Download citation
Download citation
link to html
In polymeric {[Eu(pzdc)(NO3)(phen)(H2O)]·H2O}n [pzdc is 2,3-pyrazine­di­carboxyl­ate (C6H2O4) and phen is 1,10-phenanthroline (C12H8N2)], each europium(III) ion is coordinated by seven O atoms (from three pzdc anions, a nitrate anion and a water mol­ecule) and the two N atoms of the phen ligand, resulting in a nine-coordinated europium(III) center with a distorted monocapped square-antiprismatic coordination polyhedron. Four pzdc anions bridge four europium(III) ions, forming a parallelogram unit, the four vertices of which are occupied by the four pzdc anions. Moreover, each parallelogram unit links six other adjacent parallelogram units, forming a two-dimensional network with disordered lattice water mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104005773/av1173sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104005773/av1173Isup2.hkl
Contains datablock I

CCDC reference: 237918

Comment top

In recent years, more and more attention has been focused on coordination polymers with multifunctional ligands, as the presence of different functional groups allows incorporation of interesting properties into the resulting coordination networks (Ayyappan, et al., 2001). Among the various organic ligands, 2,3-pyrazinedicarboxylic acid is a commonly used multifunctional ligand. Its complexes with d-block transition metals have been well studied; compounds that have been structurally documented include polymeric [Cu(pzdc)·HCl]x, [Cu(pzdc)(H2O)2]x.2xH2O, [Fe(pzdc)(H2O)2]x.2xH2O and [Mn(pzdc)(H2O)2]x.2xH2O (O'Connor et al., 1982; Mao et al., 1996a; Gao et al., 1999; Mao et al., 1996b). However, the lanthanide complexes of this ligand are almost structurally unexplored. In light of the fact that lanthanide and d-block transition metal ions differ in their coordination number, pzdc may coordinate with them in a different manner, so we selected the europium–pzdc–phen system in order to extend this research. In the title compound, [(pzdc)(NO3)(phen)(H2O)Eu]·H2O, (I), the europium(III) ion is linked to four different ligands.

In (I), each europium(III) ion coordinates to three O atoms from three carboxylate groups of three pzdc anions, with a typical Eu—O(carboxylate) distance range [2.331 (3)–2.398 (3) Å; Li et al., 2002), one water molecule, with a longer Eu—O distance [2.530 (4) Å], one heterocycle N atom, with an Eu—N distance of 2.597 (4) Å, and two N atoms of phen in a chelating fashion, with Eu—N distances of 2.570 (4) and 2.582 (4) Å, resulting in a distorted monocap square- antiprismatic coordination polyhedron (Fig. 1). The square plane formed by atoms O5, O6, N1 and N2, with a mean deviation of 0.2280 Å, is significantly distorted, but the mean deviation of the other square plane, containing atoms O1, N3, O3i and O4ii [symmetry codes: (i) −x + 1, y − 1/2, −z + 3/2; (ii) x, −y + 3/2, z − 1/2], is only 0.0849 Å, comparable with the deviations found in the Eu–phen analogue [Eu2(p-BDC)3(phen)2(H2O)2]n (p-BDC is 1,4-benzenedicarboxylate; Wang, et al., 2003). To complete the coordination environment of the europium(III) center, atom O1W is located on the cap. Obviously, the pzdc anion acts as a tetradentate ligand, bridging three europium(III) ions, and adopts only one bridging mode. Four pzdc anions bridge four europium(III) ions into a parallelogram unit with approximate dimensions of 10.293 and 13.176 Å, the four vertices of which are occupied by the four pzdc anions. Moreover, each parallelogram unit links six other adjacent parallelogram units, forming a two-dimensional network (Fig. 2). The pzdc anion displays three types of bridging; bridging by the anion is also found in [Eu2(pzdc)3(H2O)]x.2xH2O, which adopts a microporous three-dimensinal network structure (Zheng, et al., 2002). Limited studies of this anion suggest that the different binding modes arise from the manner in which the carboxy group is oriented with respect to the aromatic ring. However, functioning as a chelate, the phen ligand prevents the oligomeric compounds from adopting high dimensionality (Plater et al., 1999). This is noted in the present compound, which has a two-dimensional structure.

Experimental top

The title compound was synthesized using the hydrothermal method, from a mixture of 2,3-pyrazinedicarboxylic acid (1 mmol, 0.17 g), Eu(NO3)3·6H2O (1 mmol, 0.45 g), 1,10-phenanthroline (3 mmol, 0.54 g) and water (20 ml) in a 30 ml Teflon-lined stainless steel reactor. The solution was heated at 432 K for 5 d. After the reaction system was cooled slowly to room temperature, colorless prismatic crystals were collected and washed with distilled water.

Refinement top

H atoms of water molecules were placed at idealized positions but were not refined; their Uiso(H) values were set at 1.2Ueq(O). Atom O2W is disordered over two sites, the occupancies of which were fixed at 0.5. A l l other H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of 0.93 Å, with Uiso(H) values of 1.2Ueq(parent atom). The final difference Fourier map had a large peak near atom Eu1.

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Bruker, 2002); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The coordination environment of the independent cation in (I), with the atom-numbering scheme (displacement ellipsoids are shown at the 50% probability level).
[Figure 2] Fig. 2. The two-dimensional network of (I). H atoms, nitrate anions, water molecules and 1,10-phenanthroline molecules have been omitted for clarity.
Aqua-2,3-pyrazinedicarboxylate-nitrate-(1,10-phenanthroline)europium(III) monohydrate top
Crystal data top
[Eu(C6H2O4)(NO3)(C12H8N2)(H2O)]·H2OF(000) = 1168
Mr = 596.30Dx = 1.981 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4140 reflections
a = 12.3427 (3) Åθ = 2.4–27.1°
b = 10.4806 (3) ŵ = 3.20 mm1
c = 15.7966 (4) ÅT = 298 K
β = 101.947 (1)°Prism, colorless
V = 1999.17 (9) Å30.28 × 0.18 × 0.17 mm
Z = 4
Data collection top
Bruker SMART APEX area-detector
diffractometer
4497 independent reflections
Radiation source: fine-focus sealed tube3676 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scanθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1415
Tmin = 0.468, Tmax = 0.612k = 1311
11996 measured reflectionsl = 1420
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0545P)2]
where P = (Fo2 + 2Fc2)/3
4497 reflections(Δ/σ)max = 0.001
301 parametersΔρmax = 1.65 e Å3
0 restraintsΔρmin = 0.82 e Å3
Crystal data top
[Eu(C6H2O4)(NO3)(C12H8N2)(H2O)]·H2OV = 1999.17 (9) Å3
Mr = 596.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.3427 (3) ŵ = 3.20 mm1
b = 10.4806 (3) ÅT = 298 K
c = 15.7966 (4) Å0.28 × 0.18 × 0.17 mm
β = 101.947 (1)°
Data collection top
Bruker SMART APEX area-detector
diffractometer
4497 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3676 reflections with I > 2σ(I)
Tmin = 0.468, Tmax = 0.612Rint = 0.035
11996 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.04Δρmax = 1.65 e Å3
4497 reflectionsΔρmin = 0.82 e Å3
301 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Eu10.667050 (18)0.577623 (19)0.633356 (13)0.02142 (9)
O10.6656 (3)0.7790 (3)0.6956 (2)0.0338 (8)
O20.6387 (3)0.9166 (3)0.7976 (2)0.0399 (9)
O30.4351 (3)0.8816 (3)0.8781 (2)0.0316 (7)
O40.5777 (3)0.8828 (4)0.9898 (2)0.0450 (10)
O50.8561 (3)0.5801 (3)0.7304 (2)0.0381 (9)
O60.7747 (3)0.3975 (3)0.7223 (2)0.0351 (8)
O70.9392 (3)0.4190 (3)0.8027 (3)0.0514 (11)
O1W0.4650 (3)0.6294 (4)0.6255 (3)0.0532 (11)
H1W10.45910.70680.65690.064*
H1W20.43060.56090.65080.064*
O2W0.3504 (9)0.6612 (9)0.7435 (6)0.077 (2)0.50
H2W10.32040.63580.79330.093*0.50
H2W20.38320.73000.76610.093*0.50
O2W'0.2642 (10)0.6030 (9)0.8223 (6)0.077 (2)0.50
H2W'0.32040.63580.79330.093*0.50
H2W"0.25070.52420.80650.093*0.50
N10.7733 (3)0.4522 (4)0.5357 (3)0.0298 (9)
N20.7978 (3)0.7092 (4)0.5604 (2)0.0314 (9)
N30.6249 (3)0.5815 (3)0.7877 (2)0.0253 (8)
N40.5386 (4)0.6093 (4)0.9354 (3)0.0374 (11)
N50.8594 (4)0.4646 (4)0.7530 (3)0.0312 (9)
C10.7664 (5)0.3262 (5)0.5249 (4)0.0405 (13)
H10.73200.27930.56180.049*
C20.8072 (5)0.2607 (5)0.4622 (4)0.0486 (15)
H20.79970.17250.45700.058*
C30.8584 (5)0.3275 (7)0.4084 (4)0.0546 (17)
H30.88610.28490.36570.065*
C40.8699 (4)0.4602 (6)0.4163 (4)0.0429 (14)
C50.9218 (5)0.5364 (7)0.3612 (4)0.0578 (17)
H50.95050.49750.31780.069*
C60.9296 (5)0.6625 (7)0.3712 (4)0.0548 (17)
H60.96210.71000.33340.066*
C70.8893 (4)0.7271 (6)0.4387 (3)0.0443 (14)
C80.9024 (5)0.8576 (6)0.4539 (4)0.0487 (15)
H80.93680.90800.41880.058*
C90.8645 (5)0.9100 (5)0.5206 (5)0.0512 (16)
H90.87260.99700.53150.061*
C100.8136 (5)0.8336 (5)0.5725 (4)0.0415 (13)
H100.78910.87180.61830.050*
C110.8262 (4)0.5184 (5)0.4823 (3)0.0305 (11)
C120.8379 (4)0.6540 (5)0.4943 (3)0.0326 (11)
C130.6398 (4)0.8080 (4)0.7672 (3)0.0261 (10)
C140.6072 (4)0.6974 (4)0.8169 (3)0.0219 (9)
C150.5601 (4)0.7107 (4)0.8902 (3)0.0263 (10)
C160.5598 (5)0.4954 (5)0.9060 (3)0.0412 (14)
H160.54660.42320.93650.049*
C170.6008 (4)0.4805 (5)0.8320 (3)0.0329 (11)
H170.61180.39880.81240.039*
C180.5229 (4)0.8369 (4)0.9212 (3)0.0265 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.02926 (14)0.02140 (14)0.01505 (13)0.00164 (9)0.00792 (9)0.00057 (9)
O10.056 (2)0.0250 (17)0.0262 (18)0.0036 (15)0.0210 (16)0.0012 (14)
O20.065 (3)0.0237 (19)0.039 (2)0.0030 (15)0.0270 (19)0.0077 (14)
O30.0324 (19)0.0320 (17)0.0296 (19)0.0052 (15)0.0045 (15)0.0030 (15)
O40.052 (2)0.053 (2)0.0238 (19)0.0167 (19)0.0082 (17)0.0221 (17)
O50.040 (2)0.038 (2)0.034 (2)0.0041 (15)0.0031 (17)0.0049 (15)
O60.040 (2)0.0292 (18)0.036 (2)0.0014 (15)0.0064 (16)0.0015 (15)
O70.039 (2)0.064 (3)0.045 (3)0.0093 (18)0.0036 (19)0.0162 (19)
O1W0.041 (2)0.046 (2)0.070 (3)0.0055 (19)0.005 (2)0.018 (2)
O2W0.104 (6)0.068 (4)0.063 (5)0.013 (4)0.024 (4)0.017 (4)
O2W'0.104 (6)0.068 (4)0.063 (5)0.013 (4)0.024 (4)0.017 (4)
N10.033 (2)0.031 (2)0.026 (2)0.0023 (17)0.0075 (18)0.0025 (17)
N20.035 (2)0.033 (2)0.028 (2)0.0072 (18)0.0084 (18)0.0020 (17)
N30.031 (2)0.027 (2)0.0192 (19)0.0016 (16)0.0085 (16)0.0019 (15)
N40.057 (3)0.035 (2)0.027 (2)0.007 (2)0.024 (2)0.0068 (18)
N50.034 (2)0.040 (2)0.022 (2)0.0041 (19)0.0100 (18)0.0010 (18)
C10.044 (3)0.036 (3)0.041 (3)0.003 (2)0.007 (2)0.001 (2)
C20.057 (4)0.037 (3)0.051 (4)0.011 (3)0.008 (3)0.011 (3)
C30.050 (4)0.069 (4)0.042 (3)0.021 (3)0.005 (3)0.019 (3)
C40.034 (3)0.064 (4)0.032 (3)0.011 (3)0.009 (2)0.006 (3)
C50.048 (4)0.100 (5)0.034 (3)0.005 (4)0.027 (3)0.003 (3)
C60.039 (3)0.092 (5)0.036 (3)0.006 (3)0.015 (3)0.014 (3)
C70.035 (3)0.069 (4)0.029 (3)0.005 (3)0.007 (2)0.015 (3)
C80.040 (3)0.058 (4)0.046 (4)0.018 (3)0.004 (3)0.026 (3)
C90.050 (4)0.038 (3)0.061 (4)0.018 (3)0.002 (3)0.012 (3)
C100.049 (3)0.036 (3)0.040 (3)0.016 (2)0.011 (3)0.002 (2)
C110.027 (3)0.045 (3)0.021 (2)0.004 (2)0.0063 (19)0.001 (2)
C120.028 (3)0.044 (3)0.024 (2)0.004 (2)0.003 (2)0.007 (2)
C130.033 (3)0.026 (2)0.021 (2)0.0001 (19)0.007 (2)0.0027 (18)
C140.027 (2)0.021 (2)0.016 (2)0.0038 (17)0.0030 (18)0.0007 (17)
C150.030 (3)0.034 (3)0.015 (2)0.004 (2)0.0070 (18)0.0001 (19)
C160.072 (4)0.028 (3)0.032 (3)0.007 (3)0.028 (3)0.008 (2)
C170.054 (3)0.021 (2)0.028 (3)0.006 (2)0.019 (2)0.002 (2)
C180.032 (3)0.029 (2)0.021 (2)0.0038 (19)0.012 (2)0.0005 (19)
Geometric parameters (Å, º) top
Eu1—O12.331 (3)N3—C171.335 (6)
Eu1—O4i2.344 (3)N4—C161.326 (6)
Eu1—O3ii2.398 (3)N4—C151.337 (6)
Eu1—O52.513 (4)C1—C21.383 (7)
Eu1—O1W2.530 (4)C1—H10.9300
Eu1—O62.555 (3)C2—C31.354 (8)
Eu1—N22.570 (4)C2—H20.9300
Eu1—N12.582 (4)C3—C41.401 (9)
Eu1—N32.597 (4)C3—H30.9300
O1—C131.272 (5)C4—C111.408 (7)
O2—C131.238 (5)C4—C51.426 (8)
O3—C181.246 (5)C5—C61.331 (10)
O3—Eu1iii2.398 (3)C5—H50.9300
O4—C181.250 (6)C6—C71.437 (8)
O4—Eu1iv2.344 (3)C6—H60.9300
O5—N51.260 (5)C7—C81.392 (8)
O6—N51.270 (5)C7—C121.411 (6)
O7—N51.223 (6)C8—C91.354 (9)
O1W—H1W10.96C8—H80.9300
O1W—H1W20.96C9—C101.386 (7)
O2W—H2W10.97C9—H90.9300
O2W—H2W20.867C10—H100.9300
O2W'—H2W'0.97C11—C121.437 (8)
O2W'—H2W"0.87C13—C141.501 (6)
N1—C11.332 (6)C14—C151.406 (6)
N1—C111.360 (6)C15—C181.514 (6)
N2—C101.327 (6)C16—C171.376 (6)
N2—C121.372 (6)C16—H160.9300
N3—C141.334 (5)C17—H170.9300
O1—Eu1—O4i101.81 (13)O7—N5—O6121.2 (4)
O1—Eu1—O3ii139.30 (11)O5—N5—O6116.6 (4)
O4i—Eu1—O3ii86.81 (12)N1—C1—C2124.1 (5)
O1—Eu1—O579.64 (12)N1—C1—H1117.9
O4i—Eu1—O5141.25 (13)C2—C1—H1117.9
O3ii—Eu1—O5117.52 (11)C3—C2—C1118.6 (6)
O1—Eu1—O1W74.50 (12)C3—C2—H2120.7
O4i—Eu1—O1W69.71 (14)C1—C2—H2120.7
O3ii—Eu1—O1W71.50 (12)C2—C3—C4120.6 (5)
O5—Eu1—O1W143.97 (13)C2—C3—H3119.7
O1—Eu1—O6119.06 (11)C4—C3—H3119.7
O4i—Eu1—O6138.55 (13)C3—C4—C11116.7 (5)
O3ii—Eu1—O667.28 (11)C3—C4—C5123.5 (5)
O5—Eu1—O650.27 (11)C11—C4—C5119.8 (6)
O1W—Eu1—O6125.49 (13)C6—C5—C4121.0 (5)
O1—Eu1—N276.32 (12)C6—C5—H5119.5
O4i—Eu1—N271.62 (12)C4—C5—H5119.5
O3ii—Eu1—N2142.69 (12)C5—C6—C7121.8 (5)
O5—Eu1—N271.21 (12)C5—C6—H6119.1
O1W—Eu1—N2124.56 (14)C7—C6—H6119.1
O6—Eu1—N2109.83 (12)C8—C7—C12118.5 (5)
O1—Eu1—N1139.69 (12)C8—C7—C6123.0 (5)
O4i—Eu1—N173.01 (14)C12—C7—C6118.4 (6)
O3ii—Eu1—N180.96 (12)C9—C8—C7119.1 (5)
O5—Eu1—N181.23 (13)C9—C8—H8120.5
O1W—Eu1—N1134.25 (13)C7—C8—H8120.5
O6—Eu1—N171.42 (12)C8—C9—C10119.9 (5)
N2—Eu1—N163.99 (13)C8—C9—H9120.1
O1—Eu1—N364.48 (11)C10—C9—H9120.1
O4i—Eu1—N3139.47 (14)N2—C10—C9123.6 (5)
O3ii—Eu1—N383.08 (11)N2—C10—H10118.2
O5—Eu1—N376.57 (12)C9—C10—H10118.2
O1W—Eu1—N369.85 (13)N1—C11—C4123.0 (5)
O6—Eu1—N371.20 (11)N1—C11—C12118.1 (4)
N2—Eu1—N3132.77 (12)C4—C11—C12118.9 (5)
N1—Eu1—N3142.57 (12)N2—C12—C7121.6 (5)
C13—O1—Eu1128.0 (3)N2—C12—C11118.4 (4)
C18—O3—Eu1iii138.4 (3)C7—C12—C11120.0 (5)
C18—O4—Eu1iv165.8 (4)O2—C13—O1126.1 (4)
N5—O5—Eu197.7 (3)O2—C13—C14118.7 (4)
N5—O6—Eu195.4 (3)O1—C13—C14115.1 (4)
Eu1—O1W—H1W1109.6N3—C14—C15120.0 (4)
Eu1—O1W—H1W2109.5N3—C14—C13116.2 (4)
H1W1—O1W—H1W2109.3C15—C14—C13123.8 (4)
H2W1—O2W—H2W296.8N4—C15—C14121.5 (4)
H2W'—O2W'—H2W"108.3N4—C15—C18114.5 (4)
C1—N1—C11116.9 (4)C14—C15—C18123.9 (4)
C1—N1—Eu1123.7 (3)N4—C16—C17122.2 (4)
C11—N1—Eu1118.7 (3)N4—C16—H16118.9
C10—N2—C12117.3 (4)C17—C16—H16118.9
C10—N2—Eu1123.4 (3)N3—C17—C16121.1 (4)
C12—N2—Eu1118.3 (3)N3—C17—H17119.5
C14—N3—C17118.1 (4)C16—C17—H17119.5
C14—N3—Eu1114.7 (3)O3—C18—O4125.7 (4)
C17—N3—Eu1126.1 (3)O3—C18—C15116.0 (4)
C16—N4—C15117.0 (4)O4—C18—C15118.1 (4)
O7—N5—O5122.1 (4)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y1/2, z+3/2; (iii) x+1, y+1/2, z+3/2; (iv) x, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Eu(C6H2O4)(NO3)(C12H8N2)(H2O)]·H2O
Mr596.30
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.3427 (3), 10.4806 (3), 15.7966 (4)
β (°) 101.947 (1)
V3)1999.17 (9)
Z4
Radiation typeMo Kα
µ (mm1)3.20
Crystal size (mm)0.28 × 0.18 × 0.17
Data collection
DiffractometerBruker SMART APEX area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.468, 0.612
No. of measured, independent and
observed [I > 2σ(I)] reflections
11996, 4497, 3676
Rint0.035
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.095, 1.04
No. of reflections4497
No. of parameters301
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.65, 0.82

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP (Bruker, 2002), SHELXL97.

Selected geometric parameters (Å, º) top
Eu1—O12.331 (3)Eu1—O62.555 (3)
Eu1—O4i2.344 (3)Eu1—N22.570 (4)
Eu1—O3ii2.398 (3)Eu1—N12.582 (4)
Eu1—O52.513 (4)Eu1—N32.597 (4)
Eu1—O1W2.530 (4)
O1—Eu1—O4i101.81 (13)O5—Eu1—N271.21 (12)
O1—Eu1—O3ii139.30 (11)O1W—Eu1—N2124.56 (14)
O4i—Eu1—O3ii86.81 (12)O6—Eu1—N2109.83 (12)
O1—Eu1—O579.64 (12)O1—Eu1—N1139.69 (12)
O4i—Eu1—O5141.25 (13)O4i—Eu1—N173.01 (14)
O3ii—Eu1—O5117.52 (11)O3ii—Eu1—N180.96 (12)
O1—Eu1—O1W74.50 (12)O5—Eu1—N181.23 (13)
O4i—Eu1—O1W69.71 (14)O1W—Eu1—N1134.25 (13)
O3ii—Eu1—O1W71.50 (12)O6—Eu1—N171.42 (12)
O5—Eu1—O1W143.97 (13)N2—Eu1—N163.99 (13)
O1—Eu1—O6119.06 (11)O1—Eu1—N364.48 (11)
O4i—Eu1—O6138.55 (13)O4i—Eu1—N3139.47 (14)
O3ii—Eu1—O667.28 (11)O3ii—Eu1—N383.08 (11)
O5—Eu1—O650.27 (11)O5—Eu1—N376.57 (12)
O1W—Eu1—O6125.49 (13)O1W—Eu1—N369.85 (13)
O1—Eu1—N276.32 (12)O6—Eu1—N371.20 (11)
O4i—Eu1—N271.62 (12)N2—Eu1—N3132.77 (12)
O3ii—Eu1—N2142.69 (12)N1—Eu1—N3142.57 (12)
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y1/2, z+3/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds