Download citation
Download citation
link to html
The crystal structure of the title compound, C17H10O3, is the first example of a furocoumarin containing three fused rings. The tricyclic furocoumarin fragment is perfectly planar. The phenyl substituent forms a dihedral angle of 39.52 (8)° with the plane of the tricyclic system. The crystal packing involves centrosymmetric dimers interconnected by strong π-interactions between their furo­[3,2-c]­coumarin fragments [at distances of 3.42 (4) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101001433/av1062sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101001433/av1062Isup2.hkl
Contains datablock I

CCDC reference: 163948

Computing details top

Data collection: XSCANS (Siemens, 1996a); cell refinement: XSCANS; data reduction: SHELXTL (Siemens, 1996b); program(s) used to solve structure: SIR97 (Altomare, 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XPW in SHELXTL; software used to prepare material for publication: locally modified PARST97 (Nardelli, 1995) and SHELXL97.

3-Phenylfuro[3,2-c]chromen-4-one top
Crystal data top
C17H10O3F(000) = 1088
Mr = 262.25Dx = 1.413 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 48 reflections
a = 13.4239 (11) Åθ = 3.0–12.4°
b = 7.2198 (5) ŵ = 0.10 mm1
c = 25.441 (3) ÅT = 298 K
V = 2465.7 (4) Å3Irregular, colourless
Z = 80.39 × 0.25 × 0.18 mm
Data collection top
Siemens P4
diffractometer
1189 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.029
Graphite monochromatorθmax = 25.0°, θmin = 2.2°
ω scansh = 115
Absorption correction: ψ scan
(Kopfmann & Huber, 1968)
k = 18
Tmin = 0.241, Tmax = 0.272l = 301
2877 measured reflections3 standard reflections every 197 reflections
2170 independent reflections intensity decay: 12%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.053P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
2170 reflectionsΔρmax = 0.18 e Å3
182 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0057 (7)
Special details top

Experimental. Due to the irregular shape, the crystal sample dimension might be considered approsimate

The reflection profiles have not the usual Gaussian shape but they show an evident broading that might be related to mosaic structure of the packing.

Reflection intensities were evaluated by profile fitting of a 96-steps peak scan among 2θ shells (Diamond, 1969). The observed decay of the diffraction data might be due to the deterioration of the crystal packing caused by the increase of its mosaic structure. An absorption correction was applied by fitting a pseudo-ellipsoid to the azimuthal scan data (0–360° range by a 10° step) of 12 high χ reflections (Kopfmann & Huber, 1968). Whereas the final difference Fourier maps showed several H-atom positions.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

All calculations were performed on a µ-VAX 3400 and on a DEC-alpha 3000/400. An empirical extinction parameter was included in the final refinement cycles.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.41972 (12)0.2889 (2)0.03889 (7)0.0585 (5)
O20.42723 (14)0.2967 (2)0.12534 (7)0.0713 (6)
O30.33758 (12)0.2514 (2)0.04435 (7)0.0582 (6)
C10.36380 (17)0.0710 (3)0.03828 (10)0.0497 (7)
C20.36886 (17)0.0195 (4)0.01134 (10)0.0493 (7)
C30.34655 (19)0.0565 (4)0.06025 (11)0.0600 (7)
H30.32550.17900.06270.075*
C40.3555 (2)0.0489 (5)0.10464 (11)0.0682 (9)
H40.33990.00190.13720.075*
C50.3879 (2)0.2308 (5)0.10142 (11)0.0682 (9)
H50.39520.30050.13190.075*
C60.40919 (19)0.3091 (4)0.05337 (11)0.0631 (8)
H60.43020.43160.05110.075*
C70.39899 (18)0.2031 (4)0.00858 (10)0.0520 (7)
C80.41059 (19)0.2014 (4)0.08789 (11)0.0534 (7)
C90.38223 (17)0.0095 (3)0.08548 (9)0.0453 (6)
C100.36474 (17)0.1291 (3)0.12526 (10)0.0481 (7)
C110.33999 (18)0.2824 (4)0.09796 (11)0.0572 (7)
H110.32610.39620.11340.075*
C120.36939 (19)0.1200 (3)0.18342 (11)0.0515 (7)
C130.2975 (2)0.2103 (4)0.21274 (11)0.0651 (8)
H130.24470.26840.19580.075*
C140.3032 (2)0.2150 (4)0.26671 (12)0.0759 (9)
H140.25480.27730.28590.075*
C150.3800 (2)0.1283 (4)0.29221 (12)0.0726 (9)
H150.38390.13260.32870.075*
C160.4511 (2)0.0349 (4)0.26399 (10)0.0689 (8)
H160.50300.02490.28130.075*
C170.4454 (2)0.0301 (4)0.20961 (10)0.0603 (8)
H170.49330.03440.19060.075*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0695 (13)0.0435 (10)0.0625 (12)0.0040 (10)0.0072 (10)0.0034 (10)
O20.1025 (16)0.0441 (11)0.0674 (12)0.0056 (11)0.0169 (11)0.0090 (10)
O30.0594 (12)0.0458 (11)0.0695 (13)0.0088 (9)0.0044 (10)0.0061 (9)
C10.0393 (14)0.0429 (15)0.0668 (18)0.0001 (13)0.0010 (13)0.0041 (14)
C20.0369 (14)0.0504 (17)0.0605 (17)0.0004 (14)0.0032 (13)0.0062 (15)
C30.0513 (17)0.0615 (17)0.0671 (18)0.0002 (15)0.0039 (14)0.0086 (16)
C40.0612 (19)0.084 (2)0.060 (2)0.0061 (18)0.0046 (15)0.0052 (18)
C50.064 (2)0.080 (2)0.0602 (19)0.0113 (19)0.0011 (16)0.0107 (17)
C60.0591 (18)0.0563 (17)0.074 (2)0.0059 (15)0.0035 (15)0.0087 (17)
C70.0429 (15)0.0507 (17)0.0622 (17)0.0061 (15)0.0050 (13)0.0000 (15)
C80.0518 (16)0.0419 (15)0.0666 (18)0.0028 (14)0.0091 (14)0.0016 (15)
C90.0432 (14)0.0358 (14)0.0569 (16)0.0014 (13)0.0035 (12)0.0025 (13)
C100.0406 (14)0.0409 (15)0.0629 (17)0.0011 (13)0.0013 (13)0.0026 (14)
C110.0536 (17)0.0479 (16)0.070 (2)0.0069 (14)0.0028 (14)0.0076 (16)
C120.0500 (16)0.0411 (15)0.0634 (17)0.0023 (14)0.0020 (14)0.0045 (13)
C130.0668 (19)0.0557 (18)0.073 (2)0.0092 (16)0.0018 (16)0.0066 (17)
C140.087 (2)0.065 (2)0.076 (2)0.0150 (19)0.0092 (19)0.0129 (19)
C150.102 (3)0.0542 (19)0.0618 (19)0.0040 (19)0.0022 (19)0.0020 (16)
C160.074 (2)0.063 (2)0.070 (2)0.0028 (18)0.0106 (17)0.0048 (17)
C170.0579 (18)0.0555 (17)0.0675 (18)0.0063 (16)0.0026 (15)0.0007 (16)
Geometric parameters (Å, º) top
O1—C71.385 (3)C6—C71.380 (3)
O1—C81.403 (3)C8—C91.438 (3)
O2—C81.196 (3)C9—C101.442 (3)
O3—C11.358 (3)C10—C111.348 (3)
O3—C111.383 (3)C10—C121.482 (3)
C1—C91.357 (3)C12—C171.381 (3)
C1—C21.423 (3)C12—C131.382 (3)
C2—C71.388 (3)C13—C141.376 (3)
C2—C31.393 (3)C14—C151.369 (4)
C3—C41.367 (4)C15—C161.372 (3)
C4—C51.386 (4)C16—C171.386 (3)
C5—C61.377 (3)
C7—O1—C8123.8 (2)O1—C8—C9114.8 (2)
C1—O3—C11105.14 (19)C1—C9—C8119.9 (2)
C9—C1—O3111.0 (2)C1—C9—C10107.1 (2)
C9—C1—C2125.4 (2)C8—C9—C10133.0 (2)
O3—C1—C2123.6 (2)C11—C10—C9104.4 (2)
C7—C2—C3119.0 (3)C11—C10—C12124.1 (2)
C7—C2—C1114.0 (2)C9—C10—C12131.5 (2)
C3—C2—C1127.0 (3)C10—C11—O3112.4 (2)
C4—C3—C2120.0 (3)C17—C12—C13118.5 (3)
C3—C4—C5120.4 (3)C17—C12—C10122.2 (2)
C6—C5—C4120.4 (3)C13—C12—C10119.2 (2)
C5—C6—C7119.0 (3)C14—C13—C12120.8 (3)
C6—C7—O1116.9 (3)C15—C14—C13120.2 (3)
C6—C7—C2121.1 (3)C14—C15—C16120.0 (3)
O1—C7—C2122.0 (2)C15—C16—C17119.7 (3)
O2—C8—O1115.6 (2)C12—C17—C16120.7 (3)
O2—C8—C9129.6 (3)
C11—O3—C1—C90.1 (3)C2—C1—C9—C10177.7 (2)
C11—O3—C1—C2178.8 (2)O2—C8—C9—C1177.9 (3)
C9—C1—C2—C72.4 (4)O1—C8—C9—C11.9 (3)
O3—C1—C2—C7178.9 (2)O2—C8—C9—C100.0 (5)
C9—C1—C2—C3177.2 (2)O1—C8—C9—C10179.9 (2)
O3—C1—C2—C31.5 (4)C1—C9—C10—C111.7 (3)
C7—C2—C3—C40.7 (4)C8—C9—C10—C11179.8 (3)
C1—C2—C3—C4179.7 (2)C1—C9—C10—C12177.6 (2)
C2—C3—C4—C50.7 (4)C8—C9—C10—C120.6 (5)
C3—C4—C5—C61.5 (4)C9—C10—C11—O31.7 (3)
C4—C5—C6—C70.7 (4)C12—C10—C11—O3177.6 (2)
C5—C6—C7—O1179.0 (2)C1—O3—C11—C101.1 (3)
C5—C6—C7—C20.7 (4)C11—C10—C12—C17137.7 (3)
C8—O1—C7—C6178.4 (2)C9—C10—C12—C1743.2 (4)
C8—O1—C7—C21.3 (4)C11—C10—C12—C1339.8 (4)
C3—C2—C7—C61.5 (4)C9—C10—C12—C13139.3 (3)
C1—C2—C7—C6178.9 (2)C17—C12—C13—C141.9 (4)
C3—C2—C7—O1178.2 (2)C10—C12—C13—C14175.7 (2)
C1—C2—C7—O11.4 (3)C12—C13—C14—C150.7 (5)
C7—O1—C8—O2177.0 (2)C13—C14—C15—C160.5 (5)
C7—O1—C8—C92.9 (3)C14—C15—C16—C170.5 (4)
O3—C1—C9—C8179.6 (2)C13—C12—C17—C161.9 (4)
C2—C1—C9—C80.7 (4)C10—C12—C17—C16175.6 (2)
O3—C1—C9—C101.1 (3)C15—C16—C17—C120.7 (4)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds