Download citation
Download citation
link to html
The crystal structure of the title compound, μ-2-hydroxy­butane­dioato-1κ2O4,O4′:2κ3O1,O2,O4-nitrato-2κO-tris­(1,10-phen­anthroline)-1κ4N,N′;2κ2N,N′-dicopper(II) nitrate tetra­hydrate, [Cu2(C4H3O5)(NO3)(C12H8N2)3](NO3)·4H2O, contains an unsymmetrical dinuclear copper complex with Cu(phen)2 and Cu(phen)(NO3) moieties (phen is 1,10-phenanthroline) bridged by a malate (2-hydroxy­butane­dioate) ligand, which acts as a double-bridging and tetra­dentate ligand. As a result of this double-bridging action, especially the direct coordination of the O atom of one carboxyl­ate group of malate to the two Cu atoms, the Cu...Cu distance is only 4.199 (1) Å and the two phen planes are roughly parallel [the shortest inter­planar distance is 3.28 (1) Å], exhibiting an obvious intra­molecular π–π stacking inter­action.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105034220/av1267sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105034220/av1267Isup2.hkl
Contains datablock I

CCDC reference: 296324

Comment top

Malate has been found to be a versatile ligand in coordination compounds as it can exhibit many types of coordination modes due to the presence of two carboxyl groups and one hydroxyl group. In some mononuclear complexes, e.g. Na3[WO2H(S-mal)2] (Zhou et al., 2001) and M3[MoO2H(S-mal)2]·H2O (M is K or Na; Zhou et al., 2002), as well as in binuclear complexes such as K2[VO(O2)(C4H4O5)]2·2H2O (Justino et al., 2003) and Cs2[{VO2(mal)}2]·2H2O (Biagioli et al., 2000), the malate anion acts as a bidentate ligand, coordinating to the metal through two O atoms from the hydroxyl group and the adjacent carboxylate group. In some binuclear complexes, such as Mn2[(C4H4O5)(H2O)2]2·2H2O (Liu et al., 2004), [Zn(Hmal)(1,10-phen)(H2O)]n, [Cu(Hmal)(2,20-bipy)]n.3nH2O (He et al., 2004) or (NH4)2[VO(O2)(C4H4O5)]2·2H2O (Djordjevic et al., 1995), the malate anion is a tridentate ligand, coordinating to the metal ion through the hydroxyl O atom and two terminal carboxylate O atoms. In the trinuclear complex [CuI/CuII2(mal)(SO4)(bpy)2·H2O]n (Lah et al., 2003), the malate anion connects the two crystallographically independent CuII ions by monodentate coordination of the two terminal carboxylate groups and through the hydroxyl O atom, which serves as a bridge between the two metal centres. Here, we report the crystal structure of (I), in which the malate ligand acts as a double bridging and tetradentate agent.

Some features of the molecular geometry of (I) are listed in Table 1 and the molecular conformation is illustrated in Fig. 1. The asymmetric unit of (I) consists of a [Cu2(phen)3(malate)(NO3)] cation, a nitrate anion and four water molecules. In the cation, the coordination geometries around atoms Cu1 and Cu2 can be described as distorted octahedra with obvious Jahn–Teller distortion. Atom Cu1 is coordinated by four N atoms from two phen ligands and two O atoms from the same carboxylate group of the malate ligand, with atoms N1, N2, N3 and O4 in equatorial positions and N4 and O5 at the Jahn–Teller axis. Atom Cu2 is coordinated by two N atoms from the third phen ligand and four O atoms, of which the N atoms and the two O atoms from the hydroxyl group and the other carboxylate group of the malate form the equatorial plane while the O atom of a nitrate and atom O4, shared with Cu1, occupy the Jahn–Teller axis. The two coordinated moieties are thus connected not only through the malate dianion as a bridge, but also through atom O4 of one carboxylate group of the malate ligand as another bridge directly coordinating to the two Cu2+ ions of the two moieties, forming an unsymmetric dinuclear copper complex. Therefore, the malate ligand plays the role of a double-bridging and tetradentate agent in this cation.

The bridging atom O4 links the two octahedra, with the Cu1—O4—Cu2 angle being 131.8 (1)°. As the result of this bridging action by atom O4, the two coordinated moieties are very close, with a Cu···Cu distance of 4.199 (1) Å. The two phen planes between the two moieties are roughly parallel, with a closest distance of 3.28 (1) Å, exhibiting an obvious intramolecular ππ stacking interaction.

Because of this double-bridging action, the structure of (I) obviously differs from that of the previously reported analogous complex, [Cu2(IDA)(phen)3](ClO4)2CH3OH (IDA is iminodiacetate; Wei et al., 2004), where the similar [Cu(phen)2] and [Cu(phen)] moieties are bridged by the IDA ligand, but the two O atoms of one carboxylate group of the IDA ligand are coordinated to the two Cu2+ ions, making these ions five-coordinated in a distorted trigonal bipyramid or square pyramid, and no intramolecular ππ stacking interaction exists in this compound. Thus, the structure of the cation of (I) is unusual.

Details of the hydrogen-bonding geometry and crystal packing of (I) are listed in Table 2 and illustrated in Figs. 1 and 2. Only O—H···O hydrogen bonds are observed in (I). In the crystal packing, four complex cations are stacked in each cell (Fig. 2), making the phenanthroline rings partly overlapped with distances in the range 3.36 (1)–3.47 (1) Å, presenting intermolecular ππ stacking interactions. Therefore, hydrogen bonds and both inter- and intramolecular ππ stacking interactions stabilize the crystal structure of (I).

Experimental top

All chemicals were of reagent grade and commercially available from the Beijing Chemical Reagents Company, China, and were used without further purification. Addition of malic acid (1 mmol) to an aqueous solution (10 ml) of Cu(NO)3·3H2O (1 mmol) gave a solution of pH 1.5. 1,10-Phenanthroline (1 mmol) was slowly added to the solution with continuously stirring. The mixture was then adjusted to pH 3.0 with a dilute solution of KOH and kept at room temperature. Several days later, blue block-shaped single crystals of (I) were isolated.

Refinement top

H atoms attached to O atoms were located in difference Fourier maps and refined with a global Uiso(H) value. The O—H distances are in the range 0.768–0.835 Å. H atoms attached to C atoms were placed in geometrically idealized positions, with Csp3—H = 0.97 and Csp2—H = 0.93 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). Atoms O9, O10, O11, O15 from the nitrate anion and the solvate water were found to be disordered and were modelled over two sets of positions using restraints on their anisotropic displacement parameters. The major and minor disorder components had refined occupancies of 64.9 (5)% and 35.1 (5)%, respectively.

Structure description top

Malate has been found to be a versatile ligand in coordination compounds as it can exhibit many types of coordination modes due to the presence of two carboxyl groups and one hydroxyl group. In some mononuclear complexes, e.g. Na3[WO2H(S-mal)2] (Zhou et al., 2001) and M3[MoO2H(S-mal)2]·H2O (M is K or Na; Zhou et al., 2002), as well as in binuclear complexes such as K2[VO(O2)(C4H4O5)]2·2H2O (Justino et al., 2003) and Cs2[{VO2(mal)}2]·2H2O (Biagioli et al., 2000), the malate anion acts as a bidentate ligand, coordinating to the metal through two O atoms from the hydroxyl group and the adjacent carboxylate group. In some binuclear complexes, such as Mn2[(C4H4O5)(H2O)2]2·2H2O (Liu et al., 2004), [Zn(Hmal)(1,10-phen)(H2O)]n, [Cu(Hmal)(2,20-bipy)]n.3nH2O (He et al., 2004) or (NH4)2[VO(O2)(C4H4O5)]2·2H2O (Djordjevic et al., 1995), the malate anion is a tridentate ligand, coordinating to the metal ion through the hydroxyl O atom and two terminal carboxylate O atoms. In the trinuclear complex [CuI/CuII2(mal)(SO4)(bpy)2·H2O]n (Lah et al., 2003), the malate anion connects the two crystallographically independent CuII ions by monodentate coordination of the two terminal carboxylate groups and through the hydroxyl O atom, which serves as a bridge between the two metal centres. Here, we report the crystal structure of (I), in which the malate ligand acts as a double bridging and tetradentate agent.

Some features of the molecular geometry of (I) are listed in Table 1 and the molecular conformation is illustrated in Fig. 1. The asymmetric unit of (I) consists of a [Cu2(phen)3(malate)(NO3)] cation, a nitrate anion and four water molecules. In the cation, the coordination geometries around atoms Cu1 and Cu2 can be described as distorted octahedra with obvious Jahn–Teller distortion. Atom Cu1 is coordinated by four N atoms from two phen ligands and two O atoms from the same carboxylate group of the malate ligand, with atoms N1, N2, N3 and O4 in equatorial positions and N4 and O5 at the Jahn–Teller axis. Atom Cu2 is coordinated by two N atoms from the third phen ligand and four O atoms, of which the N atoms and the two O atoms from the hydroxyl group and the other carboxylate group of the malate form the equatorial plane while the O atom of a nitrate and atom O4, shared with Cu1, occupy the Jahn–Teller axis. The two coordinated moieties are thus connected not only through the malate dianion as a bridge, but also through atom O4 of one carboxylate group of the malate ligand as another bridge directly coordinating to the two Cu2+ ions of the two moieties, forming an unsymmetric dinuclear copper complex. Therefore, the malate ligand plays the role of a double-bridging and tetradentate agent in this cation.

The bridging atom O4 links the two octahedra, with the Cu1—O4—Cu2 angle being 131.8 (1)°. As the result of this bridging action by atom O4, the two coordinated moieties are very close, with a Cu···Cu distance of 4.199 (1) Å. The two phen planes between the two moieties are roughly parallel, with a closest distance of 3.28 (1) Å, exhibiting an obvious intramolecular ππ stacking interaction.

Because of this double-bridging action, the structure of (I) obviously differs from that of the previously reported analogous complex, [Cu2(IDA)(phen)3](ClO4)2CH3OH (IDA is iminodiacetate; Wei et al., 2004), where the similar [Cu(phen)2] and [Cu(phen)] moieties are bridged by the IDA ligand, but the two O atoms of one carboxylate group of the IDA ligand are coordinated to the two Cu2+ ions, making these ions five-coordinated in a distorted trigonal bipyramid or square pyramid, and no intramolecular ππ stacking interaction exists in this compound. Thus, the structure of the cation of (I) is unusual.

Details of the hydrogen-bonding geometry and crystal packing of (I) are listed in Table 2 and illustrated in Figs. 1 and 2. Only O—H···O hydrogen bonds are observed in (I). In the crystal packing, four complex cations are stacked in each cell (Fig. 2), making the phenanthroline rings partly overlapped with distances in the range 3.36 (1)–3.47 (1) Å, presenting intermolecular ππ stacking interactions. Therefore, hydrogen bonds and both inter- and intramolecular ππ stacking interactions stabilize the crystal structure of (I).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1999); software used to prepare material for publication: SHELXTL/PC.

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-labelling scheme and with displacement ellipsoids drawn at the 20% probability level. Hydrogen bonds are shown as dashed lines. The minor disorder components and H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Hydrogen bonds (dashed lines) and ππ stacking interactions in (I). [Symmetry codes: (i) x, 3/2 - y, 1/2 + z; (ii) 1 - x, -1/2 + y, 1/2 - z; (iii) 1 - x, 1 - y, 1 - z.]
µ-2-hydroxybutanedioato-1κ2O4,O4':2κ2O2,O2-nitrato-2κO- tris(1,10-phenanthroline)-1κ4N,N';2κ2N,N'-dicopper(II) nitrate tetrahydrate top
Crystal data top
[Cu2(C4H3O5)(C12H8N2)3(NO3)](NO3)·4H2OF(000) = 2040
Mr = 995.85Dx = 1.603 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3837 reflections
a = 12.448 (3) Åθ = 2.0–23.7°
b = 14.878 (4) ŵ = 1.11 mm1
c = 22.483 (6) ÅT = 298 K
β = 97.655 (5)°Block, blue
V = 4127.1 (19) Å30.15 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
7256 independent reflections
Radiation source: fine-focus sealed tube4946 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1414
Tmin = 0.851, Tmax = 0.897k = 1713
20979 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: difmap (water O-H) and geom (others)
wR(F2) = 0.137H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0837P)2]
where P = (Fo2 + 2Fc2)/3
7256 reflections(Δ/σ)max = 0.001
623 parametersΔρmax = 0.88 e Å3
67 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Cu2(C4H3O5)(C12H8N2)3(NO3)](NO3)·4H2OV = 4127.1 (19) Å3
Mr = 995.85Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.448 (3) ŵ = 1.11 mm1
b = 14.878 (4) ÅT = 298 K
c = 22.483 (6) Å0.15 × 0.12 × 0.10 mm
β = 97.655 (5)°
Data collection top
Bruker SMART 1K CCD area-detector
diffractometer
7256 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
4946 reflections with I > 2σ(I)
Tmin = 0.851, Tmax = 0.897Rint = 0.036
20979 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04967 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 0.95Δρmax = 0.88 e Å3
7256 reflectionsΔρmin = 0.33 e Å3
623 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.26891 (4)0.77180 (3)0.06025 (2)0.04803 (17)
Cu20.33851 (4)0.56518 (4)0.18676 (2)0.05783 (19)
N10.4188 (3)0.7846 (2)0.03826 (14)0.0502 (8)
N20.2395 (3)0.8732 (2)0.00208 (14)0.0496 (8)
N30.1174 (2)0.7660 (2)0.08023 (14)0.0472 (8)
N40.2902 (3)0.8387 (2)0.14685 (14)0.0504 (8)
N50.4019 (3)0.6504 (2)0.25032 (14)0.0515 (8)
N60.2006 (3)0.5996 (2)0.21593 (14)0.0521 (8)
N70.3161 (3)0.3774 (3)0.27150 (18)0.0653 (10)
N80.1541 (5)0.1159 (4)0.0993 (3)0.132 (2)
O10.4740 (2)0.53914 (19)0.15952 (12)0.0574 (7)
O20.5455 (3)0.4773 (2)0.08528 (14)0.0868 (10)
O30.2807 (2)0.46947 (19)0.13151 (12)0.0658 (8)
H3A0.27600.42060.14830.099*
O40.3013 (2)0.64122 (17)0.08438 (12)0.0537 (7)
O50.2297 (2)0.6350 (2)0.01031 (12)0.0656 (8)
O60.3646 (3)0.4493 (2)0.26914 (15)0.0878 (11)
O70.2519 (3)0.3521 (3)0.22784 (19)0.1112 (14)
O80.3338 (3)0.3280 (2)0.31584 (16)0.0992 (12)
O120.2397 (3)0.1527 (2)0.25610 (17)0.0986 (11)
H12A0.23120.19590.27850.148*
H12B0.25980.17350.22520.148*
O130.7305 (3)0.5859 (3)0.12647 (16)0.1046 (13)
H13A0.68170.55410.10810.157*
H13B0.71730.58680.16140.157*
O140.8978 (4)0.4685 (3)0.09737 (19)0.1372 (17)
H14A0.87420.49610.12470.206*
H14B0.84660.44760.07460.206*
O9A0.1680 (15)0.0423 (7)0.1233 (6)0.275 (7)0.649 (7)
O9B0.1209 (14)0.0369 (8)0.0810 (11)0.205 (10)0.351 (7)
O10A0.1195 (8)0.1251 (7)0.0460 (3)0.171 (4)0.649 (7)
O10B0.0835 (10)0.1778 (8)0.0944 (8)0.152 (6)0.351 (7)
O11A0.1849 (12)0.1882 (7)0.1272 (5)0.235 (6)0.649 (7)
O11B0.2388 (8)0.1190 (11)0.1335 (5)0.120 (5)0.351 (7)
O15A0.1286 (8)0.3490 (7)0.0934 (4)0.196 (5)0.649 (7)
H51A0.08460.30800.09650.294*
H52A0.10170.39540.08950.294*
O15B0.0492 (10)0.4550 (8)0.0435 (5)0.159 (7)0.351 (7)
C10.5075 (3)0.7389 (3)0.0601 (2)0.0644 (12)
H10.50280.69610.08980.077*
C20.6063 (4)0.7533 (3)0.0399 (2)0.0722 (13)
H20.66640.71970.05570.087*
C30.6160 (3)0.8165 (3)0.0031 (2)0.0665 (12)
H30.68230.82580.01690.080*
C40.5248 (3)0.8671 (3)0.02619 (17)0.0548 (10)
C50.4282 (3)0.8473 (3)0.00378 (16)0.0487 (9)
C60.3307 (3)0.8961 (3)0.02584 (16)0.0484 (9)
C70.5254 (4)0.9350 (3)0.0707 (2)0.0667 (12)
H70.58990.94860.08550.080*
C80.4346 (4)0.9799 (3)0.0919 (2)0.0686 (13)
H80.43721.02360.12120.082*
C90.3340 (4)0.9615 (3)0.06999 (19)0.0571 (11)
C100.2362 (4)1.0043 (3)0.0909 (2)0.0731 (13)
H100.23341.04780.12070.088*
C110.1448 (4)0.9813 (3)0.0669 (2)0.0778 (14)
H110.07961.00980.08030.093*
C120.1483 (4)0.9155 (3)0.0225 (2)0.0621 (11)
H120.08510.90100.00690.075*
C130.0330 (3)0.7275 (3)0.0478 (2)0.0585 (11)
H130.04310.70030.01180.070*
C140.0688 (4)0.7261 (3)0.0652 (2)0.0726 (13)
H140.12540.69710.04160.087*
C150.0864 (4)0.7672 (3)0.1170 (2)0.0709 (13)
H150.15540.76720.12860.085*
C160.0002 (3)0.8097 (3)0.15292 (19)0.0568 (11)
C170.1023 (3)0.8067 (2)0.13273 (17)0.0457 (9)
C180.1938 (3)0.8456 (2)0.16808 (17)0.0490 (9)
C190.0088 (4)0.8527 (3)0.2097 (2)0.0735 (13)
H190.07570.85490.22370.088*
C200.0772 (4)0.8890 (3)0.2421 (2)0.0742 (14)
H200.06920.91610.27860.089*
C210.1797 (4)0.8876 (3)0.22288 (19)0.0593 (11)
C220.2739 (5)0.9248 (3)0.2555 (2)0.0757 (14)
H220.27020.95260.29220.091*
C230.3689 (4)0.9201 (3)0.2335 (2)0.0750 (14)
H230.43030.94640.25460.090*
C240.3761 (4)0.8757 (3)0.17884 (19)0.0639 (12)
H240.44300.87220.16480.077*
C250.5041 (3)0.6752 (3)0.26621 (19)0.0640 (12)
H250.55670.65480.24370.077*
C260.5352 (4)0.7303 (3)0.3150 (2)0.0704 (13)
H260.60730.74740.32440.085*
C270.4603 (4)0.7592 (3)0.3489 (2)0.0644 (12)
H270.48110.79600.38190.077*
C280.3513 (4)0.7341 (3)0.33476 (17)0.0541 (10)
C290.3265 (3)0.6794 (2)0.28444 (16)0.0453 (9)
C300.2187 (3)0.6518 (2)0.26627 (16)0.0456 (9)
C310.2661 (4)0.7599 (3)0.36729 (19)0.0669 (13)
H310.28140.79600.40110.080*
C320.1641 (4)0.7330 (3)0.3500 (2)0.0682 (13)
H320.11000.75050.37240.082*
C330.1364 (3)0.6784 (3)0.29836 (19)0.0555 (10)
C340.0307 (4)0.6492 (3)0.2762 (2)0.0711 (13)
H340.02710.66410.29650.085*
C350.0134 (4)0.5999 (3)0.2254 (2)0.0711 (13)
H350.05670.58270.21010.085*
C360.0997 (3)0.5748 (3)0.1963 (2)0.0645 (12)
H360.08670.53960.16190.077*
C370.4691 (4)0.4941 (3)0.11147 (19)0.0588 (11)
C380.3565 (4)0.4566 (3)0.0879 (2)0.0684 (13)
H380.36340.39200.08060.082*
C390.3063 (4)0.5000 (3)0.03117 (18)0.0673 (12)
H39A0.24170.46640.01590.081*
H39B0.35650.49480.00180.081*
C400.2752 (3)0.5984 (3)0.03554 (19)0.0532 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0419 (3)0.0545 (3)0.0476 (3)0.0057 (2)0.0057 (2)0.0058 (2)
Cu20.0454 (3)0.0758 (4)0.0528 (3)0.0018 (2)0.0084 (2)0.0173 (3)
N10.0435 (19)0.056 (2)0.0506 (19)0.0068 (15)0.0037 (15)0.0063 (16)
N20.048 (2)0.049 (2)0.0518 (19)0.0025 (16)0.0059 (16)0.0005 (15)
N30.0403 (18)0.0521 (19)0.0488 (19)0.0042 (15)0.0051 (15)0.0010 (15)
N40.051 (2)0.051 (2)0.0470 (18)0.0119 (16)0.0001 (16)0.0020 (15)
N50.0440 (19)0.060 (2)0.0497 (19)0.0066 (16)0.0041 (15)0.0060 (16)
N60.0432 (19)0.056 (2)0.057 (2)0.0014 (15)0.0061 (16)0.0049 (17)
N70.068 (3)0.067 (3)0.064 (3)0.003 (2)0.022 (2)0.004 (2)
N80.125 (5)0.150 (6)0.127 (5)0.018 (5)0.043 (4)0.004 (5)
O10.0483 (16)0.074 (2)0.0494 (16)0.0076 (14)0.0059 (13)0.0077 (14)
O20.077 (2)0.119 (3)0.070 (2)0.013 (2)0.0291 (19)0.0203 (19)
O30.089 (2)0.0599 (18)0.0520 (17)0.0195 (16)0.0198 (16)0.0039 (14)
O40.0565 (17)0.0488 (16)0.0536 (17)0.0053 (13)0.0003 (13)0.0042 (13)
O50.076 (2)0.071 (2)0.0492 (17)0.0078 (16)0.0048 (15)0.0145 (15)
O60.110 (3)0.073 (2)0.075 (2)0.016 (2)0.007 (2)0.0049 (18)
O70.105 (3)0.113 (3)0.108 (3)0.036 (2)0.014 (3)0.017 (2)
O80.144 (4)0.077 (2)0.080 (2)0.001 (2)0.028 (2)0.017 (2)
O120.071 (2)0.105 (3)0.121 (3)0.006 (2)0.017 (2)0.011 (2)
O130.107 (3)0.126 (3)0.080 (2)0.025 (2)0.010 (2)0.015 (2)
O140.150 (4)0.132 (4)0.115 (3)0.021 (3)0.037 (3)0.001 (3)
O9A0.303 (11)0.251 (10)0.268 (11)0.065 (9)0.026 (9)0.066 (8)
O9B0.195 (13)0.212 (13)0.201 (13)0.033 (9)0.001 (9)0.008 (9)
O10A0.180 (7)0.208 (8)0.114 (6)0.019 (6)0.020 (5)0.035 (6)
O10B0.117 (9)0.168 (10)0.174 (10)0.030 (8)0.027 (8)0.008 (8)
O11A0.228 (9)0.240 (9)0.220 (9)0.011 (8)0.036 (7)0.049 (8)
O11B0.077 (7)0.169 (10)0.107 (7)0.006 (7)0.012 (6)0.023 (7)
O15A0.212 (8)0.197 (7)0.168 (7)0.127 (6)0.015 (6)0.014 (5)
O15B0.130 (9)0.169 (10)0.186 (10)0.035 (7)0.044 (8)0.027 (8)
C10.047 (3)0.076 (3)0.068 (3)0.003 (2)0.001 (2)0.013 (2)
C20.044 (3)0.090 (4)0.081 (3)0.003 (2)0.002 (2)0.006 (3)
C30.049 (3)0.081 (3)0.072 (3)0.016 (2)0.016 (2)0.010 (3)
C40.055 (3)0.063 (3)0.048 (2)0.015 (2)0.0126 (19)0.006 (2)
C50.053 (2)0.049 (2)0.043 (2)0.0107 (19)0.0044 (18)0.0030 (18)
C60.057 (3)0.045 (2)0.044 (2)0.0104 (19)0.0082 (19)0.0034 (18)
C70.069 (3)0.074 (3)0.061 (3)0.023 (3)0.022 (2)0.000 (2)
C80.086 (4)0.060 (3)0.062 (3)0.021 (3)0.018 (3)0.008 (2)
C90.068 (3)0.048 (2)0.056 (3)0.008 (2)0.010 (2)0.000 (2)
C100.091 (4)0.058 (3)0.071 (3)0.002 (3)0.012 (3)0.018 (2)
C110.086 (4)0.062 (3)0.084 (3)0.018 (3)0.004 (3)0.011 (3)
C120.058 (3)0.060 (3)0.069 (3)0.005 (2)0.012 (2)0.007 (2)
C130.043 (2)0.072 (3)0.059 (3)0.009 (2)0.004 (2)0.007 (2)
C140.048 (3)0.091 (4)0.077 (3)0.010 (2)0.000 (2)0.007 (3)
C150.037 (2)0.083 (3)0.093 (4)0.005 (2)0.009 (2)0.015 (3)
C160.058 (3)0.051 (2)0.064 (3)0.013 (2)0.016 (2)0.011 (2)
C170.049 (2)0.041 (2)0.047 (2)0.0010 (17)0.0069 (18)0.0084 (18)
C180.055 (3)0.042 (2)0.049 (2)0.0030 (18)0.0055 (19)0.0042 (18)
C190.075 (3)0.070 (3)0.080 (3)0.023 (3)0.029 (3)0.004 (3)
C200.096 (4)0.066 (3)0.065 (3)0.023 (3)0.023 (3)0.005 (2)
C210.080 (3)0.041 (2)0.056 (3)0.003 (2)0.005 (2)0.000 (2)
C220.107 (4)0.062 (3)0.056 (3)0.009 (3)0.004 (3)0.010 (2)
C230.093 (4)0.059 (3)0.065 (3)0.024 (3)0.017 (3)0.003 (2)
C240.063 (3)0.065 (3)0.060 (3)0.019 (2)0.007 (2)0.008 (2)
C250.044 (2)0.085 (3)0.063 (3)0.006 (2)0.005 (2)0.002 (2)
C260.056 (3)0.083 (3)0.069 (3)0.016 (2)0.005 (2)0.002 (3)
C270.075 (3)0.055 (3)0.058 (3)0.011 (2)0.008 (2)0.005 (2)
C280.068 (3)0.050 (2)0.043 (2)0.005 (2)0.003 (2)0.0009 (19)
C290.049 (2)0.045 (2)0.042 (2)0.0010 (18)0.0059 (18)0.0027 (17)
C300.046 (2)0.045 (2)0.047 (2)0.0019 (17)0.0110 (18)0.0011 (18)
C310.088 (4)0.064 (3)0.048 (3)0.012 (3)0.006 (2)0.005 (2)
C320.080 (4)0.067 (3)0.063 (3)0.019 (3)0.028 (3)0.005 (2)
C330.055 (3)0.054 (3)0.059 (3)0.008 (2)0.015 (2)0.007 (2)
C340.053 (3)0.069 (3)0.096 (4)0.009 (2)0.028 (3)0.011 (3)
C350.045 (3)0.061 (3)0.106 (4)0.005 (2)0.006 (3)0.001 (3)
C360.050 (3)0.064 (3)0.077 (3)0.003 (2)0.001 (2)0.010 (2)
C370.062 (3)0.059 (3)0.053 (3)0.013 (2)0.001 (2)0.004 (2)
C380.083 (3)0.051 (3)0.067 (3)0.009 (2)0.004 (3)0.006 (2)
C390.081 (3)0.062 (3)0.055 (3)0.006 (2)0.003 (2)0.006 (2)
C400.049 (2)0.052 (3)0.059 (3)0.0023 (19)0.011 (2)0.006 (2)
Geometric parameters (Å, º) top
Cu1—N31.998 (3)C6—C91.394 (5)
Cu1—N12.002 (3)C7—C81.344 (6)
Cu1—O42.043 (3)C7—H70.9300
Cu1—N22.059 (3)C8—C91.432 (6)
Cu1—N42.171 (3)C8—H80.9300
Cu1—O52.587 (3)C9—C101.398 (6)
Cu1—Cu24.199 (1)C10—C111.366 (7)
Cu2—O11.909 (3)C10—H100.9300
Cu2—O31.962 (3)C11—C121.393 (6)
Cu2—N61.985 (3)C11—H110.9300
Cu2—N51.993 (3)C12—H120.9300
Cu2—O62.519 (3)C13—C141.375 (6)
Cu2—O42.551 (3)C13—H130.9300
N1—C11.333 (5)C14—C151.359 (7)
N1—C51.344 (5)C14—H140.9300
N2—C121.326 (5)C15—C161.405 (6)
N2—C61.361 (5)C15—H150.9300
N3—C131.326 (5)C16—C171.410 (5)
N3—C171.362 (5)C16—C191.444 (6)
N4—C241.327 (5)C17—C181.422 (5)
N4—C181.353 (5)C18—C211.414 (6)
N5—C251.327 (5)C19—C201.328 (7)
N5—C291.359 (5)C19—H190.9300
N6—C361.326 (5)C20—C211.401 (6)
N6—C301.367 (5)C20—H200.9300
N7—O61.233 (5)C21—C221.410 (6)
N7—O81.235 (5)C22—C231.342 (7)
N7—O71.239 (5)C22—H220.9300
N8—O11B1.220 (7)C23—C241.410 (6)
N8—O9A1.222 (7)C23—H230.9300
N8—O10A1.226 (6)C24—H240.9300
N8—O10B1.268 (7)C25—C261.383 (6)
N8—O11A1.278 (7)C25—H250.9300
N8—O9B1.295 (7)C26—C271.351 (6)
O1—C371.265 (5)C26—H260.9300
O2—C371.210 (5)C27—C281.401 (6)
O3—C381.463 (5)C27—H270.9300
O3—H3A0.8250C28—C291.395 (5)
O4—C401.274 (5)C28—C311.419 (6)
O12—H12A0.8320C29—C301.411 (5)
O12—H12B0.8295C30—C331.387 (5)
O13—H13A0.8349C31—C321.339 (7)
O13—H13B0.8227C31—H310.9300
O14—H14A0.8248C32—C331.421 (6)
O14—H14B0.8234C32—H320.9300
O15A—H51A0.8290C33—C341.412 (6)
O15A—H52A0.7676C34—C351.349 (6)
O5—C401.235 (4)C34—H340.9300
C1—C21.383 (6)C35—C361.383 (6)
C1—H10.9300C35—H350.9300
C2—C31.366 (6)C36—H360.9300
C2—H20.9300C37—C381.536 (6)
C3—C41.404 (6)C38—C391.490 (6)
C3—H30.9300C38—H380.9800
C4—C51.396 (5)C39—C401.521 (6)
C4—C71.423 (6)C39—H39A0.9700
C5—C61.445 (5)C39—H39B0.9700
N3—Cu1—N1176.73 (13)C6—C9—C10116.7 (4)
N3—Cu1—O493.35 (12)C6—C9—C8119.2 (4)
N1—Cu1—O489.90 (12)C10—C9—C8124.1 (4)
N3—Cu1—N295.57 (12)C11—C10—C9119.2 (4)
N1—Cu1—N281.33 (13)C11—C10—H10120.4
O4—Cu1—N2152.72 (11)C9—C10—H10120.4
N3—Cu1—N479.86 (12)C10—C11—C12120.7 (5)
N1—Cu1—N499.89 (12)C10—C11—H11119.7
O4—Cu1—N4101.64 (11)C12—C11—H11119.7
N2—Cu1—N4105.28 (12)N2—C12—C11121.7 (4)
N3—Cu1—O589.86 (11)N2—C12—H12119.2
N1—Cu1—O591.66 (11)C11—C12—H12119.2
O4—Cu1—O555.18 (10)N3—C13—C14122.9 (4)
N2—Cu1—O599.06 (11)N3—C13—H13118.5
N4—Cu1—O5154.32 (10)C14—C13—H13118.5
O1—Cu2—O385.12 (12)C15—C14—C13119.7 (4)
O1—Cu2—N6176.67 (13)C15—C14—H14120.1
O3—Cu2—N697.79 (13)C13—C14—H14120.1
O1—Cu2—N594.41 (12)C14—C15—C16119.8 (4)
O3—Cu2—N5172.92 (13)C14—C15—H15120.1
N6—Cu2—N582.90 (13)C16—C15—H15120.1
O1—Cu2—O693.68 (12)C15—C16—C17117.1 (4)
O3—Cu2—O688.25 (12)C15—C16—C19124.5 (4)
N6—Cu2—O688.04 (13)C17—C16—C19118.3 (4)
N5—Cu2—O684.73 (12)N3—C17—C16121.9 (3)
O1—Cu2—O482.09 (10)N3—C17—C18118.2 (3)
O3—Cu2—O475.14 (10)C16—C17—C18120.0 (4)
N6—Cu2—O497.06 (11)N4—C18—C21124.1 (4)
N5—Cu2—O4111.82 (11)N4—C18—C17117.0 (3)
O6—Cu2—O4163.11 (10)C21—C18—C17118.9 (4)
C1—N1—C5117.8 (4)C20—C19—C16121.1 (5)
C1—N1—Cu1127.9 (3)C20—C19—H19119.4
C5—N1—Cu1114.3 (3)C16—C19—H19119.4
C12—N2—C6117.7 (3)C19—C20—C21121.6 (4)
C12—N2—Cu1130.6 (3)C19—C20—H20119.2
C6—N2—Cu1111.7 (2)C21—C20—H20119.2
C13—N3—C17118.5 (3)C20—C21—C22124.2 (4)
C13—N3—Cu1126.7 (3)C20—C21—C18120.0 (4)
C17—N3—Cu1114.8 (2)C22—C21—C18115.8 (4)
C24—N4—C18117.8 (4)C23—C22—C21120.1 (4)
C24—N4—Cu1132.0 (3)C23—C22—H22120.0
C18—N4—Cu1110.1 (2)C21—C22—H22120.0
C25—N5—C29118.0 (3)C22—C23—C24120.4 (4)
C25—N5—Cu2130.1 (3)C22—C23—H23119.8
C29—N5—Cu2111.7 (2)C24—C23—H23119.8
C36—N6—C30118.5 (4)N4—C24—C23121.8 (4)
C36—N6—Cu2129.9 (3)N4—C24—H24119.1
C30—N6—Cu2111.5 (2)C23—C24—H24119.1
O6—N7—O8121.1 (4)N5—C25—C26122.3 (4)
O6—N7—O7119.8 (4)N5—C25—H25118.8
O8—N7—O7119.0 (4)C26—C25—H25118.8
O11B—N8—O9A72.4 (10)C27—C26—C25119.7 (4)
O11B—N8—O10A140.6 (10)C27—C26—H26120.2
O9A—N8—O10A122.8 (8)C25—C26—H26120.2
O11B—N8—O10B123.9 (8)C26—C27—C28120.4 (4)
O9A—N8—O10B138.2 (13)C26—C27—H27119.8
O10A—N8—O10B71.6 (9)C28—C27—H27119.8
O11B—N8—O11A58.8 (7)C29—C28—C27116.3 (4)
O9A—N8—O11A121.5 (8)C29—C28—C31118.4 (4)
O10A—N8—O11A115.3 (7)C27—C28—C31125.3 (4)
O10B—N8—O11A65.8 (8)N5—C29—C28123.2 (4)
O11B—N8—O9B116.6 (8)N5—C29—C30116.5 (3)
O9A—N8—O9B49.3 (9)C28—C29—C30120.3 (4)
O10A—N8—O9B74.6 (11)N6—C30—C33122.8 (4)
O10B—N8—O9B116.3 (8)N6—C30—C29116.8 (3)
O11A—N8—O9B169.2 (14)C33—C30—C29120.4 (4)
C37—O1—Cu2115.9 (3)C32—C31—C28121.0 (4)
C38—O3—Cu2107.7 (2)C32—C31—H31119.5
C38—O3—H3A106.5C28—C31—H31119.5
Cu2—O3—H3A113.0C31—C32—C33121.7 (4)
C40—O4—Cu1103.2 (2)C31—C32—H32119.2
C40—O4—Cu2123.4 (2)C33—C32—H32119.2
Cu1—O4—Cu2131.84 (12)C30—C33—C34116.5 (4)
N7—O6—Cu2127.5 (3)C30—C33—C32118.2 (4)
H12A—O12—H12B107.2C34—C33—C32125.3 (4)
H13A—O13—H13B104.8C35—C34—C33120.2 (4)
H14A—O14—H14B109.2C35—C34—H34119.9
H51A—O15A—H52A112.8C33—C34—H34119.9
C40—O5—Cu178.9 (2)C34—C35—C36120.0 (4)
N1—C1—C2121.9 (4)C34—C35—H35120.0
N1—C1—H1119.0C36—C35—H35120.0
C2—C1—H1119.0N6—C36—C35122.0 (4)
C3—C2—C1120.4 (4)N6—C36—H36119.0
C3—C2—H2119.8C35—C36—H36119.0
C1—C2—H2119.8O2—C37—O1125.0 (4)
C2—C3—C4119.2 (4)O2—C37—C38119.8 (4)
C2—C3—H3120.4O1—C37—C38115.2 (4)
C4—C3—H3120.4O3—C38—C39106.4 (4)
C5—C4—C3116.5 (4)O3—C38—C37111.2 (4)
C5—C4—C7119.4 (4)C39—C38—C37113.4 (4)
C3—C4—C7124.2 (4)O3—C38—H38108.6
N1—C5—C4124.1 (4)C39—C38—H38108.6
N1—C5—C6116.3 (3)C37—C38—H38108.6
C4—C5—C6119.6 (4)C38—C39—C40116.3 (4)
N2—C6—C9124.0 (4)C38—C39—H39A108.2
N2—C6—C5116.5 (3)C40—C39—H39A108.2
C9—C6—C5119.5 (4)C38—C39—H39B108.2
C8—C7—C4121.2 (4)C40—C39—H39B108.2
C8—C7—H7119.4H39A—C39—H39B107.4
C4—C7—H7119.4O5—C40—O4122.3 (4)
C7—C8—C9121.1 (4)O5—C40—C39117.6 (4)
C7—C8—H8119.4O4—C40—C39120.0 (4)
C9—C8—H8119.4
O4—Cu1—N1—C126.6 (4)N1—C5—C6—N20.4 (5)
N2—Cu1—N1—C1179.4 (4)C4—C5—C6—N2180.0 (3)
N4—Cu1—N1—C175.2 (4)N1—C5—C6—C9179.3 (3)
O5—Cu1—N1—C181.7 (4)C4—C5—C6—C91.1 (5)
Cu2—Cu1—N1—C10.5 (4)C5—C4—C7—C80.5 (6)
O4—Cu1—N1—C5153.4 (3)C3—C4—C7—C8178.6 (4)
N2—Cu1—N1—C50.7 (3)C4—C7—C8—C90.5 (7)
N4—Cu1—N1—C5104.8 (3)N2—C6—C9—C100.9 (6)
O5—Cu1—N1—C598.2 (3)C5—C6—C9—C10177.9 (4)
N3—Cu1—N2—C122.6 (4)N2—C6—C9—C8179.8 (4)
N1—Cu1—N2—C12178.4 (4)C5—C6—C9—C81.0 (6)
O4—Cu1—N2—C12105.9 (4)C7—C8—C9—C60.2 (6)
N4—Cu1—N2—C1283.6 (4)C7—C8—C9—C10178.6 (4)
O5—Cu1—N2—C1288.1 (4)C6—C9—C10—C110.9 (7)
N3—Cu1—N2—C6179.4 (2)C8—C9—C10—C11179.8 (4)
N1—Cu1—N2—C60.5 (2)C9—C10—C11—C120.5 (7)
O4—Cu1—N2—C672.1 (4)C6—N2—C12—C110.1 (6)
N4—Cu1—N2—C698.4 (3)Cu1—N2—C12—C11177.8 (3)
O5—Cu1—N2—C689.8 (2)C10—C11—C12—N20.0 (7)
O4—Cu1—N3—C1376.6 (3)C17—N3—C13—C140.7 (6)
N2—Cu1—N3—C1377.6 (3)Cu1—N3—C13—C14179.5 (3)
N4—Cu1—N3—C13177.8 (4)N3—C13—C14—C151.5 (7)
O5—Cu1—N3—C1321.5 (3)C13—C14—C15—C161.0 (7)
O4—Cu1—N3—C17103.6 (3)C14—C15—C16—C170.3 (6)
N2—Cu1—N3—C17102.2 (3)C14—C15—C16—C19177.8 (4)
N4—Cu1—N3—C172.4 (2)C13—N3—C17—C160.7 (5)
O5—Cu1—N3—C17158.7 (3)Cu1—N3—C17—C16179.2 (3)
N3—Cu1—N4—C24178.7 (4)C13—N3—C17—C18178.2 (4)
N1—Cu1—N4—C242.0 (4)Cu1—N3—C17—C182.0 (4)
O4—Cu1—N4—C2489.9 (4)C15—C16—C17—N31.1 (6)
N2—Cu1—N4—C2485.7 (4)C19—C16—C17—N3178.8 (4)
O5—Cu1—N4—C24113.5 (4)C15—C16—C17—C18177.7 (4)
N3—Cu1—N4—C182.5 (2)C19—C16—C17—C180.0 (5)
N1—Cu1—N4—C18174.2 (2)C24—N4—C18—C211.7 (6)
O4—Cu1—N4—C1893.8 (2)Cu1—N4—C18—C21178.5 (3)
N2—Cu1—N4—C1890.6 (2)C24—N4—C18—C17179.0 (3)
O5—Cu1—N4—C1870.3 (4)Cu1—N4—C18—C172.2 (4)
O1—Cu2—N5—C251.3 (4)N3—C17—C18—N40.3 (5)
N6—Cu2—N5—C25179.3 (4)C16—C17—C18—N4178.5 (3)
O6—Cu2—N5—C2592.0 (4)N3—C17—C18—C21179.6 (3)
O4—Cu2—N5—C2584.6 (4)C16—C17—C18—C210.8 (5)
O1—Cu2—N5—C29175.0 (3)C15—C16—C19—C20177.8 (4)
N6—Cu2—N5—C296.9 (3)C17—C16—C19—C200.3 (6)
O6—Cu2—N5—C2981.7 (3)C16—C19—C20—C210.2 (7)
O4—Cu2—N5—C29101.7 (2)C19—C20—C21—C22179.8 (4)
O3—Cu2—N6—C369.6 (4)C19—C20—C21—C181.0 (7)
N5—Cu2—N6—C36177.6 (4)N4—C18—C21—C20178.0 (4)
O6—Cu2—N6—C3697.5 (4)C17—C18—C21—C201.3 (6)
O4—Cu2—N6—C3666.3 (4)N4—C18—C21—C220.9 (6)
O3—Cu2—N6—C30165.7 (3)C17—C18—C21—C22179.9 (4)
N5—Cu2—N6—C307.2 (3)C20—C21—C22—C23179.8 (4)
O6—Cu2—N6—C3077.7 (3)C18—C21—C22—C231.0 (6)
O4—Cu2—N6—C30118.5 (3)C21—C22—C23—C242.0 (7)
O3—Cu2—O1—C3716.6 (3)C18—N4—C24—C230.6 (6)
N5—Cu2—O1—C37170.5 (3)Cu1—N4—C24—C23176.6 (3)
O6—Cu2—O1—C37104.5 (3)C22—C23—C24—N41.2 (7)
O4—Cu2—O1—C3759.1 (3)C29—N5—C25—C261.3 (6)
O1—Cu2—O3—C3819.8 (2)Cu2—N5—C25—C26174.7 (3)
N6—Cu2—O3—C38158.6 (2)N5—C25—C26—C271.3 (7)
O6—Cu2—O3—C38113.6 (3)C25—C26—C27—C280.3 (7)
O4—Cu2—O3—C3863.3 (2)C26—C27—C28—C290.5 (6)
N3—Cu1—O4—C4091.1 (2)C26—C27—C28—C31179.6 (4)
N1—Cu1—O4—C4088.5 (2)C25—N5—C29—C280.5 (6)
N2—Cu1—O4—C4017.9 (4)Cu2—N5—C29—C28175.0 (3)
N4—Cu1—O4—C40171.5 (2)C25—N5—C29—C30180.0 (4)
O5—Cu1—O4—C403.6 (2)Cu2—N5—C29—C305.5 (4)
N3—Cu1—O4—Cu274.60 (17)C27—C28—C29—N50.4 (6)
N1—Cu1—O4—Cu2105.80 (17)C31—C28—C29—N5179.6 (4)
N2—Cu1—O4—Cu2176.40 (19)C27—C28—C29—C30179.1 (3)
N4—Cu1—O4—Cu25.73 (18)C31—C28—C29—C300.9 (6)
O5—Cu1—O4—Cu2162.1 (2)C36—N6—C30—C331.4 (6)
O1—Cu2—O4—C4078.3 (3)Cu2—N6—C30—C33174.4 (3)
O3—Cu2—O4—C408.7 (3)C36—N6—C30—C29177.8 (4)
N6—Cu2—O4—C40105.0 (3)Cu2—N6—C30—C296.4 (4)
N5—Cu2—O4—C40169.9 (3)N5—C29—C30—N60.6 (5)
O6—Cu2—O4—C401.9 (5)C28—C29—C30—N6178.9 (3)
O1—Cu2—O4—Cu1118.41 (17)N5—C29—C30—C33179.9 (3)
O3—Cu2—O4—Cu1154.56 (19)C28—C29—C30—C330.3 (6)
N6—Cu2—O4—Cu158.34 (18)C29—C28—C31—C320.5 (6)
N5—Cu2—O4—Cu126.8 (2)C27—C28—C31—C32179.5 (4)
O6—Cu2—O4—Cu1165.1 (3)C28—C31—C32—C330.5 (7)
O8—N7—O6—Cu2177.1 (3)N6—C30—C33—C340.5 (6)
O7—N7—O6—Cu26.0 (6)C29—C30—C33—C34178.7 (4)
O1—Cu2—O6—N7109.0 (4)N6—C30—C33—C32179.8 (4)
O3—Cu2—O6—N724.0 (4)C29—C30—C33—C320.6 (6)
N6—Cu2—O6—N773.9 (4)C31—C32—C33—C301.1 (6)
N5—Cu2—O6—N7156.9 (4)C31—C32—C33—C34178.2 (4)
O4—Cu2—O6—N734.2 (7)C30—C33—C34—C351.4 (6)
N3—Cu1—O5—C4097.9 (2)C32—C33—C34—C35177.8 (4)
N1—Cu1—O5—C4085.0 (2)C33—C34—C35—C362.5 (7)
O4—Cu1—O5—C403.7 (2)C30—N6—C36—C350.4 (6)
N2—Cu1—O5—C40166.5 (2)Cu2—N6—C36—C35174.5 (3)
N4—Cu1—O5—C4032.2 (4)C34—C35—C36—N61.5 (7)
Cu2—Cu1—O5—C4011.8 (2)Cu2—O1—C37—O2174.2 (4)
C5—N1—C1—C21.3 (6)Cu2—O1—C37—C388.3 (5)
Cu1—N1—C1—C2178.7 (3)Cu2—O3—C38—C39103.8 (3)
N1—C1—C2—C30.8 (7)Cu2—O3—C38—C3720.2 (4)
C1—C2—C3—C40.5 (7)O2—C37—C38—O3168.9 (4)
C2—C3—C4—C51.3 (6)O1—C37—C38—O38.8 (5)
C2—C3—C4—C7179.6 (4)O2—C37—C38—C3971.2 (5)
C1—N1—C5—C40.4 (6)O1—C37—C38—C39111.1 (4)
Cu1—N1—C5—C4179.5 (3)O3—C38—C39—C4055.5 (5)
C1—N1—C5—C6179.3 (3)C37—C38—C39—C4067.1 (5)
Cu1—N1—C5—C60.8 (4)Cu1—O5—C40—O45.8 (3)
C3—C4—C5—N10.9 (6)Cu1—O5—C40—C39170.4 (4)
C7—C4—C5—N1180.0 (4)Cu1—O4—C40—O57.4 (4)
C3—C4—C5—C6179.5 (3)Cu2—O4—C40—O5159.9 (3)
C7—C4—C5—C60.3 (6)Cu1—O4—C40—C39168.8 (3)
C12—N2—C6—C90.4 (6)Cu2—O4—C40—C3924.0 (5)
Cu1—N2—C6—C9178.6 (3)C38—C39—C40—O5177.3 (4)
C12—N2—C6—C5178.5 (3)C38—C39—C40—O46.3 (6)
Cu1—N2—C6—C50.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O70.832.112.841 (5)147
O12—H12A···O80.832.433.092 (5)137
O12—H12A···O70.832.623.043 (6)113
O12—H12B···O11A0.832.292.936 (13)136
O12—H12B···O11B0.832.202.801 (13)130
O13—H13A···O20.832.052.864 (5)164
O13—H13B···O12i0.822.102.799 (5)142
O14—H14A···O130.822.242.859 (6)133
O14—H14B···O5ii0.822.032.810 (5)157
O15A—H51A···O11A0.832.232.578 (16)105
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu2(C4H3O5)(C12H8N2)3(NO3)](NO3)·4H2O
Mr995.85
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.448 (3), 14.878 (4), 22.483 (6)
β (°) 97.655 (5)
V3)4127.1 (19)
Z4
Radiation typeMo Kα
µ (mm1)1.11
Crystal size (mm)0.15 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART 1K CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.851, 0.897
No. of measured, independent and
observed [I > 2σ(I)] reflections
20979, 7256, 4946
Rint0.036
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.137, 0.95
No. of reflections7256
No. of parameters623
No. of restraints67
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.88, 0.33

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Sheldrick, 1999), SHELXTL/PC.

Selected geometric parameters (Å, º) top
Cu1—N31.998 (3)Cu2—O11.909 (3)
Cu1—N12.002 (3)Cu2—O31.962 (3)
Cu1—O42.043 (3)Cu2—N61.985 (3)
Cu1—N22.059 (3)Cu2—N51.993 (3)
Cu1—N42.171 (3)Cu2—O62.519 (3)
Cu1—O52.587 (3)Cu2—O42.551 (3)
Cu1—Cu24.199 (1)
N3—Cu1—N1176.73 (13)O1—Cu2—N6176.67 (13)
N3—Cu1—O493.35 (12)O3—Cu2—N697.79 (13)
N1—Cu1—O489.90 (12)O1—Cu2—N594.41 (12)
N3—Cu1—N295.57 (12)O3—Cu2—N5172.92 (13)
N1—Cu1—N281.33 (13)N6—Cu2—N582.90 (13)
O4—Cu1—N2152.72 (11)O1—Cu2—O693.68 (12)
N3—Cu1—N479.86 (12)O3—Cu2—O688.25 (12)
N1—Cu1—N499.89 (12)N6—Cu2—O688.04 (13)
O4—Cu1—N4101.64 (11)N5—Cu2—O684.73 (12)
N2—Cu1—N4105.28 (12)O1—Cu2—O482.09 (10)
N3—Cu1—O589.86 (11)O3—Cu2—O475.14 (10)
N1—Cu1—O591.66 (11)N6—Cu2—O497.06 (11)
O4—Cu1—O555.18 (10)N5—Cu2—O4111.82 (11)
N2—Cu1—O599.06 (11)O6—Cu2—O4163.11 (10)
N4—Cu1—O5154.32 (10)Cu1—O4—Cu2131.84 (12)
O1—Cu2—O385.12 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O70.832.112.841 (5)147
O12—H12A···O80.832.433.092 (5)137
O12—H12A···O70.832.623.043 (6)113
O12—H12B···O11A0.832.292.936 (13)136
O12—H12B···O11B0.832.202.801 (13)130
O13—H13A···O20.832.052.864 (5)164
O13—H13B···O12i0.822.102.799 (5)142
O14—H14A···O130.822.242.859 (6)133
O14—H14B···O5ii0.822.032.810 (5)157
O15A—H51A···O11A0.832.232.578 (16)105
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds