Download citation
Download citation
link to html
The title compounds, both C19H20FN3O2, contain essentially planar benzoxazolinone ring systems, within which the C—N bond distances and angles do not differ significantly between the two compounds. In both cases, the piperazine ring adopts an almost perfect chair conformation and the benzoxazo­l­inone ring system lies nearly perpendicular to it. The structures contain intermolecular C—H...O contacts, and the interactions between the benzoxazolinone and fluoro­phenyl­piperazine portions of the mol­ecules are segregated.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104003269/av1163sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104003269/av1163Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104003269/av1163IIsup3.hkl
Contains datablock II

CCDC references: 237926; 237927

Comment top

Benzoxazolinones have been investigated primarily for their medicinal value as central nervous system depressants, exhibiting analgesic, antipyritic, anticonvulsant, hypnotic and skeletal muscle relaxant activity (Sam & Valentine, 1969). In addition, many investigations of 2-benzoxazolinones have shown that compounds with this structure have antiinflammotary, antineplastic and antimicrobial activities (Clark & Pessolano, 1953; Varma & Nobles, 1968; Varma & Kapoor, 1979; Vaccher et al., 1986; Erol et al., 1989; Kalcheva et al., 1990; Gökhan et al., 1996; Köksal et al., 2002). The medical value of these derivatives prompted us to synthesize 3-substituted 2-benzoxazolinones and clarify their structures.

The pharmacological results indicate that the title compounds, (I) and (II) (both C19H20FN3O2), possess good analgesic activity, coupled with notable anti-inflammatory properties (Okun et al., 1963). Moreover, the title compounds show a remarkable gastric tolerance. It also seems that, as far as the chemical structures of the title compounds are concerned, compounds bearing chloro- and fluoro- substituents show increased analgesic–anti-inflammatory activities.

In order to obtain information about the stereochemistry of the molecules and to confirm the assigned structures, X-ray analysis was undertaken.

In (I), because the benzene and oxazolinone rings are almost parallel to one another, the benzoxazolinone ring is essentially planar; this conformation is consistent with the findings of Köysal et al. (2003). The deviations from the plane of the nine-membered benzoxazolinone ring for atoms C12, C13, C15 and C18 are 0.029 (4), −0.011 (3), 0.015 (3) and −0.012 (3) Å. The plane through the C atoms of the piperazine ring makes a dihedral angle of 89.72 (15)° with benzoxazolinone ring. The piperazine moiety adopts an almost perfect chair conformation [the puckering parametres (Cremer & Pople, 1975) are q2=0.0501 (37) Å, q3=0.5079 (40) Å, QT=0.5101 Å, ϕ=201 (5)° and θ=5.32 (42)°].

Compound (II) also contains a planar benzoxazolinone ring, the maximum deviation from planarity being 0.021 (1) Å for atom C12. The benzoxazolinone ring is nearly perpendicular to the piperazine ring, as in (I), the dihedral angle in (II) being 82.64 (6)°. The piperazine ring in (II) also adopts a chair confromation [q2=0.0113 (13) Å, q3=-0.5861 (15) Å, QT=0.5862 (15) Å, ϕ=187 (8)° and θ=178.73 (13)°].

Compound (I) contains intermolecular C5—H5···O1(x − 1,+y − 1,+z) and C14—H14···O2(-x + 1,-y + 2,-z) contacts, which link the molecules into discrete pairs across crystallographic centres of symmetry. Compound (II) contains only an intermolecular C14—H14.·O1(-x + 1,+y − 1/2,-z − 1/2) contact. The compounds differ in that in (I), the acceptor O atom is within oxazolinone ring, while in (II), the acceptor is the C=O group exo to the ring. Therefore, the intermolecular interactions in (II) link the molecules into infinite chains rather than the discrete dimers found in (I).

π-π stacking interactions are present in the ring?. In both cases, the benzoxazolinone rings align in an antiparallel manner. In the closest interaction (with a perpendicular seperation of 3.4 Å) the lateral offset is small, while the longer interaction (with a perpendicular seperation of 3.6 Å) has a somewhat larger lateral offset.

Experimental top

The title compounds were prepared via the Mannich reaction, using arylpiperazine derivatives, formaldehide and 5-methyl-2-benzoxazolinone. 5-Methyl-2-Benzoxazolinone was prepared using a modificaiton of the procedure described by Bywater et al.(1945), using 4-methyl-2-aminophenol (0.1 mol) and urea (0.12 mol). The mixture was fused at 418–423 °K for 4 h in a preheated oil bath. The residue was recrystallized from water (yield 59.69%?, m.p 394–395 °K). For the preparation of (I) and (II), formalin (0.12 mol, 37% w/v) was added to a vigorously stirred solution of the appropriate substituted piperazine derivative (0.1 mol) and 5-methyl-2-benzoxazolinone (0.1 mol) in methanol, and the mixture was refluxed in a water bath for 1 h. The reaction mixture was poured into crushed ice and the solid mass was seperated by filtration, dried and crystallized from ethanol–water. The structures of the compounds were proved by IR, 1H NMR and elemantal analysis. For (I), yield 82.58%, m.p 440–441°K. Analysis calculated for C19H20FN3O2: C 66.85, H 5.91, O 12.31; found: C 66.92, H 5.78, O 12.12. IR (KBr, cm−1): 3200, 2824 (C—H), 1790 (C=O); 1H NMR (CDCl3): 7.1–6.8 (s, 7H), 4.7 (s, 2H), 3.3–3.0 (s, 4H), 2.9–2.5 (s, 4H), 2.3 (s, 3H). For (II), yield 80.06%, m.p 417–418°K. Analysis calculated for C19H20FN3O2: C 66.85, H 5.91, O 12.31; found: C 66.37, H 6.34, O 11.95. IR (KBr, cm−1): 3200, 2924 (C—H), 1771(C=O); 1H NMR (CDCl3): 7.3–6.8 (m, 7H), 4.8 (s, 2H), 3.3–3.0 (d, 4H), 2.9–2.6 (d, 4H), 2.4 (s, 3H).

Refinement top

H atoms were located geometrically and refined using a riding model, with C—H distances of 0.93 (aromatic), 0.97 (CH2) and 0.96 Å (CH3).

Computing details top

For both compounds, data collection: STOE X-AREA (Stoe & Cie, 2002); cell refinement: STOE X-AREA; data reduction: STOE X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1997) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The structure of (II), showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 3] Fig. 3. The packing of (I) in the unit cell.
[Figure 4] Fig. 4. The packing of (II) in the unit cell.
(I) 3-[4-(4-Fluorophenyl)piperazin-1-ylmethyl]-5-methyl-1,3-benzoxazol-2(3H)-one top
Crystal data top
C19H20FN3O2F(000) = 720
Mr = 341.22Dx = 1.357 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.1788 (6) ÅCell parameters from 10038 reflections
b = 6.1512 (4) Åθ = 0.0–29.4°
c = 34.090 (3) ŵ = 0.10 mm1
β = 103.067 (7)°T = 293 K
V = 1670.6 (2) Å3Prism, colourless
Z = 40.62 × 0.48 × 0.35 mm
Data collection top
STOE IPDS 2
diffractometer
3072 independent reflections
Radiation source: fine-focus sealed tube2368 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.6°
ω scanh = 109
Absorption correction: integration
(STOE X-RED; Stoe & Cie, 2002)
k = 77
Tmin = 0.940, Tmax = 0.969l = 4242
7820 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.080Hydrogen site location: constr
wR(F2) = 0.250See text
S = 1.07 w = 1/[σ2(Fo2) + (0.1428P)2 + 0.916P]
where P = (Fo2 + 2Fc2)/3
3072 reflections(Δ/σ)max < 0.001
240 parametersΔρmax = 0.95 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
C19H20FN3O2V = 1670.6 (2) Å3
Mr = 341.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1788 (6) ŵ = 0.10 mm1
b = 6.1512 (4) ÅT = 293 K
c = 34.090 (3) Å0.62 × 0.48 × 0.35 mm
β = 103.067 (7)°
Data collection top
STOE IPDS 2
diffractometer
3072 independent reflections
Absorption correction: integration
(STOE X-RED; Stoe & Cie, 2002)
2368 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.969Rint = 0.028
7820 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0800 restraints
wR(F2) = 0.250See text
S = 1.07Δρmax = 0.95 e Å3
3072 reflectionsΔρmin = 0.43 e Å3
240 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.4451 (3)0.1980 (4)0.25278 (8)0.0883 (8)
O10.6376 (4)0.7349 (5)0.11743 (9)0.0921 (9)
O20.5004 (3)0.8047 (3)0.05353 (7)0.0634 (6)
N10.0705 (3)0.2670 (4)0.17372 (9)0.0623 (7)
N20.3002 (4)0.3067 (4)0.12303 (9)0.0709 (9)
N30.4476 (3)0.4915 (4)0.08023 (7)0.0523 (6)
C10.3220 (4)0.2157 (6)0.23245 (11)0.0624 (8)
C20.2266 (4)0.4004 (6)0.23707 (11)0.0661 (9)
H20.24670.51160.25380.076 (11)*
C30.0995 (4)0.4168 (5)0.21697 (11)0.0613 (8)
H30.03360.54160.22010.064 (9)*
C40.0671 (3)0.2523 (4)0.19178 (9)0.0512 (7)
C50.1692 (4)0.0694 (5)0.18714 (10)0.0584 (8)
H50.15270.04180.17000.065 (9)*
C60.2963 (4)0.0526 (6)0.20758 (11)0.0661 (9)
H60.36390.07050.20460.087 (12)*
C70.1183 (6)0.4709 (6)0.16319 (14)0.0859 (13)
H7A0.12080.57000.18550.103*
H7B0.03470.52390.14030.103*
C80.2901 (5)0.4735 (5)0.15245 (11)0.0641 (9)
H8A0.30070.61500.14080.077 (11)*
H8B0.38210.45720.17570.123 (18)*
C90.2595 (6)0.1032 (6)0.13649 (16)0.0903 (13)
H9A0.34190.06490.16070.108*
H9B0.26520.00490.11610.108*
C100.0904 (4)0.0975 (5)0.14518 (11)0.0650 (9)
H10A0.00090.10730.12160.093 (13)*
H10B0.08270.04170.15740.085 (12)*
C110.4556 (4)0.3174 (5)0.10935 (10)0.0619 (8)
H11A0.47430.18010.09710.064 (9)*
H11B0.54900.34260.13210.083 (12)*
C120.5398 (4)0.6778 (5)0.08766 (11)0.0621 (8)
C130.3857 (4)0.6890 (4)0.02439 (10)0.0529 (7)
C140.3172 (4)0.7473 (5)0.01371 (11)0.0634 (8)
H140.34200.87950.02420.073 (10)*
C150.2082 (4)0.5990 (6)0.03666 (11)0.0641 (8)
H150.15850.63330.06330.068 (10)*
C160.1698 (4)0.4003 (5)0.02106 (10)0.0556 (7)
C170.2429 (3)0.3473 (5)0.01838 (9)0.0510 (7)
H170.21910.21570.02930.054 (8)*
C180.3520 (3)0.4937 (4)0.04108 (9)0.0473 (6)
C190.0502 (4)0.2464 (7)0.04739 (12)0.0735 (10)
H19A0.03230.32800.06620.110*
H19B0.00470.15850.03100.110*
H19C0.11120.15450.06180.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0737 (13)0.0909 (16)0.1090 (19)0.0017 (11)0.0390 (13)0.0125 (13)
O10.107 (2)0.0838 (19)0.0788 (19)0.0306 (16)0.0064 (15)0.0247 (15)
O20.0727 (14)0.0458 (11)0.0759 (16)0.0139 (10)0.0258 (11)0.0094 (10)
N10.0670 (16)0.0463 (13)0.0774 (19)0.0094 (11)0.0245 (14)0.0192 (12)
N20.107 (2)0.0521 (15)0.0659 (18)0.0184 (15)0.0459 (17)0.0141 (12)
N30.0636 (14)0.0477 (12)0.0476 (13)0.0058 (10)0.0170 (11)0.0057 (10)
C10.0516 (15)0.0680 (19)0.066 (2)0.0065 (14)0.0096 (14)0.0117 (16)
C20.0610 (18)0.0642 (19)0.074 (2)0.0031 (15)0.0172 (16)0.0077 (17)
C30.0609 (17)0.0521 (16)0.072 (2)0.0044 (14)0.0171 (15)0.0109 (15)
C40.0486 (14)0.0472 (14)0.0533 (16)0.0017 (12)0.0021 (12)0.0038 (12)
C50.0633 (17)0.0474 (15)0.0602 (18)0.0052 (13)0.0049 (14)0.0050 (13)
C60.0591 (17)0.0591 (18)0.076 (2)0.0087 (15)0.0069 (16)0.0037 (16)
C70.129 (3)0.0538 (19)0.094 (3)0.019 (2)0.066 (3)0.0174 (18)
C80.090 (2)0.0450 (15)0.063 (2)0.0118 (15)0.0309 (18)0.0095 (14)
C90.112 (3)0.055 (2)0.116 (4)0.007 (2)0.054 (3)0.020 (2)
C100.080 (2)0.0411 (15)0.078 (2)0.0082 (14)0.0261 (18)0.0144 (15)
C110.078 (2)0.0553 (17)0.0538 (18)0.0006 (15)0.0175 (15)0.0008 (13)
C120.0718 (19)0.0530 (16)0.065 (2)0.0096 (14)0.0229 (16)0.0128 (14)
C130.0553 (15)0.0426 (14)0.0669 (19)0.0001 (12)0.0268 (14)0.0011 (13)
C140.0672 (18)0.0512 (16)0.076 (2)0.0076 (14)0.0251 (16)0.0152 (15)
C150.0628 (18)0.0675 (19)0.0616 (19)0.0128 (15)0.0130 (15)0.0130 (16)
C160.0482 (14)0.0577 (16)0.0614 (18)0.0057 (12)0.0132 (12)0.0028 (14)
C170.0517 (14)0.0449 (14)0.0594 (17)0.0016 (12)0.0190 (12)0.0012 (12)
C180.0492 (13)0.0427 (13)0.0551 (16)0.0010 (11)0.0226 (12)0.0022 (11)
C190.0630 (19)0.078 (2)0.072 (2)0.0016 (17)0.0003 (16)0.0102 (18)
Geometric parameters (Å, º) top
F1—C11.350 (4)C7—H7A0.9700
O1—C121.194 (4)C7—H7B0.9700
O2—C121.377 (4)C8—H8A0.9680
O2—C131.397 (4)C8—H8B0.9661
N1—C71.385 (4)C9—C101.479 (5)
N1—C41.402 (4)C9—H9A0.9700
N1—C101.460 (4)C9—H9B0.9700
N2—C91.399 (5)C10—H10A0.9588
N2—C81.450 (4)C10—H10B0.9594
N2—C111.451 (4)C11—H11A0.9701
N3—C121.364 (4)C11—H11B0.9697
N3—C181.386 (4)C13—C141.342 (5)
N3—C111.452 (4)C13—C181.384 (4)
C1—C61.360 (5)C14—C151.387 (5)
C1—C21.366 (5)C14—H140.9298
C2—C31.372 (5)C15—C161.396 (5)
C2—H20.9298C15—H150.9301
C3—C41.391 (4)C16—C171.381 (4)
C3—H30.9299C16—C191.504 (5)
C4—C51.389 (4)C17—C181.376 (4)
C5—C61.380 (5)C17—H170.9299
C5—H50.9296C19—H19A0.9600
C6—H60.9300C19—H19B0.9600
C7—C81.530 (5)C19—H19C0.9600
C12—O2—C13107.7 (2)N2—C9—H9B109.0
C7—N1—C4118.3 (3)C10—C9—H9B109.0
C7—N1—C10113.2 (3)H9A—C9—H9B107.8
C4—N1—C10117.9 (2)N1—C10—C9111.5 (3)
C9—N2—C8110.6 (3)N1—C10—H10A109.5
C9—N2—C11115.9 (3)C9—C10—H10A113.7
C8—N2—C11112.4 (3)N1—C10—H10B108.7
C12—N3—C18109.8 (3)C9—C10—H10B105.3
C12—N3—C11123.7 (3)H10A—C10—H10B107.9
C18—N3—C11126.4 (2)N2—C11—N3110.2 (3)
F1—C1—C6119.9 (3)N2—C11—H11A109.6
F1—C1—C2118.7 (3)N3—C11—H11A109.5
C6—C1—C2121.3 (3)N2—C11—H11B109.9
C1—C2—C3118.8 (3)N3—C11—H11B109.5
C1—C2—H2120.5H11A—C11—H11B108.1
C3—C2—H2120.8O1—C12—N3129.9 (4)
C2—C3—C4121.8 (3)O1—C12—O2122.4 (3)
C2—C3—H3119.2N3—C12—O2107.8 (3)
C4—C3—H3119.1C14—C13—C18123.5 (3)
C5—C4—C3117.8 (3)C14—C13—O2128.2 (3)
C5—C4—N1121.6 (3)C18—C13—O2108.3 (3)
C3—C4—N1120.5 (3)C13—C14—C15116.4 (3)
C6—C5—C4120.3 (3)C13—C14—H14121.9
C6—C5—H5119.7C15—C14—H14121.7
C4—C5—H5119.9C14—C15—C16122.1 (3)
C1—C6—C5120.0 (3)C14—C15—H15118.9
C1—C6—H6119.9C16—C15—H15118.9
C5—C6—H6120.1C17—C16—C15119.5 (3)
N1—C7—C8113.6 (3)C17—C16—C19120.8 (3)
N1—C7—H7A108.9C15—C16—C19119.7 (3)
C8—C7—H7A108.9C18—C17—C16118.4 (3)
N1—C7—H7B108.9C18—C17—H17120.8
C8—C7—H7B108.9C16—C17—H17120.8
H7A—C7—H7B107.7C17—C18—C13120.1 (3)
N2—C8—C7110.9 (3)C17—C18—N3133.5 (3)
N2—C8—H8A109.2C13—C18—N3106.4 (3)
C7—C8—H8A106.2C16—C19—H19A109.5
N2—C8—H8B109.7C16—C19—H19B109.5
C7—C8—H8B112.9H19A—C19—H19B109.5
H8A—C8—H8B107.6C16—C19—H19C109.5
N2—C9—C10113.0 (3)H19A—C19—H19C109.5
N2—C9—H9A109.0H19B—C19—H19C109.5
C10—C9—H9A109.0
F1—C1—C2—C3178.9 (3)C18—N3—C11—N271.4 (4)
C6—C1—C2—C32.0 (5)C18—N3—C12—O1179.2 (3)
C1—C2—C3—C40.9 (5)C11—N3—C12—O10.9 (5)
C2—C3—C4—C50.6 (5)C18—N3—C12—O21.7 (3)
C2—C3—C4—N1175.7 (3)C11—N3—C12—O2180.0 (2)
C7—N1—C4—C5150.7 (4)C13—O2—C12—O1178.9 (3)
C10—N1—C4—C58.4 (5)C13—O2—C12—N31.9 (3)
C7—N1—C4—C333.2 (5)C12—O2—C13—C14177.9 (3)
C10—N1—C4—C3175.4 (3)C12—O2—C13—C181.5 (3)
C3—C4—C5—C61.0 (5)C18—C13—C14—C150.4 (4)
N1—C4—C5—C6175.3 (3)O2—C13—C14—C15178.9 (3)
F1—C1—C6—C5179.2 (3)C13—C14—C15—C160.7 (5)
C2—C1—C6—C51.6 (5)C14—C15—C16—C170.5 (5)
C4—C5—C6—C10.1 (5)C14—C15—C16—C19179.8 (3)
C4—N1—C7—C8167.4 (3)C15—C16—C17—C180.0 (4)
C10—N1—C7—C848.7 (5)C19—C16—C17—C18179.7 (3)
C9—N2—C8—C754.1 (5)C16—C17—C18—C130.3 (4)
C11—N2—C8—C7174.7 (3)C16—C17—C18—N3178.4 (3)
N1—C7—C8—N250.8 (5)C14—C13—C18—C170.1 (4)
C8—N2—C9—C1057.7 (5)O2—C13—C18—C17179.5 (2)
C11—N2—C9—C10172.9 (3)C14—C13—C18—N3178.9 (3)
C7—N1—C10—C950.0 (5)O2—C13—C18—N30.4 (3)
C4—N1—C10—C9165.9 (3)C12—N3—C18—C17178.1 (3)
N2—C9—C10—N154.9 (5)C11—N3—C18—C170.1 (5)
C9—N2—C11—N3153.6 (3)C12—N3—C18—C130.8 (3)
C8—N2—C11—N377.9 (4)C11—N3—C18—C13179.0 (3)
C12—N3—C11—N2110.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.583.268 (4)131
C14—H14···O2ii0.932.653.547 (4)163
Symmetry codes: (i) x1, y1, z; (ii) x+1, y+2, z.
(II) 3-[4-(2-Fluorophenyl)piperazin-1-ylmethyl]-5-methyl-1,3-benzoxazol-2(3H)-one top
Crystal data top
C19H20FN3O2F(000) = 720
Mr = 341.22Dx = 1.314 Mg m3
Monoclinic, p21/cMo Kα radiation, λ = 0.71073 Å
a = 15.7467 (10) ÅCell parameters from 19436 reflections
b = 9.5470 (4) Åθ = 0.0–29.5°
c = 11.4779 (6) ŵ = 0.09 mm1
β = 91.422 (5)°T = 293 K
V = 1724.98 (16) Å3Prism, colourless
Z = 40.60 × 0.42 × 0.31 mm
Data collection top
STOE IPDS 2
diffractometer
3392 independent reflections
Radiation source: fine-focus sealed tube2779 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.093
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.5°
ω scanh = 1919
Absorption correction: integration
(STOE X-RED; Stoe & Cie, 2002)
k = 1111
Tmin = 0.878, Tmax = 0.980l = 1413
24265 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: constr
R[F2 > 2σ(F2)] = 0.041See text
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0658P)2 + 0.1274P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3392 reflectionsΔρmax = 0.21 e Å3
246 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.015 (2)
Crystal data top
C19H20FN3O2V = 1724.98 (16) Å3
Mr = 341.22Z = 4
Monoclinic, p21/cMo Kα radiation
a = 15.7467 (10) ŵ = 0.09 mm1
b = 9.5470 (4) ÅT = 293 K
c = 11.4779 (6) Å0.60 × 0.42 × 0.31 mm
β = 91.422 (5)°
Data collection top
STOE IPDS 2
diffractometer
3392 independent reflections
Absorption correction: integration
(STOE X-RED; Stoe & Cie, 2002)
2779 reflections with I > 2σ(I)
Tmin = 0.878, Tmax = 0.980Rint = 0.093
24265 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.124See text
S = 1.07Δρmax = 0.21 e Å3
3392 reflectionsΔρmin = 0.15 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.02623 (7)0.84447 (13)0.02487 (12)0.1032 (4)
O10.41098 (7)0.76653 (12)0.10543 (10)0.0726 (3)
O20.44069 (6)0.54729 (11)0.16695 (8)0.0625 (3)
N10.07924 (7)0.67022 (13)0.15050 (9)0.0566 (3)
N20.25221 (6)0.60123 (11)0.11386 (8)0.0514 (3)
N30.37578 (6)0.56932 (12)0.00110 (9)0.0525 (3)
C10.06219 (10)0.75215 (18)0.09803 (15)0.0711 (4)
C20.14883 (11)0.7532 (2)0.10515 (19)0.0895 (6)
H20.18140.81250.05800.123 (8)*
C30.18693 (11)0.6660 (3)0.18300 (19)0.0957 (7)
H30.24560.66560.18950.100 (6)*
C40.13785 (12)0.5789 (3)0.24992 (18)0.0979 (7)
H40.16330.52080.30390.117 (7)*
C50.05018 (10)0.5767 (2)0.23999 (15)0.0797 (5)
H50.01820.51510.28600.102 (7)*
C60.00974 (9)0.66396 (16)0.16311 (12)0.0586 (3)
C70.13017 (9)0.5996 (2)0.23995 (12)0.0679 (4)
H7A0.11080.62580.31640.075 (5)*
H7B0.12390.49910.23150.085 (6)*
C80.22230 (9)0.63949 (19)0.22851 (11)0.0644 (4)
H8A0.25620.59180.28800.080 (5)*
H8B0.22880.73960.24010.083 (5)*
C90.20062 (8)0.66981 (17)0.02394 (12)0.0608 (4)
H9A0.22010.64240.05230.077 (5)*
H9B0.20670.77060.03100.071 (5)*
C100.10865 (9)0.63019 (18)0.03537 (11)0.0615 (4)
H10A0.07470.67740.02440.081 (5)*
H10B0.10200.53000.02460.077 (5)*
C110.34135 (8)0.63315 (15)0.10457 (11)0.0547 (3)
H11A0.34910.73390.10130.063 (4)*
H11B0.37190.59840.17310.061 (4)*
C120.40852 (8)0.64277 (16)0.08915 (11)0.0567 (3)
C130.42527 (8)0.41439 (15)0.12344 (11)0.0547 (3)
C140.44493 (8)0.28826 (17)0.17164 (13)0.0637 (4)
H140.47300.28150.24180.081 (5)*
C150.42038 (9)0.17060 (17)0.11008 (14)0.0651 (4)
H150.43280.08270.14010.073 (5)*
C160.37814 (9)0.17879 (15)0.00525 (13)0.0596 (3)
C170.35979 (8)0.30978 (15)0.04181 (11)0.0550 (3)
H170.33170.31780.11180.054 (4)*
C180.38446 (7)0.42639 (14)0.01861 (11)0.0495 (3)
C190.35196 (13)0.04793 (18)0.05641 (16)0.0813 (5)
H19A0.32110.07230.12460.122*
H19B0.40160.00490.07890.122*
H19C0.31640.00750.00530.122*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0863 (7)0.0943 (8)0.1281 (10)0.0026 (5)0.0140 (6)0.0365 (7)
O10.0836 (7)0.0659 (7)0.0688 (6)0.0086 (5)0.0142 (5)0.0060 (5)
O20.0627 (5)0.0744 (6)0.0510 (5)0.0081 (5)0.0152 (4)0.0044 (4)
N10.0525 (6)0.0705 (7)0.0470 (6)0.0032 (5)0.0021 (4)0.0039 (5)
N20.0538 (6)0.0595 (6)0.0413 (5)0.0023 (5)0.0057 (4)0.0025 (4)
N30.0531 (6)0.0580 (6)0.0469 (6)0.0002 (5)0.0096 (4)0.0035 (5)
C10.0651 (8)0.0691 (9)0.0785 (10)0.0010 (7)0.0075 (7)0.0073 (8)
C20.0625 (9)0.1030 (14)0.1022 (14)0.0110 (9)0.0153 (9)0.0196 (12)
C30.0548 (9)0.1387 (19)0.0936 (13)0.0036 (10)0.0030 (9)0.0254 (13)
C40.0688 (10)0.145 (2)0.0809 (12)0.0152 (11)0.0165 (9)0.0046 (12)
C50.0659 (9)0.1091 (14)0.0644 (9)0.0007 (9)0.0112 (7)0.0058 (9)
C60.0540 (7)0.0681 (8)0.0539 (7)0.0014 (6)0.0018 (6)0.0129 (6)
C70.0609 (8)0.0990 (12)0.0440 (7)0.0111 (7)0.0081 (6)0.0060 (7)
C80.0593 (7)0.0932 (12)0.0409 (7)0.0121 (7)0.0018 (6)0.0065 (7)
C90.0597 (8)0.0784 (10)0.0445 (7)0.0013 (6)0.0034 (6)0.0056 (6)
C100.0601 (7)0.0810 (10)0.0435 (7)0.0025 (7)0.0021 (6)0.0033 (6)
C110.0547 (7)0.0603 (8)0.0494 (7)0.0009 (6)0.0056 (5)0.0089 (6)
C120.0521 (7)0.0659 (9)0.0524 (7)0.0060 (6)0.0064 (5)0.0011 (6)
C130.0460 (6)0.0691 (8)0.0491 (7)0.0021 (6)0.0052 (5)0.0058 (6)
C140.0541 (7)0.0811 (10)0.0563 (8)0.0031 (6)0.0091 (6)0.0174 (7)
C150.0602 (8)0.0678 (9)0.0674 (9)0.0105 (7)0.0001 (6)0.0175 (7)
C160.0587 (7)0.0606 (8)0.0591 (8)0.0069 (6)0.0041 (6)0.0037 (6)
C170.0554 (7)0.0617 (8)0.0479 (7)0.0056 (6)0.0034 (5)0.0025 (6)
C180.0440 (6)0.0586 (7)0.0458 (6)0.0032 (5)0.0025 (5)0.0054 (5)
C190.1041 (13)0.0597 (9)0.0802 (11)0.0072 (8)0.0023 (9)0.0005 (8)
Geometric parameters (Å, º) top
F1—C11.351 (2)C7—H7A0.9691
O1—C121.1970 (18)C7—H7B0.9691
O2—C121.3810 (17)C8—H8A0.9700
O2—C131.3872 (17)C8—H8B0.9699
N1—C61.4134 (17)C9—C101.5056 (19)
N1—C71.4530 (18)C9—H9A0.9700
N1—C101.4620 (17)C9—H9B0.9699
N2—C111.4429 (16)C10—H10A0.9699
N2—C91.4535 (17)C10—H10B0.9697
N2—C81.4553 (16)C11—H11A0.9700
N3—C121.3628 (17)C11—H11B0.9699
N3—C181.3905 (17)C13—C141.364 (2)
N3—C111.4518 (15)C13—C181.3828 (17)
C1—C21.369 (2)C14—C151.387 (2)
C1—C61.385 (2)C14—H140.9297
C2—C31.371 (3)C15—C161.391 (2)
C2—H20.9289C15—H150.9298
C3—C41.359 (3)C16—C171.3953 (19)
C3—H30.9293C16—C191.499 (2)
C4—C51.388 (2)C17—C181.3728 (19)
C4—H40.9297C17—H170.9298
C5—C61.381 (2)C19—H19A0.9600
C5—H50.9299C19—H19B0.9600
C7—C81.509 (2)C19—H19C0.9600
C12—O2—C13107.49 (10)N2—C9—H9B109.6
C6—N1—C7116.06 (11)C10—C9—H9B109.5
C6—N1—C10114.75 (11)H9A—C9—H9B108.1
C7—N1—C10109.61 (11)N1—C10—C9109.88 (11)
C11—N2—C9112.33 (10)N1—C10—H10A109.6
C11—N2—C8110.56 (10)C9—C10—H10A109.7
C9—N2—C8109.96 (11)N1—C10—H10B109.7
C12—N3—C18109.92 (10)C9—C10—H10B109.7
C12—N3—C11124.18 (12)H10A—C10—H10B108.2
C18—N3—C11125.82 (11)N2—C11—N3110.83 (10)
F1—C1—C2117.77 (17)N2—C11—H11A109.6
F1—C1—C6118.57 (14)N3—C11—H11A109.5
C2—C1—C6123.65 (18)N2—C11—H11B109.4
C1—C2—C3119.18 (19)N3—C11—H11B109.4
C1—C2—H2120.4H11A—C11—H11B108.1
C3—C2—H2120.4O1—C12—N3129.86 (13)
C4—C3—C2119.20 (17)O1—C12—O2122.46 (12)
C4—C3—H3120.4N3—C12—O2107.68 (12)
C2—C3—H3120.4C14—C13—C18122.76 (13)
C3—C4—C5121.0 (2)C14—C13—O2128.17 (12)
C3—C4—H4119.6C18—C13—O2109.07 (11)
C5—C4—H4119.4C13—C14—C15116.07 (13)
C6—C5—C4121.22 (19)C13—C14—H14122.0
C6—C5—H5119.5C15—C14—H14122.0
C4—C5—H5119.3C14—C15—C16122.70 (14)
C5—C6—C1115.68 (14)C14—C15—H15118.6
C5—C6—N1124.40 (14)C16—C15—H15118.7
C1—C6—N1119.90 (14)C15—C16—C17119.55 (14)
N1—C7—C8109.66 (12)C15—C16—C19120.30 (14)
N1—C7—H7A109.8C17—C16—C19120.15 (14)
C8—C7—H7A109.8C18—C17—C16117.86 (13)
N1—C7—H7B109.6C18—C17—H17121.1
C8—C7—H7B109.7C16—C17—H17121.1
H7A—C7—H7B108.2C17—C18—C13121.05 (12)
N2—C8—C7110.41 (12)C17—C18—N3133.11 (11)
N2—C8—H8A109.5C13—C18—N3105.82 (11)
C7—C8—H8A109.5C16—C19—H19A109.5
N2—C8—H8B109.6C16—C19—H19B109.5
C7—C8—H8B109.6H19A—C19—H19B109.5
H8A—C8—H8B108.1C16—C19—H19C109.5
N2—C9—C10110.30 (11)H19A—C19—H19C109.5
N2—C9—H9A109.6H19B—C19—H19C109.5
C10—C9—H9A109.7
F1—C1—C2—C3176.61 (17)C12—N3—C11—N2117.10 (13)
C6—C1—C2—C32.1 (3)C18—N3—C11—N266.38 (16)
C1—C2—C3—C41.1 (3)C18—N3—C12—O1177.94 (14)
C2—C3—C4—C50.4 (3)C11—N3—C12—O15.1 (2)
C3—C4—C5—C60.9 (3)C18—N3—C12—O21.47 (14)
C4—C5—C6—C10.0 (2)C11—N3—C12—O2175.53 (11)
C4—C5—C6—N1178.21 (16)C13—O2—C12—O1178.22 (13)
F1—C1—C6—C5177.16 (15)C13—O2—C12—N31.24 (13)
C2—C1—C6—C51.5 (2)C12—O2—C13—C14179.13 (13)
F1—C1—C6—N11.1 (2)C12—O2—C13—C180.57 (14)
C2—C1—C6—N1179.81 (15)C18—C13—C14—C151.0 (2)
C7—N1—C6—C512.2 (2)O2—C13—C14—C15178.70 (13)
C10—N1—C6—C5117.40 (17)C13—C14—C15—C160.0 (2)
C7—N1—C6—C1165.97 (14)C14—C15—C16—C170.6 (2)
C10—N1—C6—C164.47 (18)C14—C15—C16—C19179.02 (14)
C6—N1—C7—C8168.68 (12)C15—C16—C17—C180.17 (19)
C10—N1—C7—C859.34 (17)C19—C16—C17—C18179.43 (13)
C11—N2—C8—C7177.27 (12)C16—C17—C18—C130.77 (18)
C9—N2—C8—C758.13 (17)C16—C17—C18—N3178.97 (13)
N1—C7—C8—N259.02 (18)C14—C13—C18—C171.4 (2)
C11—N2—C9—C10178.47 (11)O2—C13—C18—C17178.32 (11)
C8—N2—C9—C1057.96 (16)C14—C13—C18—N3179.97 (12)
C6—N1—C10—C9167.96 (12)O2—C13—C18—N30.31 (14)
C7—N1—C10—C959.37 (17)C12—N3—C18—C17177.29 (13)
N2—C9—C10—N158.71 (16)C11—N3—C18—C175.8 (2)
C9—N2—C11—N368.75 (14)C12—N3—C18—C131.10 (14)
C8—N2—C11—N3168.02 (11)C11—N3—C18—C13175.84 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O1i0.932.573.4680 (18)163
Symmetry code: (i) x+1, y1/2, z1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC19H20FN3O2C19H20FN3O2
Mr341.22341.22
Crystal system, space groupMonoclinic, P21/cMonoclinic, p21/c
Temperature (K)293293
a, b, c (Å)8.1788 (6), 6.1512 (4), 34.090 (3)15.7467 (10), 9.5470 (4), 11.4779 (6)
β (°) 103.067 (7) 91.422 (5)
V3)1670.6 (2)1724.98 (16)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.100.09
Crystal size (mm)0.62 × 0.48 × 0.350.60 × 0.42 × 0.31
Data collection
DiffractometerSTOE IPDS 2
diffractometer
STOE IPDS 2
diffractometer
Absorption correctionIntegration
(STOE X-RED; Stoe & Cie, 2002)
Integration
(STOE X-RED; Stoe & Cie, 2002)
Tmin, Tmax0.940, 0.9690.878, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
7820, 3072, 2368 24265, 3392, 2779
Rint0.0280.093
(sin θ/λ)max1)0.6170.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.080, 0.250, 1.07 0.041, 0.124, 1.07
No. of reflections30723392
No. of parameters240246
H-atom treatmentSee textSee text
Δρmax, Δρmin (e Å3)0.95, 0.430.21, 0.15

Computer programs: STOE X-AREA (Stoe & Cie, 2002), STOE X-AREA, STOE X-RED (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), WinGX (Farrugia, 1997) and PARST (Nardelli, 1995).

Selected geometric parameters (Å, º) for (I) top
F1—C11.350 (4)N2—C91.399 (5)
O1—C121.194 (4)N2—C81.450 (4)
O2—C121.377 (4)N2—C111.451 (4)
O2—C131.397 (4)N3—C121.364 (4)
N1—C71.385 (4)N3—C181.386 (4)
N1—C41.402 (4)N3—C111.452 (4)
N1—C101.460 (4)
N1—C7—C8113.6 (3)N2—C11—N3110.2 (3)
N2—C8—C7110.9 (3)O1—C12—N3129.9 (4)
N2—C9—C10113.0 (3)O1—C12—O2122.4 (3)
N1—C10—C9111.5 (3)
C7—N1—C4—C5150.7 (4)N1—C7—C8—N250.8 (5)
C10—N1—C4—C58.4 (5)N2—C9—C10—N154.9 (5)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O1i0.932.583.268 (4)131
C14—H14···O2ii0.932.653.547 (4)163
Symmetry codes: (i) x1, y1, z; (ii) x+1, y+2, z.
Selected geometric parameters (Å, º) for (II) top
F1—C11.351 (2)N2—C111.4429 (16)
O1—C121.1970 (18)N2—C91.4535 (17)
O2—C121.3810 (17)N2—C81.4553 (16)
O2—C131.3872 (17)N3—C121.3628 (17)
N1—C61.4134 (17)N3—C181.3905 (17)
N1—C71.4530 (18)N3—C111.4518 (15)
N1—C101.4620 (17)
N1—C7—C8109.66 (12)N1—C10—C9109.88 (11)
N2—C8—C7110.41 (12)O1—C12—N3129.86 (13)
N2—C9—C10110.30 (11)O1—C12—O2122.46 (12)
C7—N1—C6—C512.2 (2)N2—C9—C10—N158.71 (16)
C10—N1—C6—C5117.40 (17)C18—N3—C11—N266.38 (16)
N1—C7—C8—N259.02 (18)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O1i0.932.573.4680 (18)163
Symmetry code: (i) x+1, y1/2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds