Download citation
Download citation
link to html
In the crystal structure of the title compound, [Ni2(C4H4O6)2(H2O)2]·3H2O, two nickel cations, two tartrate anions and two water mol­ecules form the dimeric complex. Each nickel cation is in a distorted octahedral environment composed of four O atoms of two crystallographically independent tartrate anions, one water mol­ecule and one O atom of a symmetry-equivalent tartrate anion. The asymmetric unit contains three additional water mol­ecules which are connected via hydrogen bonding.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101021059/av1097sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101021059/av1097Isup2.hkl
Contains datablock I

CCDC reference: 182007

Comment top

In 1984, Bostelaar et al. (1984) reported the crystal structure of diaquabis[(R,R)-tartrato-O1,O2:O3,O4]dinickel(II) trihydrate. The orthorhombic unit cell was a = 7.805 (3) Å, b = 11.068 (4) Å and c = 8.974 (8) Å, with Z = 2. From the systematic extinctions, the chiral space group P21212 was selected. In the crystal structure, some disordering of the incorporated water molecules was observed and very short intermolecular O···O distances occurred. In addition, some atoms of the tartrate anions showed unusual anisotropic displacement parameters.

During our investigations on the synthesis of new nickel thioantimonates under solvothermal conditions, we obtained crystals of the same composition as Bostelaar et al. (1984). In contrast to the previously reported structure, we found an orthorhombic unit cell with a doubled c axis. The systematic extinctions are in accordance with the chiral space group P212121. Without the doubled c axis, the systematic extinctions lead to space group P21212. We note that the doubled c axis is observed at 295 and 150 K, thus excluding the possibility that the doubling is caused by a low-temperature phase transition.

The asymmetric unit of the title compound, (I), contains two crystallographically independent nickel cations and tartrate anions, as well as five crystallographically independent molecules of water, all being located in general positions. Each Ni2+ cation is connected to two halves of two different tartate dianions through chelation by the alcohol and the carboxylate group, forming dimeric [(R,R)-tartrato-O1,O2:O3,O4]dinickel(II) complexes. The remaining two coordination sites of the Ni2+ cation are occupied by one water molecule and one O atom of a non-chelating carboxylate group from a symmetry equivalent dimeric complex. As expected, the Ni—O distances to the chelating carboxylate O atoms [2.007 (2)–2.013 (2) Å] are significantly shorter than those to the hydroxyl O atoms [2.066 (2)–2.100 (2) Å]. The Ni—O distances to O atoms of the water molecules range from 2.031 (2) to 2.033 (2) Å and the distances to the non-chelating carboxylate O atom are between 2.043 (2) and 2.046 (2) Å. The coordination polyhedron around the two crystallographically independent Ni2+ cations can be described as a distorted octahedron. The dimers are additionally connected by O—H···O hydrogen bonding between the H atoms of the water molecules, which are coordinated to the Ni2+ cations, and the carboxylate O atoms of symmetry equivalent dimers, which act as the acceptors. For these contacts, the shortest intermolecular O···H distances are 1.82 [O···O 2.638 (2) Å] and 1.82 Å [O···O 2.590 (2) Å], and the corresponding O—H···O angles amount to 178 and 157°. The three additional crystallographically independent water molecules connect the dimers via O—H···O hydrogen bonding. These water molecules act as acceptors for the H atoms of the tartrate hydroxyl groups and as donors for hydrogen bonds to the carboxylate O atoms and to other water molecules. Distances and angles indicate strong hydrogen bonds.

Concerning the geometry of the tartrate anions in space group P21212, the dimeric complexes are located around a twofold axis and therefore the tartrate dianions must be equivalent for symmetry reasons. A detailed analysis of the conformation of both crystallographically independent tartrate molecules in the title compound shows small but significant differences of their geometry.

Experimental top

The title compound was prepared by the reaction of powdered nickel (1 mmol) with 1,3-phenylenediamine (1 mmol) in a colloidal solution of Sb2S3 (1%, 10 ml) which was stabilized with potassium antimony tartrate. The mixture was heated in a Teflon-lined steel autocalve at 413 K for 6 d. After cooling, the product as green crystals was filtered off and washed with water.

Refinement top

The H atoms of O—H groups were located from difference map, but were refined as rigid groups with idealized O—H bond lengths of 0.82 Å. H atoms on C atoms were positioned with idealized geometry and refined using a riding model. All H atoms were refined using fixed isotropic displacement parameters [Uiso(H) = 1.2Ueq(C) for methylene H atoms, or 1.5UeqO(OH)]. The absolute structure was determined using the Flack x parameter and is in agreement with the selected setting. In addition, inversion of the structure leads to significant poorer reliability factors [R1 for all reflections with Fo > 4σ(Fo) = 0.0454; wR2 for all reflections = 0.1213]. The structure contains an additional pseudosymmetry element which is a translation in the direction of the c axis by 0.5.

Computing details top

Data collection: IPDS Program Package (Stoe & Cie, 1998); cell refinement: IPDS Program Package; data reduction: IPDS Program Package; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in SHELXTL (Bruker, 1998); software used to prepare material for publication: CIFTAB in SHELXTL.

Figures top
[Figure 1] Fig. 1. The crystal structure of (I) with labeling and displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) 1 - x, 0.5 + y, 0.5 - z; (ii) 2 - x, -0.5 + y, 0.5 - z.]
Diaquabis ((R,R)-tartrato-O1,O2:O3,O4)dinickel(II) Trihydrate top
Crystal data top
[Ni2(C4H4O6)2(H2O)2]·3H2ODx = 2.159 Mg m3
Mr = 503.64Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 8000 reflections
a = 7.8072 (5) Åθ = 3–28°
b = 11.0636 (8) ŵ = 2.53 mm1
c = 17.9361 (9) ÅT = 150 K
V = 1549.24 (17) Å3Block, green
Z = 40.3 × 0.2 × 0.2 mm
F(000) = 1032
Data collection top
Stoe Imaging Plate Diffraction System
diffractometer
3665 independent reflections
Radiation source: fine-focus sealed tube3602 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ scansθmax = 28.1°, θmin = 2.9°
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1998)
h = 1010
Tmin = 0.605, Tmax = 0.735k = 1414
22323 measured reflectionsl = 2222
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullConstrained
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0446P)2 + 0.7939P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.063(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.38 e Å3
3665 reflectionsΔρmin = 0.80 e Å3
245 parametersExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0083 (7)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.002 (9)
Crystal data top
[Ni2(C4H4O6)2(H2O)2]·3H2OV = 1549.24 (17) Å3
Mr = 503.64Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.8072 (5) ŵ = 2.53 mm1
b = 11.0636 (8) ÅT = 150 K
c = 17.9361 (9) Å0.3 × 0.2 × 0.2 mm
Data collection top
Stoe Imaging Plate Diffraction System
diffractometer
3665 independent reflections
Absorption correction: numerical
(X-SHAPE; Stoe & Cie, 1998)
3602 reflections with I > 2σ(I)
Tmin = 0.605, Tmax = 0.735Rint = 0.041
22323 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.024Constrained
wR(F2) = 0.063Δρmax = 0.38 e Å3
S = 1.06Δρmin = 0.80 e Å3
3665 reflectionsAbsolute structure: Flack (1983)
245 parametersAbsolute structure parameter: 0.002 (9)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.89538 (3)0.28198 (2)0.362625 (14)0.00377 (8)
Ni20.62521 (3)0.71153 (2)0.348885 (14)0.00382 (8)
O10.72642 (18)0.23801 (13)0.28237 (9)0.0069 (3)
O20.57950 (19)0.31173 (13)0.18598 (9)0.0089 (3)
C10.6965 (2)0.31615 (18)0.23284 (12)0.0047 (4)
C20.8130 (3)0.42718 (18)0.22766 (12)0.0043 (4)
H20.88040.42160.18040.005*
O30.93045 (18)0.42737 (13)0.28896 (9)0.0057 (3)
H3A1.02140.45740.27560.009*
C30.7053 (2)0.54235 (17)0.22494 (12)0.0045 (4)
H30.63160.53850.17940.007*
O40.59490 (18)0.55118 (13)0.28856 (8)0.0058 (3)
H4A0.49900.52970.27550.009*
C40.8147 (2)0.65682 (17)0.21970 (12)0.0049 (4)
O50.78517 (19)0.74233 (13)0.26340 (9)0.0092 (3)
O60.9237 (2)0.65827 (13)0.16872 (9)0.0094 (3)
O111.03870 (18)0.35422 (14)0.44429 (9)0.0079 (3)
O121.0195 (2)0.43875 (15)0.55646 (9)0.0097 (3)
C110.9571 (3)0.40782 (18)0.49540 (12)0.0050 (4)
C120.7696 (3)0.43927 (19)0.48366 (12)0.0059 (4)
H120.70080.40600.52600.007*
O130.71333 (18)0.38595 (14)0.41619 (9)0.0075 (3)
H13A0.61090.36980.41750.011*
C130.7492 (3)0.57826 (19)0.48167 (12)0.0057 (4)
H130.81630.61390.52380.007*
O140.80952 (18)0.62819 (14)0.41388 (9)0.0074 (3)
H14A0.91300.64100.41420.011*
C140.5617 (3)0.61165 (18)0.49162 (12)0.0057 (4)
O150.48718 (18)0.66914 (14)0.44002 (9)0.0074 (3)
O160.4952 (2)0.58046 (15)0.55139 (9)0.0105 (3)
O210.83427 (19)0.14688 (13)0.43469 (9)0.0082 (3)
H21A0.89300.08590.43030.012*
H21B0.73560.12170.43690.012*
O220.69955 (18)0.87481 (13)0.38925 (9)0.0080 (3)
H22A0.62620.90730.41510.012*
H22B0.78130.87870.41790.012*
O231.26101 (19)0.49717 (12)0.24702 (10)0.0108 (3)
H23A1.26060.46420.20610.016*
H23B1.25090.56790.23400.016*
O240.3784 (2)0.3714 (2)0.39201 (11)0.0274 (4)
H24A0.31190.35040.42500.041*
H24B0.35310.35500.34880.041*
O251.1467 (2)0.61999 (18)0.40338 (13)0.0280 (5)
H25A1.22630.65440.42440.042*
H25B1.16320.54930.39170.042*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.00354 (12)0.00453 (12)0.00325 (14)0.00001 (9)0.00015 (9)0.00052 (9)
Ni20.00366 (12)0.00432 (12)0.00347 (13)0.00035 (9)0.00034 (8)0.00002 (9)
O10.0083 (6)0.0073 (6)0.0053 (7)0.0029 (5)0.0032 (5)0.0004 (5)
O20.0077 (6)0.0084 (7)0.0104 (8)0.0037 (5)0.0064 (6)0.0005 (5)
C10.0034 (8)0.0060 (9)0.0048 (10)0.0015 (6)0.0010 (7)0.0013 (7)
C20.0047 (8)0.0063 (8)0.0020 (10)0.0021 (7)0.0014 (7)0.0005 (7)
O30.0032 (6)0.0087 (6)0.0052 (7)0.0020 (5)0.0018 (5)0.0028 (5)
C30.0038 (8)0.0065 (9)0.0033 (10)0.0009 (7)0.0017 (7)0.0002 (7)
O40.0038 (6)0.0073 (6)0.0061 (7)0.0007 (5)0.0025 (5)0.0023 (5)
C40.0044 (8)0.0058 (9)0.0045 (10)0.0003 (7)0.0001 (7)0.0016 (7)
O50.0121 (7)0.0067 (7)0.0088 (8)0.0018 (5)0.0054 (6)0.0017 (5)
O60.0096 (7)0.0084 (7)0.0103 (8)0.0031 (5)0.0061 (5)0.0009 (5)
O110.0048 (6)0.0118 (7)0.0071 (8)0.0008 (5)0.0018 (5)0.0034 (6)
O120.0088 (7)0.0116 (7)0.0087 (8)0.0029 (6)0.0049 (6)0.0039 (6)
C110.0053 (8)0.0046 (9)0.0053 (10)0.0013 (6)0.0005 (7)0.0018 (7)
C120.0045 (8)0.0083 (9)0.0048 (10)0.0013 (7)0.0018 (7)0.0013 (7)
O130.0038 (6)0.0106 (7)0.0081 (8)0.0006 (5)0.0017 (5)0.0054 (5)
C130.0036 (8)0.0082 (9)0.0053 (10)0.0023 (7)0.0017 (7)0.0005 (7)
O140.0031 (6)0.0117 (7)0.0074 (8)0.0009 (5)0.0015 (5)0.0056 (5)
C140.0047 (8)0.0054 (9)0.0072 (10)0.0005 (7)0.0009 (7)0.0019 (7)
O150.0036 (6)0.0124 (7)0.0063 (8)0.0022 (5)0.0014 (5)0.0026 (5)
O160.0083 (7)0.0144 (8)0.0087 (8)0.0036 (6)0.0050 (6)0.0041 (6)
O210.0065 (6)0.0072 (6)0.0109 (8)0.0002 (5)0.0030 (5)0.0041 (6)
O220.0048 (6)0.0089 (7)0.0104 (8)0.0010 (5)0.0029 (5)0.0054 (6)
O230.0140 (8)0.0066 (7)0.0117 (9)0.0016 (6)0.0005 (6)0.0011 (5)
O240.0090 (8)0.0572 (13)0.0161 (10)0.0087 (8)0.0007 (8)0.0001 (9)
O250.0081 (7)0.0255 (10)0.0504 (14)0.0013 (7)0.0014 (8)0.0115 (9)
Geometric parameters (Å, º) top
Ni1—O112.0091 (15)C4—O51.250 (2)
Ni1—O12.0121 (15)O6—Ni1iv2.0456 (15)
Ni1—O212.0328 (15)O11—C111.264 (3)
Ni1—O6i2.0456 (15)O12—C111.246 (3)
Ni1—O132.0655 (15)C11—C121.520 (3)
Ni1—O32.0995 (15)C12—O131.416 (2)
Ni2—O52.0066 (16)C12—C131.546 (3)
Ni2—O152.0132 (15)C12—H121.0000
Ni2—O222.0308 (15)O13—H13A0.8200
Ni2—O2ii2.0430 (15)C13—O141.416 (2)
Ni2—O142.0688 (15)C13—C141.520 (3)
Ni2—O42.0914 (14)C13—H131.0000
O1—C11.261 (3)O14—H14A0.8200
O2—C11.242 (2)C14—O161.240 (3)
O2—Ni2iii2.0430 (15)C14—O151.265 (3)
C1—C21.531 (3)O21—H21A0.8200
C2—O31.432 (2)O21—H21B0.8201
C2—C31.527 (3)O22—H22A0.8200
C2—H21.0000O22—H22B0.8201
O3—H3A0.8199O23—H23A0.8199
C3—O41.433 (2)O23—H23B0.8200
C3—C41.530 (3)O24—H24A0.8200
C3—H31.0001O24—H24B0.8199
O4—H4A0.8199O25—H25A0.8200
C4—O61.249 (3)O25—H25B0.8200
O11—Ni1—O1169.38 (6)O4—C3—H3107.9
O11—Ni1—O2187.68 (6)C2—C3—H3107.9
O1—Ni1—O2197.08 (6)C4—C3—H3107.8
O11—Ni1—O6i94.70 (6)C3—O4—Ni2113.68 (11)
O1—Ni1—O6i95.41 (6)C3—O4—H4A107.6
O21—Ni1—O6i81.08 (6)Ni2—O4—H4A119.8
O11—Ni1—O1379.78 (6)O6—C4—O5125.07 (18)
O1—Ni1—O1390.93 (6)O6—C4—C3115.84 (17)
O21—Ni1—O1387.26 (6)O5—C4—C3119.02 (18)
O6i—Ni1—O13167.32 (7)C4—O5—Ni2117.72 (13)
O11—Ni1—O394.67 (6)C4—O6—Ni1iv132.86 (14)
O1—Ni1—O379.66 (6)C11—O11—Ni1115.77 (13)
O21—Ni1—O3173.76 (6)O12—C11—O11124.68 (19)
O6i—Ni1—O3104.45 (6)O12—C11—C12115.82 (19)
O13—Ni1—O387.47 (6)O11—C11—C12119.50 (19)
O5—Ni2—O15173.25 (6)O13—C12—C11108.78 (17)
O5—Ni2—O2286.76 (6)O13—C12—C13111.25 (17)
O15—Ni2—O2294.06 (7)C11—C12—C13109.28 (18)
O5—Ni2—O2ii99.26 (7)O13—C12—H12109.2
O15—Ni2—O2ii87.49 (6)C11—C12—H12109.2
O22—Ni2—O2ii81.38 (6)C13—C12—H12109.2
O5—Ni2—O1494.21 (6)C12—O13—Ni1114.58 (12)
O15—Ni2—O1479.10 (6)C12—O13—H13A111.7
O22—Ni2—O1489.82 (6)Ni1—O13—H13A124.3
O2ii—Ni2—O14163.42 (6)O14—C13—C14109.05 (17)
O5—Ni2—O479.58 (6)O14—C13—C12111.93 (17)
O15—Ni2—O499.32 (6)C14—C13—C12109.77 (18)
O22—Ni2—O4166.24 (6)O14—C13—H13108.7
O2ii—Ni2—O4102.32 (6)C14—C13—H13108.7
O14—Ni2—O489.55 (6)C12—C13—H13108.7
C1—O1—Ni1117.36 (13)C13—O14—Ni2115.23 (12)
C1—O2—Ni2iii143.48 (14)C13—O14—H14A113.0
O2—C1—O1125.85 (18)Ni2—O14—H14A127.7
O2—C1—C2115.30 (18)O16—C14—O15125.47 (18)
O1—C1—C2118.84 (17)O16—C14—C13115.90 (19)
O3—C2—C3112.08 (16)O15—C14—C13118.63 (18)
O3—C2—C1109.58 (16)C14—O15—Ni2117.72 (13)
C3—C2—C1110.13 (16)Ni1—O21—H21A114.4
O3—C2—H2108.3Ni1—O21—H21B120.1
C3—C2—H2108.3H21A—O21—H21B104.5
C1—C2—H2108.3Ni2—O22—H22A113.1
C2—O3—Ni1113.49 (11)Ni2—O22—H22B119.5
C2—O3—H3A109.3H22A—O22—H22B99.5
Ni1—O3—H3A127.4H23A—O23—H23B99.7
O4—C3—C2111.26 (16)H24A—O24—H24B117.8
O4—C3—C4109.15 (16)H25A—O25—H25B116.1
C2—C3—C4112.66 (16)
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x+2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O230.821.992.797 (2)168
O4—H4A···O23v0.821.962.776 (2)173
O13—H13A···O240.821.872.655 (2)160
O14—H14A···O250.821.852.640 (2)162
O21—H21A···O16vi0.822.032.823 (2)162
O21—H21B···O12vii0.821.822.638 (2)178
O22—H22A···O12viii0.821.962.679 (2)145
O22—H22B···O16ix0.821.822.590 (2)157
O23—H23A···O22i0.822.002.811 (2)170
O23—H23B···O1iv0.821.912.718 (2)167
O24—H24A···O11v0.822.162.820 (2)137
O24—H24B···O5iii0.822.603.382 (3)160
O25—H25A···O15x0.822.062.792 (2)148
O25—H25B···O24x0.822.593.299 (3)146
Symmetry codes: (i) x+2, y1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x+2, y+1/2, z+1/2; (v) x1, y, z; (vi) x+1/2, y+1/2, z+1; (vii) x1/2, y+1/2, z+1; (viii) x1/2, y+3/2, z+1; (ix) x+1/2, y+3/2, z+1; (x) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ni2(C4H4O6)2(H2O)2]·3H2O
Mr503.64
Crystal system, space groupOrthorhombic, P212121
Temperature (K)150
a, b, c (Å)7.8072 (5), 11.0636 (8), 17.9361 (9)
V3)1549.24 (17)
Z4
Radiation typeMo Kα
µ (mm1)2.53
Crystal size (mm)0.3 × 0.2 × 0.2
Data collection
DiffractometerStoe Imaging Plate Diffraction System
diffractometer
Absorption correctionNumerical
(X-SHAPE; Stoe & Cie, 1998)
Tmin, Tmax0.605, 0.735
No. of measured, independent and
observed [I > 2σ(I)] reflections
22323, 3665, 3602
Rint0.041
(sin θ/λ)max1)0.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.063, 1.06
No. of reflections3665
No. of parameters245
H-atom treatmentConstrained
Δρmax, Δρmin (e Å3)0.38, 0.80
Absolute structureFlack (1983)
Absolute structure parameter0.002 (9)

Computer programs: IPDS Program Package (Stoe & Cie, 1998), IPDS Program Package, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP in SHELXTL (Bruker, 1998), CIFTAB in SHELXTL.

Selected geometric parameters (Å, º) top
Ni1—O112.0091 (15)Ni2—O152.0132 (15)
Ni1—O12.0121 (15)Ni2—O222.0308 (15)
Ni1—O212.0328 (15)Ni2—O2ii2.0430 (15)
Ni1—O6i2.0456 (15)Ni2—O142.0688 (15)
Ni1—O132.0655 (15)Ni2—O42.0914 (14)
Ni1—O32.0995 (15)O2—Ni2iii2.0430 (15)
Ni2—O52.0066 (16)
O11—Ni1—O1169.38 (6)O5—Ni2—O15173.25 (6)
O11—Ni1—O2187.68 (6)O5—Ni2—O2286.76 (6)
O1—Ni1—O2197.08 (6)O15—Ni2—O2294.06 (7)
O11—Ni1—O6i94.70 (6)O5—Ni2—O2ii99.26 (7)
O1—Ni1—O6i95.41 (6)O15—Ni2—O2ii87.49 (6)
O21—Ni1—O6i81.08 (6)O22—Ni2—O2ii81.38 (6)
O11—Ni1—O1379.78 (6)O5—Ni2—O1494.21 (6)
O1—Ni1—O1390.93 (6)O15—Ni2—O1479.10 (6)
O21—Ni1—O1387.26 (6)O22—Ni2—O1489.82 (6)
O6i—Ni1—O13167.32 (7)O2ii—Ni2—O14163.42 (6)
O11—Ni1—O394.67 (6)O5—Ni2—O479.58 (6)
O1—Ni1—O379.66 (6)O15—Ni2—O499.32 (6)
O21—Ni1—O3173.76 (6)O22—Ni2—O4166.24 (6)
O6i—Ni1—O3104.45 (6)O2ii—Ni2—O4102.32 (6)
O13—Ni1—O387.47 (6)O14—Ni2—O489.55 (6)
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O230.821.992.797 (2)168
O4—H4A···O23iv0.821.962.776 (2)173
O13—H13A···O240.821.872.655 (2)160
O14—H14A···O250.821.852.640 (2)162
O21—H21A···O16v0.822.032.823 (2)162
O21—H21B···O12vi0.821.822.638 (2)178
O22—H22A···O12vii0.821.962.679 (2)145
O22—H22B···O16viii0.821.822.590 (2)157
O23—H23A···O22i0.822.002.811 (2)170
O23—H23B···O1ix0.821.912.718 (2)167
O24—H24A···O11iv0.822.162.820 (2)137
O24—H24B···O5iii0.822.603.382 (3)160
O25—H25A···O15x0.822.062.792 (2)148
O25—H25B···O24x0.822.593.299 (3)146
Symmetry codes: (i) x+2, y1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x1, y, z; (v) x+1/2, y+1/2, z+1; (vi) x1/2, y+1/2, z+1; (vii) x1/2, y+3/2, z+1; (viii) x+1/2, y+3/2, z+1; (ix) x+2, y+1/2, z+1/2; (x) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds