 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.66355 (10)0.48528 (10)0.12373 (4)0.0238 (4)
H1A0.70850.46270.11200.029*
O20.63584 (10)0.74053 (9)0.37947 (4)0.0255 (4)
H2A0.61830.72110.40040.031*
O30.92982 (10)0.54667 (10)0.05593 (4)0.0241 (4)
O41.00587 (10)0.67102 (10)0.02179 (4)0.0266 (4)
O50.33089 (10)0.66228 (10)0.48859 (4)0.0242 (4)
O60.43857 (12)0.55996 (12)0.44151 (5)0.0321 (4)
H6A0.3952 (19)0.5908 (19)0.4571 (8)0.061 (9)*
H6B0.407 (2)0.549 (2)0.4209 (9)0.089 (13)*
O70.81393 (12)0.42388 (13)0.08770 (4)0.0284 (4)
H7A0.859 (2)0.463 (2)0.0793 (8)0.081 (11)*
H7B0.840 (2)0.374 (2)0.0940 (8)0.063 (10)*
O80.58419 (12)0.68348 (13)0.44535 (5)0.0302 (4)
H8A0.5384 (18)0.6411 (18)0.4450 (7)0.042 (8)*
H8B0.560 (2)0.731 (2)0.4577 (8)0.071 (10)*
N11.04067 (11)0.65611 (11)0.05393 (5)0.0196 (4)
H1B1.02960.66140.02980.036 (7)*
N20.88690 (11)0.57024 (12)0.02018 (5)0.0208 (4)
H2B0.89770.56370.00400.025*
N30.30908 (12)0.73455 (11)0.54404 (5)0.0193 (4)
H3B0.26690.76840.53290.023*
C10.70639 (14)0.46336 (13)0.23927 (5)0.0156 (5)
C20.77044 (14)0.42929 (14)0.21405 (6)0.0185 (5)
H20.82440.39980.22330.022*
C30.75798 (15)0.43708 (14)0.17562 (6)0.0210 (5)
H30.80350.41370.15900.025*
C40.67959 (15)0.47876 (14)0.16148 (6)0.0180 (5)
C50.61451 (14)0.51406 (14)0.18600 (6)0.0186 (5)
H50.56050.54320.17660.022*
C60.62861 (14)0.50659 (13)0.22437 (6)0.0183 (5)
H60.58400.53170.24100.022*
C70.68671 (13)0.52388 (13)0.30631 (5)0.0153 (5)
C80.71068 (14)0.61347 (14)0.29720 (6)0.0187 (5)
H80.73940.62570.27380.022*
C90.69335 (14)0.68472 (14)0.32161 (6)0.0205 (5)
H90.71070.74510.31490.025*
C100.65066 (14)0.66841 (14)0.35586 (6)0.0181 (5)
C110.62426 (14)0.58061 (14)0.36470 (6)0.0192 (5)
H110.59310.56890.38760.023*
C120.64290 (14)0.50959 (14)0.34040 (6)0.0193 (5)
H120.62530.44940.34720.023*
C130.71580 (14)0.44374 (13)0.28160 (5)0.0162 (5)
C140.66345 (14)0.35470 (13)0.28928 (5)0.0157 (5)
C150.56957 (15)0.33875 (14)0.28804 (5)0.0204 (5)
H150.52750.38730.28350.025*
C160.53711 (16)0.25026 (15)0.29355 (6)0.0244 (5)
H160.47240.23850.29300.029*
C170.59880 (16)0.17912 (15)0.29983 (6)0.0253 (5)
H170.57590.11880.30290.030*
C180.69313 (16)0.19513 (14)0.30169 (6)0.0233 (5)
H180.73510.14620.30590.028*
C190.72579 (14)0.28375 (14)0.29734 (5)0.0175 (5)
C200.81529 (14)0.41507 (14)0.29143 (5)0.0162 (5)
C210.89483 (14)0.46789 (14)0.29252 (5)0.0194 (5)
H210.89260.53090.28650.023*
C220.97778 (15)0.42698 (15)0.30260 (6)0.0256 (5)
H221.03270.46260.30350.031*
C230.98182 (15)0.33533 (16)0.31132 (6)0.0288 (6)
H231.03930.30890.31850.035*
C240.90315 (16)0.28140 (15)0.30981 (6)0.0260 (5)
H240.90620.21810.31540.031*
C250.81950 (14)0.32202 (14)0.29996 (5)0.0185 (5)
C260.98975 (15)0.59361 (14)0.07339 (6)0.0211 (5)
C271.01095 (15)0.58564 (15)0.11203 (6)0.0245 (5)
H270.97830.54310.12710.029*
C281.07803 (16)0.63892 (15)0.12759 (6)0.0281 (6)
H281.09210.63250.15350.034*
C291.12676 (15)0.70306 (15)0.10623 (6)0.0263 (5)
H291.17270.74040.11760.032*
C301.10777 (15)0.71138 (14)0.06906 (6)0.0222 (5)
C311.15537 (16)0.77549 (16)0.04272 (6)0.0303 (6)
H31A1.10890.80810.02780.045*
H31B1.19620.74090.02600.045*
H31C1.19210.81950.05710.045*
C320.94106 (15)0.63000 (14)0.03927 (6)0.0221 (5)
C330.92005 (15)0.64095 (15)0.07793 (6)0.0243 (5)
H330.95460.68270.09270.029*
C340.85052 (16)0.59164 (15)0.09375 (6)0.0271 (6)
H340.83720.59930.11970.033*
C350.79794 (15)0.52967 (15)0.07266 (6)0.0244 (5)
H350.74980.49540.08420.029*
C360.81682 (14)0.51941 (14)0.03555 (6)0.0215 (5)
C370.76685 (16)0.45653 (15)0.00951 (6)0.0283 (6)
H37A0.81170.41710.00320.043*
H37B0.72320.41890.02380.043*
H37C0.73280.49240.00910.043*
C380.35367 (14)0.67070 (14)0.52283 (6)0.0204 (5)
C390.42248 (15)0.61882 (14)0.54171 (6)0.0221 (5)
H390.45640.57360.52850.027*
C400.44008 (15)0.63351 (14)0.57865 (6)0.0228 (5)
H400.48660.59860.59090.027*
C410.39062 (15)0.69957 (14)0.59911 (6)0.0218 (5)
H410.40300.70890.62500.026*
C420.32483 (15)0.74987 (14)0.58118 (6)0.0205 (5)
C430.26696 (15)0.82270 (15)0.59880 (6)0.0259 (5)
H43A0.27040.87830.58360.039*
H43B0.29010.83540.62410.039*
H43C0.20250.80210.60020.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0249 (9)0.0316 (9)0.0149 (8)0.0006 (7)0.0018 (6)0.0033 (7)
O20.0343 (9)0.0186 (8)0.0237 (8)0.0018 (7)0.0034 (7)0.0051 (7)
O30.0248 (9)0.0252 (9)0.0222 (8)0.0054 (7)0.0003 (7)0.0015 (7)
O40.0305 (9)0.0277 (9)0.0215 (8)0.0105 (7)0.0040 (7)0.0042 (7)
O50.0262 (9)0.0278 (9)0.0185 (9)0.0064 (7)0.0024 (7)0.0033 (7)
O60.0272 (10)0.0389 (11)0.0300 (10)0.0076 (8)0.0026 (8)0.0117 (8)
O70.0325 (10)0.0261 (10)0.0267 (9)0.0007 (9)0.0048 (8)0.0040 (8)
O80.0335 (10)0.0290 (10)0.0281 (10)0.0047 (9)0.0026 (8)0.0093 (8)
N10.0214 (10)0.0224 (10)0.0151 (10)0.0007 (8)0.0022 (8)0.0000 (8)
N20.0224 (10)0.0239 (10)0.0160 (10)0.0023 (8)0.0018 (8)0.0004 (8)
N30.0216 (10)0.0185 (10)0.0179 (10)0.0042 (8)0.0017 (8)0.0007 (8)
C10.0190 (12)0.0111 (11)0.0168 (11)0.0031 (9)0.0013 (9)0.0019 (9)
C20.0185 (12)0.0174 (11)0.0195 (12)0.0026 (9)0.0026 (9)0.0005 (9)
C30.0240 (12)0.0233 (12)0.0157 (11)0.0007 (10)0.0023 (9)0.0008 (9)
C40.0244 (12)0.0154 (11)0.0143 (11)0.0055 (9)0.0030 (9)0.0033 (9)
C50.0138 (11)0.0175 (11)0.0244 (12)0.0022 (9)0.0038 (9)0.0049 (9)
C60.0183 (12)0.0165 (11)0.0200 (12)0.0013 (9)0.0024 (9)0.0014 (9)
C70.0127 (11)0.0178 (11)0.0155 (11)0.0018 (9)0.0038 (9)0.0003 (9)
C80.0194 (12)0.0198 (11)0.0167 (11)0.0012 (9)0.0008 (9)0.0034 (9)
C90.0220 (12)0.0135 (11)0.0259 (12)0.0006 (9)0.0020 (10)0.0015 (9)
C100.0169 (11)0.0166 (11)0.0208 (12)0.0042 (9)0.0026 (9)0.0034 (9)
C110.0202 (12)0.0228 (12)0.0145 (11)0.0023 (10)0.0019 (9)0.0008 (9)
C120.0229 (12)0.0143 (11)0.0207 (12)0.0001 (9)0.0016 (9)0.0014 (9)
C130.0167 (11)0.0164 (11)0.0154 (11)0.0008 (9)0.0000 (9)0.0004 (9)
C140.0224 (12)0.0141 (11)0.0107 (10)0.0004 (9)0.0007 (9)0.0012 (8)
C150.0271 (13)0.0192 (12)0.0150 (11)0.0007 (10)0.0006 (9)0.0023 (9)
C160.0250 (13)0.0278 (13)0.0204 (12)0.0066 (10)0.0011 (10)0.0011 (10)
C170.0360 (14)0.0160 (12)0.0238 (13)0.0058 (11)0.0011 (11)0.0003 (10)
C180.0346 (14)0.0172 (12)0.0181 (12)0.0033 (10)0.0041 (10)0.0004 (9)
C190.0251 (12)0.0166 (11)0.0109 (11)0.0019 (9)0.0006 (9)0.0002 (9)
C200.0206 (12)0.0171 (11)0.0110 (11)0.0044 (9)0.0008 (9)0.0016 (9)
C210.0207 (12)0.0186 (12)0.0188 (12)0.0012 (10)0.0004 (9)0.0017 (9)
C220.0195 (12)0.0283 (13)0.0290 (13)0.0006 (10)0.0031 (10)0.0064 (11)
C230.0209 (13)0.0317 (14)0.0339 (14)0.0127 (11)0.0051 (10)0.0004 (11)
C240.0297 (14)0.0202 (12)0.0283 (13)0.0095 (11)0.0006 (10)0.0024 (10)
C250.0220 (12)0.0195 (11)0.0140 (11)0.0029 (9)0.0010 (9)0.0007 (9)
C260.0205 (12)0.0195 (12)0.0234 (12)0.0033 (10)0.0021 (10)0.0001 (10)
C270.0275 (13)0.0261 (13)0.0199 (12)0.0045 (11)0.0012 (10)0.0044 (10)
C280.0337 (14)0.0302 (14)0.0203 (12)0.0056 (11)0.0031 (11)0.0005 (10)
C290.0246 (13)0.0286 (13)0.0257 (13)0.0026 (10)0.0063 (10)0.0051 (11)
C300.0194 (12)0.0224 (12)0.0249 (13)0.0012 (10)0.0000 (10)0.0023 (10)
C310.0269 (14)0.0300 (14)0.0339 (14)0.0050 (11)0.0006 (11)0.0004 (11)
C320.0251 (13)0.0191 (12)0.0221 (12)0.0015 (10)0.0007 (10)0.0003 (10)
C330.0258 (13)0.0252 (13)0.0220 (12)0.0002 (10)0.0006 (10)0.0034 (10)
C340.0323 (14)0.0308 (14)0.0184 (12)0.0072 (11)0.0035 (10)0.0013 (10)
C350.0221 (13)0.0264 (13)0.0248 (13)0.0023 (10)0.0050 (10)0.0057 (10)
C360.0179 (12)0.0194 (12)0.0273 (13)0.0021 (10)0.0011 (10)0.0030 (10)
C370.0293 (14)0.0247 (13)0.0311 (14)0.0032 (11)0.0020 (11)0.0023 (10)
C380.0213 (12)0.0189 (12)0.0209 (13)0.0027 (10)0.0030 (10)0.0018 (10)
C390.0229 (12)0.0186 (12)0.0249 (13)0.0027 (10)0.0002 (10)0.0003 (10)
C400.0224 (12)0.0187 (12)0.0273 (13)0.0008 (10)0.0041 (10)0.0057 (10)
C410.0262 (13)0.0197 (12)0.0193 (12)0.0031 (10)0.0024 (10)0.0035 (10)
C420.0244 (13)0.0186 (11)0.0186 (12)0.0044 (10)0.0003 (9)0.0009 (9)
C430.0299 (13)0.0281 (13)0.0196 (12)0.0024 (11)0.0003 (10)0.0019 (10)
Geometric parameters (Å, º) top
O1—C41.369 (2)C16—C171.389 (3)
O1—H1A0.8400C16—H160.9500
O2—C101.369 (2)C17—C181.383 (3)
O2—H2A0.8400C17—H170.9500
O3—C261.268 (3)C18—C191.391 (3)
O4—C321.274 (3)C18—H180.9500
O5—C381.270 (2)C19—C251.467 (3)
O6—H6A0.95 (3)C20—C211.385 (3)
O6—H6B0.88 (3)C20—C251.399 (3)
O7—H7A0.92 (3)C21—C221.386 (3)
O7—H7B0.86 (3)C21—H210.9500
O8—H8A0.91 (3)C22—C231.381 (3)
O8—H8B0.90 (3)C22—H220.9500
N1—C261.365 (3)C23—C241.385 (3)
N1—C301.372 (3)C23—H230.9500
N1—H1B0.8800C24—C251.390 (3)
N2—C321.358 (3)C24—H240.9500
N2—C361.370 (3)C26—C271.416 (3)
N2—H2B0.8800C27—C281.361 (3)
N3—C421.362 (3)C27—H270.9500
N3—C381.366 (2)C28—C291.401 (3)
N3—H3B0.8800C28—H280.9500
C1—C21.385 (3)C29—C301.359 (3)
C1—C61.393 (3)C29—H290.9500
C1—C131.543 (3)C30—C311.497 (3)
C2—C31.387 (3)C31—H31A0.9800
C2—H20.9500C31—H31B0.9800
C3—C41.380 (3)C31—H31C0.9800
C3—H30.9500C32—C331.421 (3)
C4—C51.385 (3)C33—C341.359 (3)
C5—C61.388 (3)C33—H330.9500
C5—H50.9500C34—C351.404 (3)
C6—H60.9500C34—H340.9500
C7—C121.388 (3)C35—C361.359 (3)
C7—C81.397 (3)C35—H350.9500
C7—C131.528 (3)C36—C371.495 (3)
C8—C91.383 (3)C37—H37A0.9800
C8—H80.9500C37—H37B0.9800
C9—C101.391 (3)C37—H37C0.9800
C9—H90.9500C38—C391.420 (3)
C10—C111.379 (3)C39—C401.359 (3)
C11—C121.382 (3)C39—H390.9500
C11—H110.9500C40—C411.408 (3)
C12—H120.9500C40—H400.9500
C13—C141.534 (3)C41—C421.361 (3)
C13—C201.536 (3)C41—H410.9500
C14—C151.375 (3)C42—C431.495 (3)
C14—C191.405 (3)C43—H43A0.9800
C15—C161.394 (3)C43—H43B0.9800
C15—H150.9500C43—H43C0.9800
C4—O1—H1A109.5C20—C21—H21120.6
C10—O2—H2A109.5C22—C21—H21120.6
H6A—O6—H6B104 (3)C23—C22—C21121.1 (2)
H7A—O7—H7B108 (3)C23—C22—H22119.5
H8A—O8—H8B105 (2)C21—C22—H22119.5
C26—N1—C30125.21 (19)C22—C23—C24120.9 (2)
C26—N1—H1B117.4C22—C23—H23119.6
C30—N1—H1B117.4C24—C23—H23119.6
C32—N2—C36125.13 (18)C23—C24—C25118.5 (2)
C32—N2—H2B117.4C23—C24—H24120.8
C36—N2—H2B117.4C25—C24—H24120.8
C42—N3—C38125.03 (18)C24—C25—C20120.7 (2)
C42—N3—H3B117.5C24—C25—C19130.7 (2)
C38—N3—H3B117.5C20—C25—C19108.64 (18)
C2—C1—C6117.05 (18)O3—C26—N1118.81 (19)
C2—C1—C13120.75 (18)O3—C26—C27125.4 (2)
C6—C1—C13121.81 (17)N1—C26—C27115.8 (2)
C1—C2—C3121.8 (2)C28—C27—C26120.1 (2)
C1—C2—H2119.1C28—C27—H27120.0
C3—C2—H2119.1C26—C27—H27120.0
C4—C3—C2120.13 (19)C27—C28—C29121.4 (2)
C4—C3—H3119.9C27—C28—H28119.3
C2—C3—H3119.9C29—C28—H28119.3
O1—C4—C3121.80 (18)C30—C29—C28119.4 (2)
O1—C4—C5118.78 (19)C30—C29—H29120.3
C3—C4—C5119.41 (19)C28—C29—H29120.3
C4—C5—C6119.7 (2)C29—C30—N1118.1 (2)
C4—C5—H5120.2C29—C30—C31125.2 (2)
C6—C5—H5120.2N1—C30—C31116.64 (19)
C5—C6—C1121.90 (19)C30—C31—H31A109.5
C5—C6—H6119.1C30—C31—H31B109.5
C1—C6—H6119.1H31A—C31—H31B109.5
C12—C7—C8117.34 (18)C30—C31—H31C109.5
C12—C7—C13121.04 (18)H31A—C31—H31C109.5
C8—C7—C13121.36 (17)H31B—C31—H31C109.5
C9—C8—C7121.24 (19)O4—C32—N2118.81 (19)
C9—C8—H8119.4O4—C32—C33125.2 (2)
C7—C8—H8119.4N2—C32—C33116.0 (2)
C8—C9—C10120.29 (19)C34—C33—C32119.9 (2)
C8—C9—H9119.9C34—C33—H33120.0
C10—C9—H9119.9C32—C33—H33120.0
O2—C10—C11122.47 (18)C33—C34—C35121.4 (2)
O2—C10—C9118.55 (18)C33—C34—H34119.3
C11—C10—C9118.98 (18)C35—C34—H34119.3
C10—C11—C12120.38 (19)C36—C35—C34119.1 (2)
C10—C11—H11119.8C36—C35—H35120.5
C12—C11—H11119.8C34—C35—H35120.5
C11—C12—C7121.72 (19)C35—C36—N2118.4 (2)
C11—C12—H12119.1C35—C36—C37125.3 (2)
C7—C12—H12119.1N2—C36—C37116.33 (19)
C7—C13—C14114.55 (16)C36—C37—H37A109.5
C7—C13—C20109.68 (16)C36—C37—H37B109.5
C14—C13—C20100.77 (16)H37A—C37—H37B109.5
C7—C13—C1113.41 (16)C36—C37—H37C109.5
C14—C13—C1106.94 (16)H37A—C37—H37C109.5
C20—C13—C1110.77 (16)H37B—C37—H37C109.5
C15—C14—C19120.74 (19)O5—C38—N3118.57 (19)
C15—C14—C13128.65 (18)O5—C38—C39125.68 (19)
C19—C14—C13110.58 (18)N3—C38—C39115.75 (19)
C14—C15—C16119.0 (2)C40—C39—C38120.3 (2)
C14—C15—H15120.5C40—C39—H39119.9
C16—C15—H15120.5C38—C39—H39119.9
C17—C16—C15120.4 (2)C39—C40—C41121.2 (2)
C17—C16—H16119.8C39—C40—H40119.4
C15—C16—H16119.8C41—C40—H40119.4
C18—C17—C16120.7 (2)C42—C41—C40118.9 (2)
C18—C17—H17119.6C42—C41—H41120.6
C16—C17—H17119.6C40—C41—H41120.6
C17—C18—C19119.1 (2)C41—C42—N3118.85 (19)
C17—C18—H18120.4C41—C42—C43125.4 (2)
C19—C18—H18120.4N3—C42—C43115.76 (19)
C18—C19—C14119.8 (2)C42—C43—H43A109.5
C18—C19—C25131.5 (2)C42—C43—H43B109.5
C14—C19—C25108.64 (18)H43A—C43—H43B109.5
C21—C20—C25120.23 (19)C42—C43—H43C109.5
C21—C20—C13128.87 (18)H43A—C43—H43C109.5
C25—C20—C13110.90 (17)H43B—C43—H43C109.5
C20—C21—C22118.7 (2)
C6—C1—C2—C30.4 (3)C14—C13—C20—C21175.36 (19)
C13—C1—C2—C3172.55 (19)C1—C13—C20—C2171.7 (2)
C1—C2—C3—C40.8 (3)C7—C13—C20—C25125.93 (17)
C2—C3—C4—O1178.01 (18)C14—C13—C20—C254.8 (2)
C2—C3—C4—C51.1 (3)C1—C13—C20—C25108.14 (18)
O1—C4—C5—C6178.77 (18)C25—C20—C21—C220.7 (3)
C3—C4—C5—C60.4 (3)C13—C20—C21—C22179.42 (19)
C4—C5—C6—C10.8 (3)C20—C21—C22—C230.2 (3)
C2—C1—C6—C51.1 (3)C21—C22—C23—C240.8 (3)
C13—C1—C6—C5171.71 (18)C22—C23—C24—C251.2 (3)
C12—C7—C8—C91.5 (3)C23—C24—C25—C200.6 (3)
C13—C7—C8—C9172.72 (19)C23—C24—C25—C19177.6 (2)
C7—C8—C9—C100.5 (3)C21—C20—C25—C240.3 (3)
C8—C9—C10—O2179.11 (18)C13—C20—C25—C24179.80 (18)
C8—C9—C10—C111.3 (3)C21—C20—C25—C19178.89 (17)
O2—C10—C11—C12178.27 (19)C13—C20—C25—C191.2 (2)
C9—C10—C11—C122.2 (3)C18—C19—C25—C244.3 (4)
C10—C11—C12—C71.2 (3)C14—C19—C25—C24175.0 (2)
C8—C7—C12—C110.6 (3)C18—C19—C25—C20177.3 (2)
C13—C7—C12—C11173.61 (19)C14—C19—C25—C203.3 (2)
C12—C7—C13—C1421.5 (3)C30—N1—C26—O3179.89 (19)
C8—C7—C13—C14164.47 (18)C30—N1—C26—C271.4 (3)
C12—C7—C13—C2090.9 (2)O3—C26—C27—C28178.9 (2)
C8—C7—C13—C2083.1 (2)N1—C26—C27—C280.5 (3)
C12—C7—C13—C1144.69 (19)C26—C27—C28—C290.7 (3)
C8—C7—C13—C141.3 (3)C27—C28—C29—C301.0 (3)
C2—C1—C13—C7143.47 (19)C28—C29—C30—N10.2 (3)
C6—C1—C13—C744.0 (3)C28—C29—C30—C31178.8 (2)
C2—C1—C13—C1489.3 (2)C26—N1—C30—C291.0 (3)
C6—C1—C13—C1483.3 (2)C26—N1—C30—C31179.88 (19)
C2—C1—C13—C2019.6 (3)C36—N2—C32—O4177.89 (19)
C6—C1—C13—C20167.78 (18)C36—N2—C32—C331.8 (3)
C7—C13—C14—C1557.5 (3)O4—C32—C33—C34178.3 (2)
C20—C13—C14—C15175.1 (2)N2—C32—C33—C341.3 (3)
C1—C13—C14—C1569.1 (2)C32—C33—C34—C350.3 (3)
C7—C13—C14—C19124.48 (18)C33—C34—C35—C360.4 (3)
C20—C13—C14—C196.8 (2)C34—C35—C36—N20.1 (3)
C1—C13—C14—C19108.95 (18)C34—C35—C36—C37179.8 (2)
C19—C14—C15—C162.3 (3)C32—N2—C36—C351.1 (3)
C13—C14—C15—C16175.58 (19)C32—N2—C36—C37179.00 (19)
C14—C15—C16—C170.7 (3)C42—N3—C38—O5178.59 (18)
C15—C16—C17—C181.7 (3)C42—N3—C38—C391.3 (3)
C16—C17—C18—C190.3 (3)O5—C38—C39—C40179.3 (2)
C17—C18—C19—C143.2 (3)N3—C38—C39—C400.5 (3)
C17—C18—C19—C25176.1 (2)C38—C39—C40—C410.4 (3)
C15—C14—C19—C184.3 (3)C39—C40—C41—C420.7 (3)
C13—C14—C19—C18173.97 (17)C40—C41—C42—N30.0 (3)
C15—C14—C19—C25175.18 (18)C40—C41—C42—C43179.63 (19)
C13—C14—C19—C256.6 (2)C38—N3—C42—C411.0 (3)
C7—C13—C20—C2154.2 (3)C38—N3—C42—C43179.31 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O70.841.842.680 (2)174
O2—H2A···O80.841.772.605 (2)178
O6—H6A···O50.95 (3)1.80 (3)2.738 (2)170 (2)
O6—H6B···O1i0.88 (3)2.11 (3)2.962 (2)165 (3)
O7—H7A···O30.92 (3)1.80 (3)2.708 (2)168 (3)
O7—H7B···O2ii0.86 (3)2.20 (3)3.020 (3)161 (3)
O8—H8A···O60.91 (3)1.87 (3)2.778 (3)175 (2)
O8—H8B···O4iii0.90 (3)1.79 (3)2.685 (2)174 (3)
N1—H1B···O40.881.882.755 (2)179
N2—H2B···O30.881.932.805 (2)176
N3—H3B···O5ii0.881.902.777 (2)176
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x1/2, y+3/2, z3/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC25H18O2·2C6H7NOC25H18O2·3C6H7NO·3H2O
Mr568.65731.82
Crystal system, space groupMonoclinic, C2/cMonoclinic, C2/c
Temperature (K)120120
a, b, c (Å)17.480 (4), 11.114 (2), 29.698 (6)14.432 (4), 14.665 (5), 35.675 (10)
β (°) 93.894 (8) 90.133 (14)
V3)5756 (2)7550 (4)
Z88
Radiation typeMo KαMo Kα
µ (mm1)0.090.09
Crystal size (mm)0.30 × 0.10 × 0.100.35 × 0.25 × 0.15
Data collection
DiffractometerBruker SMART 6K CCD
diffractometer
Bruker SMART 6K CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Multi-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.975, 0.9920.970, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
23891, 5129, 3823 24437, 6729, 5287
Rint0.0560.048
(sin θ/λ)max1)0.5970.597
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.147, 1.16 0.055, 0.113, 1.28
No. of reflections51296729
No. of parameters390515
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.230.25, 0.21

Computer programs: SMART-NT (Bruker, 2000), SAINT-NT ?? (Bruker, 2000), SAINT-NT, SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), ORTEP (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 1997b).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O30.841.892.672 (2)155.5
O2—H2A···O40.841.892.646 (2)149.1
N1—H1B···O3i0.881.882.755 (2)174.4
N2—H2B···O4ii0.882.182.940 (2)144.7
Symmetry codes: (i) x, y, z+1; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O70.841.842.680 (2)174.0
O2—H2A···O80.841.772.605 (2)177.7
O6—H6A···O50.95 (3)1.80 (3)2.738 (2)170 (2)
O6—H6B···O1i0.88 (3)2.11 (3)2.962 (2)165 (3)
O7—H7A···O30.92 (3)1.80 (3)2.708 (2)168 (3)
O7—H7B···O2ii0.86 (3)2.20 (3)3.020 (3)161 (3)
O8—H8A···O60.91 (3)1.87 (3)2.778 (3)175 (2)
O8—H8B···O4iii0.90 (3)1.79 (3)2.685 (2)174 (3)
N1—H1B···O40.881.882.755 (2)179.3
N2—H2B···O30.881.932.805 (2)176.1
N3—H3B···O5ii0.881.902.777 (2)175.5
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+3/2, y1/2, z+1/2; (iii) x1/2, y+3/2, z3/2.
 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationApel, S., Nitsche, S., Beketov, K., Seichter, W., Seidel, J. & Weber, E. (2001). J. Chem. Soc. Perkin Trans. 2, pp. 1212–1218.  CrossRef Google Scholar
First citationBruker (2000). SMART-NT (Version 6.1), SAINT-NT (Version 6.45A) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHosomi, H., Ohba, S., Tanaka, K. & Toda, F. (2000). J. Am. Chem. Soc. 122, 1818–1819.  Web of Science CSD CrossRef CAS Google Scholar
First citationKearsley, S. K. (1987). Organic Solid State Chemistry, edited by G. R. Desiraju, pp. 69–115. Amsterdam: Elsevier Science Publishers.  Google Scholar
First citationLavy, T. & Kaftory, M. (2006). Acta Cryst. E62, o3977–o3978.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLavy, T. & Kaftory, M. (2007). CrystEngComm. In the press.  Google Scholar
First citationLavy, T., Kaganovich, M. & Kaftory, M. (2006). Acta Cryst. E62, o3979–o3980.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLavy, T., Sheinin, Y. & Kaftory, M. (2004). Eur. J. Org. Chem. pp. 4802–4808.  CrossRef Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSchmidt, G. M. (1971). Pure Appl. Chem. 27, 647–678.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.  Google Scholar
First citationTanaka, K., Mizutani, H., Miyahara, I., Hirotsu, K. & Toda, F. (1999). CrystEngComm, 3, 8–11.  Web of Science CSD CrossRef Google Scholar
First citationTanaka, K., Mochzuki, E., Yasui, N., Kai, Y., Miyahara, I., Hirotsu, K. & Toda, F. (2000). Tetrahedron, 56, 6853–6865.  Web of Science CSD CrossRef CAS Google Scholar
First citationTanaka, K. & Toda, F. (2002). Organic Solid State Reactions, pp. 109–158. Dordrecht: Kluwer Academic Publishers.  Google Scholar
First citationTanaka, K., Toda, F., Mochizuki, E., Yasui, N., Kai, Y., Miyahara, I. & Hirotsu, K. (1999). Angew. Chem. Int. Ed. 38, 3523–3525.  CrossRef CAS Google Scholar
First citationToda, F. (1988). Top. Curr. Chem. 149, 211–238.  CrossRef CAS Google Scholar
First citationToda, F. (1995). Supramol. Chem. 6, 159–163.  CrossRef CAS Google Scholar
First citationToda, F. (1996). Supramol. Sci. 3, 139–148.  CrossRef CAS Google Scholar
First citationToda, F. & Tanaka, K. (1984). J. Inclusion Phenom. 2, 91–98.  CrossRef CAS Google Scholar
First citationToda, F., Tanaka, K. & Miyamoto, H. (2001). Mol. Supramol. Photochem. 8, 385–425.  CAS Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds